Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.160
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000037

ABSTRACT

A complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative. However, the relative ability of allulose to generate AGEs compared to glucose and fructose is not known. Here we assess the accumulation of AGEs in cell-free, in vitro, and in vivo conditions in response to allulose and compare it to glycation mediated by glucose or fructose. AGEs were quantified in cell-free samples, cell culture media and lysates, and rat serum with glycation-specific ELISAs. In cell-free conditions, we observed concentration and time-dependent increases in AGEs when bovine serum albumin (BSA) was incubated with glucose or fructose and significantly less glycation when incubated with allulose. AGEs were significantly elevated when pulmonary alveolar type II-like cells were co-incubated with glucose or fructose; however, significantly less AGEs were detected when cells were exposed to allulose. AGE quantification in serum obtained from rats fed a high-fat, low-carb (HFLC) Western diet for 2 weeks revealed significantly less glycation in animals co-administered allulose compared to those exposed to stevia. These results suggest allulose is associated with less AGE formation compared to fructose or glucose, and support its safety as a low-calorie sugar alternative.


Subject(s)
Fructose , Glycation End Products, Advanced , Animals , Glycation End Products, Advanced/metabolism , Rats , Glycosylation , Fructose/metabolism , Monosaccharides/metabolism , Glucose/metabolism , Male , Serum Albumin, Bovine/metabolism , Receptor for Advanced Glycation End Products/metabolism , Rats, Sprague-Dawley
2.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998906

ABSTRACT

The effects of normal (NA) and controlled atmosphere (CA) storage and postharvest treatment with 1-methylcyclopropene (1-MCP) before CA storage for 5 months on the volatilome, biochemical composition and quality of 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples were studied. Apples stored under NA and CA maintained and 1-MCP treatment increased firmness in both cultivars. NA storage resulted in a decrease of glucose, sucrose and fructose levels in both cultivars. When compared to CA storage, 1-MCP treatment caused a more significant decrease in sucrose levels and an increase in glucose levels. Additionally, 1-MCP-treated apples exhibited a significant decrease in malic acid content for both cultivars. All storage conditions led to significant changes in the abundance and composition of the volatilome in both cultivars. GD and RD apples responded differently to 1-MCP treatment compared to CA storage; higher abundance of hexanoate esters and (E,E)-α-farnesene was observed in RD apples treated with 1-MCP. While 1-MCP was effective in reducing (E,E)-α-farnesene abundance in GD apples, its impact on RD apples was more limited. However, for both cultivars, all storage conditions resulted in lower levels of 2-methylbutyl acetate, butyl acetate and hexyl acetate. The effectiveness of 1-MCP is cultivar dependent, with GD showing better results than RD.


Subject(s)
Food Storage , Malus , Malus/chemistry , Malus/metabolism , Cyclopropanes/pharmacology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Fruit/chemistry , Fruit/metabolism , Sucrose/metabolism , Malates , Sesquiterpenes/analysis , Glucose/metabolism , Fructose/metabolism , Fructose/analysis
3.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999025

ABSTRACT

Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11ß-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11ß-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.


Subject(s)
Hypoglycemic Agents , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phenols/chemistry , Phenols/pharmacology , Humans , Molecular Docking Simulation , Isoflavones/chemistry , Isoflavones/metabolism , Isoflavones/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Phlorhizin/chemistry , Phlorhizin/pharmacology , Fructose/chemistry , Fructose/metabolism , Glycosylation , Coumaric Acids/chemistry , Coumaric Acids/metabolism
4.
Commun Biol ; 7(1): 849, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992061

ABSTRACT

Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease. Besides the accumulation of F1P, here we show that the activation of the purine degradation pathway is a common feature in aldolase B deficient mice exposed to fructose. The purine degradation pathway is a metabolic route initiated by adenosine monophosphate deaminase 2 (AMPD2) that regulates overall energy balance. We demonstrate that very low amounts of fructose are sufficient to activate AMPD2 in these mice via a phosphate trap. While blocking AMPD2 do not impact F1P accumulation and the risk of hypoglycemia, its deletion in hepatocytes markedly improves the metabolic dysregulation induced by fructose and corrects fat and glycogen storage while significantly increasing the voluntary tolerance of these mice to fructose. In summary, we provide evidence for a critical pathway activated in HFI that could be targeted to improve the metabolic consequences associated with fructose consumption.


Subject(s)
AMP Deaminase , Fructose Intolerance , Fructose-Bisphosphate Aldolase , Fructose , Animals , Fructose Intolerance/metabolism , Fructose Intolerance/genetics , Mice , AMP Deaminase/genetics , AMP Deaminase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Fructose-Bisphosphate Aldolase/genetics , Fructose/metabolism , Liver Diseases/metabolism , Liver Diseases/etiology , Liver Diseases/genetics , Male , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal , Liver/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Energy Metabolism/drug effects , Fructosephosphates/metabolism
5.
Microb Cell Fact ; 23(1): 167, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849849

ABSTRACT

BACKGROUND: White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS: In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS: Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.


Subject(s)
Laccase , Metabolic Networks and Pathways , Laccase/metabolism , Laccase/genetics , Biomarkers/metabolism , Carbon/metabolism , Gene Expression Regulation, Fungal , Transcriptome , Polyporaceae/enzymology , Polyporaceae/genetics , Polyporaceae/metabolism , Fructose/metabolism , Metabolomics , Fungal Proteins/metabolism , Fungal Proteins/genetics
6.
PLoS One ; 19(6): e0305861, 2024.
Article in English | MEDLINE | ID: mdl-38913627

ABSTRACT

Male infertility is a pressing global issue, prompting the need for biomarkers correlating with seminal parameters for diagnosis. Our study investigated 10 biochemical and energetic parameters in the seminal plasma and blood sera of fertile (25 subjects) and infertile (88 subjects) Polish men, correlations between their levels in seminal plasma and semen quality, and correlations between blood sera and seminal plasma levels of examined parameters. Infertile men displayed elevated seminal plasma glucose and fructose but reduced HDL levels compared to fertile men. We observed also weak negative correlations between seminal plasma triglycerides and sperm concentration in both groups. Moreover, infertile men exhibited positive correlations between seminal plasma HDL/LDL concentrations and sperm concentration. Fertile men showed moderate negative correlations between glucose/triglycerides concentrations and sperm count and between seminal plasma triglycerides levels and sperm vitality. Semen volume correlated with triglycerides (negative) and fructose (positive) concentrations in infertile men. Sperm motility correlated negatively with total cholesterol, LDL, and triglycerides concentrations in fertile men, and weakly with AMP-activated protein kinase in infertile men. Weak negative correlations between seminal plasma fructose/AMP-activated protein kinase concentrations and sperm progressive motility were observed in infertile men, whereas in fertile men seminal plasma AMP-activated protein kinase levels were positively correlated with progressive motility. Correlation analysis between blood serum and seminal plasma parameters revealed intriguing connections, notably regarding LDL, AMP-activated protein kinase, and carnitine, suggesting systemic influences on seminal plasma composition. These findings emphasize the complex interplay between metabolic factors and sperm parameters, offering promising directions for future research in male infertility diagnostics and therapeutics.


Subject(s)
Infertility, Male , Semen Analysis , Semen , Humans , Male , Semen/metabolism , Semen/chemistry , Adult , Infertility, Male/metabolism , Infertility, Male/blood , Triglycerides/blood , Triglycerides/metabolism , Sperm Count , Sperm Motility/physiology , Fructose/metabolism , Biomarkers/blood , AMP-Activated Protein Kinases/metabolism
7.
Microb Biotechnol ; 17(6): e14488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850269

ABSTRACT

The transition towards a sustainable bioeconomy requires the development of highly efficient bioprocesses that enable the production of bulk materials at a competitive price. This is particularly crucial for driving the commercialization of polyhydroxyalkanoates (PHAs) as biobased and biodegradable plastic substitutes. Among these, the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) shows excellent material properties that can be tuned by regulating its monomer composition. In this study, we developed a high-cell-density fed-batch strategy using mixtures of fructose and canola oil to modulate the molar composition of P(HB-co-HHx) produced by Ralstonia eutropha Re2058/pCB113 at 1-L laboratory scale up to 150-L pilot scale. With cell densities >100 g L-1 containing 70-80 wt% of PHA with tunable HHx contents in the range of 9.0-14.6 mol% and productivities of up to 1.5 g L-1 h-1, we demonstrate the tailor-made production of P(HB-co-HHx) at an industrially relevant scale. Ultimately, this strategy enables the production of PHA bioplastics with defined material properties on the kilogram scale, which is often required for testing and adapting manufacturing processes to target diverse applications.


Subject(s)
Cupriavidus necator , Fructose , Cupriavidus necator/metabolism , Cupriavidus necator/genetics , Fructose/metabolism , Metabolic Engineering/methods , Caproates/metabolism , Fatty Acids, Monounsaturated/metabolism , Rapeseed Oil/metabolism , Rapeseed Oil/chemistry , Cell Count , Polyhydroxybutyrates
8.
Biochem Biophys Res Commun ; 725: 150271, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901222

ABSTRACT

The R-type voltage-gated calcium channel CaV2.3 is predominantly located in the presynapse and is implicated in distinct types of epileptic seizures. It has consequently emerged as a molecular target in seizure treatment. Here, we determined the cryo-EM structure of the CaV2.3-α2δ1-ß1 complex in the topiramate-bound state at a 3.0 Å resolution. We provide a snapshot of the binding site of topiramate, a widely prescribed antiepileptic drug, on a voltage-gated ion channel. The binding site is located at an intracellular juxtamembrane hydrophilic cavity. Further structural analysis revealed that topiramate may allosterically facilitate channel inactivation. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of topiramate on CaV and NaV channels, elucidating a previously unseen modulator binding site and thus pointing toward a route for the development of new drugs.


Subject(s)
Anticonvulsants , Calcium Channels, R-Type , Cryoelectron Microscopy , Topiramate , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Topiramate/chemistry , Topiramate/pharmacology , Humans , Allosteric Regulation/drug effects , Calcium Channels, R-Type/chemistry , Calcium Channels, R-Type/metabolism , Binding Sites , Models, Molecular , HEK293 Cells , Protein Conformation , Fructose/chemistry , Fructose/analogs & derivatives , Fructose/metabolism , Animals , Cation Transport Proteins
9.
Appl Microbiol Biotechnol ; 108(1): 393, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916650

ABSTRACT

Grass raw materials collected from grasslands cover more than 30% of Europe's agricultural area. They are considered very attractive for the production of different biochemicals and biofuels due to their high availability and renewability. In this study, a perennial ryegrass (Lolium perenne) was exploited for second-generation bioethanol production. Grass press-cake and grass press-juice were separated using mechanical pretreatment, and the obtained juice was used as a fermentation medium. In this work, Saccharomyces cerevisiae was utilized for bioethanol production using the grass press-juice as the sole fermentation medium. The yeast was able to release about 11 g/L of ethanol in 72 h, with a total production yield of 0.38 ± 0.2 gEthanol/gsugars. It was assessed to improve the fermentation ability of Saccharomyces cerevisiae by using the short-term adaptation. For this purpose, the yeast was initially propagated in increasing the concentration of press-juice. Then, the yeast cells were re-cultivated in 100%(v/v) fresh juice to verify if it had improved the fermentation efficiency. The fructose conversion increased from 79 to 90%, and the ethanol titers reached 18 g/L resulting in a final yield of 0.50 ± 0.06 gEthanol/gsugars with a volumetric productivity of 0.44 ± 0.00 g/Lh. The overall results proved that short-term adaptation was successfully used to improve bioethanol production with S. cerevisiae using grass press-juice as fermentation medium. KEY POINTS: • Mechanical pretreatment of grass raw materials • Production of bioethanol using grass press-juice as fermentation medium • Short-term adaptation as a tool to improve the bioethanol production.


Subject(s)
Biofuels , Culture Media , Ethanol , Fermentation , Saccharomyces cerevisiae , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Culture Media/chemistry , Lolium/metabolism , Fructose/metabolism , Adaptation, Physiological
10.
J Agric Food Chem ; 72(26): 14821-14829, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897918

ABSTRACT

d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.


Subject(s)
Escherichia coli , Fermentation , Methanol , RNA, Antisense , Xylose , Escherichia coli/genetics , Escherichia coli/metabolism , Xylose/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , Methanol/metabolism , Metabolic Engineering , Fructose/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
11.
Nutrients ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892633

ABSTRACT

Spirulina (Arthrospira platensis) is reported to play a role in improving nonalcoholic fatty liver disease (NAFLD) and intestinal microbiota (IM). To study spirulina's effects in the improvement of NAFLD characteristics, IM, and pancreatic-renal lesions induced by a fructose-enriched diet, 40 Wistar healthy male rats, weighing 200-250 g, were randomly divided into four groups of 10, and each rat per group was assigned a diet of equal quantities (20 g/day) for 18 weeks. The first control group (CT) was fed a standardized diet, the second group received a 40% fructose-enriched diet (HFr), and the third (HFr-S5) and fourth groups (HFr-S10) were assigned the same diet composition as the second group but enriched with 5% and 10% spirulina, respectively. At week 18, the HFr-S10 group maintained its level of serum triglycerides and had the lowest liver fat between the groups. At the phylae and family level, and for the same period, the HFr-S10 group had the lowest increase in the Firmicutes/Bacteroidetes ratio and the Ruminococcaceae and the highest fecal alpha diversity compared to all other groups (p < 0.05). These findings suggest that at a 10% concentration, spirulina could be used in nutritional intervention to improve IM, fatty liver, metabolic, and inflammatory parameters associated with NAFLD.


Subject(s)
Diet , Dietary Supplements , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Spirulina , Male , Animals , Rats, Wistar , Spirulina/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Gastrointestinal Microbiome/physiology , Fructose/metabolism , Fibrosis/metabolism , Liver/anatomy & histology , Kidney/anatomy & histology , Biodiversity
12.
Article in English | MEDLINE | ID: mdl-38833293

ABSTRACT

Strain LMG 33000T was isolated from a Bombus lapidarius gut sample. It shared the highest percentage 16S rRNA sequence identity, average amino acid identity, and amino acid identity of conserved genes with Convivina intestini LMG 28291T (95.86 %, 69.9 and 76.2 %, respectively), and the highest percentage OrthoANIu value with Fructobacillus fructosus DSM 20349T (71.4 %). Phylogenomic analyses by means of 107 or 120 conserved genes consistently revealed Convivina as nearest neighbour genus. The draft genome of strain LMG 33000T was 1.44 Mbp in size and had a DNA G+C content of 46.1 mol%. Genomic and physiological analyses revealed that strain LMG 33000T was a typical obligately fructophilic lactic acid bacterium that lacked the adhE and aldh genes and that did not produce ethanol during glucose or fructose metabolism. In contrast, Convivina species have the adhE and aldh genes in their genomes and produced ethanol from glucose and fructose metabolism, which is typical for heterofermentative lactic acid bacteria. Moreover, strain LMG 33000T exhibited catalase activity, an unusual characteristic among lactic acid bacteria, that is not shared with Convivina species. Given its position in the phylogenomic trees, and the difference in genomic percentage G+C content and in physiological and metabolic characteristics between strain LMG 33000T and Convivina species, we considered it most appropriate to classify strain LMG 33000T into a novel genus and species within the Lactobacillaceae family for which we propose the name Eupransor demetentiae gen. nov., sp. nov., with LMG 33000T (=CECT 30958T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Animals , RNA, Ribosomal, 16S/genetics , Bees/microbiology , DNA, Bacterial/genetics , Fructose/metabolism , Lactic Acid/metabolism , Glucose/metabolism , Ethanol/metabolism
13.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723750

ABSTRACT

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Fructokinases/metabolism , Fructokinases/genetics , Fructosediphosphates/metabolism , Fructose/metabolism , Gene Expression Regulation, Bacterial , Fructosephosphates/metabolism
14.
ACS Chem Biol ; 19(6): 1237-1242, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38723147

ABSTRACT

As an important functional monosaccharide, glucosamine (GlcN) is widely used in fields such as medicine, food nutrition, and health care. Here, we report a distinct GlcN biosynthesis method that utilizes engineered Bacillus subtilis glucosamine-6-phosphate synthase (BsGlmS) to convert D-fructose to directly generate GlcN. The best variant obtained by using a combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy was a quadruple mutant S596D/V597G/S347H/G299Q (BsGlmS-BK19), which has a catalytic activity 1736-fold that of the wild type toward D-fructose. Upon using mutant BK19 as a whole-cell catalyst, D-fructose was converted into GlcN with 65.32% conversion in 6 h, whereas the wild type only attained a conversion rate of 0.31% under the same conditions. Molecular docking and molecular dynamics simulations were implemented to provide insights into the mechanism underlying the enhanced activity of BK19. Importantly, the BsGlmS-BK19 variant specifically catalyzes D-fructose without the need for phosphorylated substrates, representing a significant advancement in GlcN biosynthesis.


Subject(s)
Bacillus subtilis , Glucosamine , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Protein Engineering , Glucosamine/biosynthesis , Glucosamine/metabolism , Glucosamine/chemistry , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/chemistry , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Molecular Docking Simulation , Fructose/metabolism , Fructose/chemistry , Fructose/biosynthesis , Molecular Dynamics Simulation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalytic Domain
15.
Arch Microbiol ; 206(6): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767668

ABSTRACT

Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.


Subject(s)
Antifungal Agents , Candida tropicalis , Carbon , Drug Resistance, Fungal , Fluconazole , Microbial Sensitivity Tests , Oxidative Stress , Candida tropicalis/drug effects , Candida tropicalis/physiology , Antifungal Agents/pharmacology , Humans , Fluconazole/pharmacology , Carbon/metabolism , Candidiasis/microbiology , Osmotic Pressure , Glucose/metabolism , Sucrose/metabolism , Sucrose/pharmacology , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Fructose/metabolism , Fructose/pharmacology , Stress, Physiological
16.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 377-385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38805243

ABSTRACT

Over the past forty years there has been a drastic increase in fructose-related diseases, including obesity, heart disease and diabetes. Ketohexokinase (KHK), the first enzyme in the liver fructolysis pathway, catalyzes the ATP-dependent phosphorylation of fructose to fructose 1-phosphate. Understanding the role of KHK in disease-related processes is crucial for the management and prevention of this growing epidemic. Molecular insight into the structure-function relationship in ligand binding and catalysis by KHK is needed for the design of therapeutic inhibitory ligands. Ketohexokinase has two isoforms: ketohexokinase A (KHK-A) is produced ubiquitously at low levels, whereas ketohexokinase C (KHK-C) is found at much higher levels, specifically in the liver, kidneys and intestines. Structures of the unliganded and liganded human isoforms KHK-A and KHK-C are known, as well as structures of unliganded and inhibitor-bound mouse KHK-C (mKHK-C), which shares 90% sequence identity with human KHK-C. Here, a high-resolution X-ray crystal structure of mKHK-C refined to 1.79 Šresolution is presented. The structure was determined in a complex with both the substrate fructose and the product of catalysis, ADP, providing a view of the Michaelis-like complex of the mouse ortholog. Comparison to unliganded structures suggests that KHK undergoes a conformational change upon binding of substrates that places the enzyme in a catalytically competent form in which the ß-sheet domain from one subunit rotates by 16.2°, acting as a lid for the opposing active site. Similar kinetic parameters were calculated for the mouse and human enzymes and indicate that mice may be a suitable animal model for the study of fructose-related diseases. Knowledge of the similarity between the mouse and human enzymes is important for understanding preclinical efforts towards targeting this enzyme, and this ground-state, Michaelis-like complex suggests that a conformational change plays a role in the catalytic function of KHK-C.


Subject(s)
Fructokinases , Animals , Fructokinases/chemistry , Fructokinases/metabolism , Mice , Crystallography, X-Ray , Isoenzymes/chemistry , Models, Molecular , Protein Conformation , Humans , Fructose/metabolism , Fructose/chemistry
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732052

ABSTRACT

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Subject(s)
Delta-5 Fatty Acid Desaturase , Diet, Western , Fatty Acid Desaturases , Hepatocytes , Animals , Male , Rats , Delta-5 Fatty Acid Desaturase/metabolism , Dependovirus/genetics , Diet, Western/adverse effects , Disease Models, Animal , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Fructose/metabolism , Hepatocytes/metabolism , Liver/metabolism , Phenotype , Rats, Sprague-Dawley , Triglycerides/metabolism
18.
Front Immunol ; 15: 1375461, 2024.
Article in English | MEDLINE | ID: mdl-38711514

ABSTRACT

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Subject(s)
Fructose , Neoplasms , Tumor Microenvironment , Humans , Fructose/metabolism , Fructose/adverse effects , Neoplasms/metabolism , Neoplasms/etiology , Animals , Cellular Reprogramming/drug effects , Energy Metabolism/drug effects , Metabolic Reprogramming
19.
Int J Biol Macromol ; 269(Pt 1): 131986, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697423

ABSTRACT

D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.


Subject(s)
Enzyme Stability , Protein Engineering , Ruminococcus , Ruminococcus/enzymology , Ruminococcus/genetics , Protein Engineering/methods , Peptides/chemistry , Peptides/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Kinetics , Models, Molecular , Fructose/metabolism , Fructose/chemistry
20.
Arch Biochem Biophys ; 756: 110021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697344

ABSTRACT

The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.


Subject(s)
Energy Metabolism , Fermentation , Fructose , Glucose , Glycolysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Fructose/metabolism , Glucose/metabolism , Pentose Phosphate Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...