Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.595
Filter
1.
J Proteome Res ; 23(7): 2431-2440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965920

ABSTRACT

Alpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.


Subject(s)
Orosomucoid , Humans , Orosomucoid/metabolism , Orosomucoid/chemistry , Female , Pregnancy , Chromatography, Ion Exchange/methods , Glycosylation , Mass Spectrometry/methods , Fucose/chemistry , Fucose/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/blood
2.
Sci Rep ; 14(1): 16512, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020051

ABSTRACT

Prostate-specific antigen (PSA) levels are widely used to screen for prostate cancer, yet the test has poor sensitivity, specificity and predictive value, which leads to overdiagnosis and overtreatment. Alterations in the glycosylation status of PSA, including fucosylation, may offer scope for an improved biomarker. We sought to generate a monoclonal antibody (mAb) targeting α-1,6-fucosylated PSA (fuc-PSA) and to develop a tissue-based immunological assay for fuc-PSA detection. Immunogens representing fuc-PSA were used for immunisation and resultant mAbs were extensively characterised. The mAbs reacted specifically with fuc-PSA-specific glycopeptide, but not with aglycosylated PSA or glycan without the PSA peptide. Reactivity was confirmed using high-throughput surface plasmon resonance spectroscopy. X-ray crystallography investigations showed that the mAbs bound to an α-helical form of the peptide, whereas the native PSA epitope is linear. Protein unfolding was required for detection of fuc-PSA in patient samples. Peptide inhibition of fuc-PSA mAbs was observed with positive screening reagents, and target epitope specificity was observed in formalin-fixed, paraffin-embedded tissue samples. This research introduces a well-characterised, first-in-class antibody targeting fuc-PSA and presents the first crystal structure of an antibody demonstrating glycosylation-specific binding to a peptide.


Subject(s)
Antibodies, Monoclonal , Fucose , Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Prostate-Specific Antigen/immunology , Prostate-Specific Antigen/metabolism , Male , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Glycosylation , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/immunology , Fucose/metabolism , Epitopes/immunology , Epitopes/chemistry , Animals , Crystallography, X-Ray , Mice
3.
ACS Macro Lett ; 13(7): 874-881, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38949618

ABSTRACT

The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.


Subject(s)
Antiviral Agents , Fucose , Influenza A Virus, H1N1 Subtype , Lactose , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Lactose/analogs & derivatives , Lactose/chemistry , Lactose/pharmacology , Fucose/chemistry , Fucose/analogs & derivatives , Fucose/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Drug Resistance, Viral/drug effects , Humans , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Animals , Dogs , Polymers/pharmacology , Polymers/chemistry
4.
Carbohydr Polym ; 342: 122302, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048211

ABSTRACT

Methylation followed by depolymerization and gas chromatography (GC) is an effective methodology for the linkage analysis of polysaccharides, including fucoidan, a sulphated algal polysaccharide. However, this sample material demands attention to experimental details to prevent aberrations in the analytical result. The use of deficient bases for methylation, the presence of water, analyte degradation during hydrolysis, and coelution of the target analytes during gas chromatography create doubts about published results. We therefore investigated critical parameters of the method and carefully optimized the steps of the protocol to ensure the integrity of the results for the fucose monomers. Fucoidan from Cladosiphon okamuranus was used as reference sample to determine the glycosidic bonds, and sulphate positions in the monomer. Fucoidan in protonated form was methylated in a strictly water-free environment using lithium dimsyl as base and methyl iodide for methylation. The methylated polymer was isolated by solid phase extraction, which was crucial to recover also the highly sulfated fraction. Hydrolysis was conducted with trifluoroacetic acid. To separate all target analytes in GC-FID/MS, a stationary phase with high cyanopropyl content (HP-88) was required, as the commonly employed phenyl siloxane phases result in co-elution, which distorts the result severely.


Subject(s)
Fucose , Phaeophyceae , Polysaccharides , Polysaccharides/chemistry , Fucose/chemistry , Methylation , Phaeophyceae/chemistry , Hydrolysis , Gas Chromatography-Mass Spectrometry , Solid Phase Extraction/methods , Sulfates/chemistry , Sulfates/analysis , Hydrocarbons, Iodinated
5.
Glycobiology ; 34(8)2024 06 22.
Article in English | MEDLINE | ID: mdl-38976017

ABSTRACT

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Subject(s)
Fibroblasts , Fucose , Fucosyltransferases , Receptor, Notch1 , Humans , Fibroblasts/metabolism , Fucose/metabolism , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/chemistry , EGF Family of Proteins/metabolism
6.
Nat Commun ; 15(1): 4764, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834561

ABSTRACT

Bacteriophage are sophisticated cellular parasites that can not only parasitize bacteria but are increasingly recognized for their direct interactions with mammalian hosts. Phage adherence to mucus is known to mediate enhanced antimicrobial effects in vitro. However, little is known about the therapeutic efficacy of mucus-adherent phages in vivo. Here, using a combination of in vitro gastrointestinal cell lines, a gut-on-a-chip microfluidic model, and an in vivo murine gut model, we demonstrated that a E. coli phage, øPNJ-6, provided enhanced gastrointestinal persistence and antimicrobial effects. øPNJ-6 bound fucose residues, of the gut secreted glycoprotein MUC2, through domain 1 of its Hoc protein, which led to increased intestinal mucus production that was suggestive of a positive feedback loop mediated by the mucus-adherent phage. These findings extend the Bacteriophage Adherence to Mucus model into phage therapy, demonstrating that øPNJ-6 displays enhanced persistence within the murine gut, leading to targeted depletion of intestinal pathogenic bacteria.


Subject(s)
Escherichia coli Infections , Escherichia coli , Intestinal Mucosa , Mucin-2 , Animals , Escherichia coli/virology , Mice , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Mucin-2/metabolism , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Phage Therapy/methods , Bacterial Adhesion , Female , Mucus/metabolism , Mucus/virology , Coliphages/physiology , Fucose/metabolism , Mice, Inbred C57BL
7.
Methods Mol Biol ; 2810: 249-271, 2024.
Article in English | MEDLINE | ID: mdl-38926284

ABSTRACT

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Subject(s)
CRISPR-Cas Systems , Cricetulus , Fucose , Fucosyltransferases , Gene Editing , CHO Cells , Animals , Gene Editing/methods , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glycosylation , Fucose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cricetinae , Humans
8.
Anal Chem ; 96(26): 10506-10514, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874382

ABSTRACT

Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.


Subject(s)
Fucose , Polysaccharides , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/analysis , Fucose/chemistry , Fucose/metabolism , Glycosylation , Tandem Mass Spectrometry , Cell Line, Tumor , Glycopeptides/chemistry , Glycopeptides/analysis , Glycopeptides/metabolism
9.
Int J Biochem Cell Biol ; 173: 106602, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843991

ABSTRACT

Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1-6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients' state.


Subject(s)
Fucose , Mutation , Humans , Fucose/metabolism , Leukocyte-Adhesion Deficiency Syndrome/genetics , Leukocyte-Adhesion Deficiency Syndrome/metabolism , Leukocyte-Adhesion Deficiency Syndrome/pathology , Phenotype , Glycosylation , Golgi Apparatus/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , Polysaccharides/metabolism , Animals , Monosaccharide Transport Proteins
10.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917011

ABSTRACT

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Animals , CHO Cells , Glycosylation , Humans , Trastuzumab/pharmacology , Trastuzumab/metabolism , Fucosyltransferases/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects
11.
Arch Biochem Biophys ; 758: 110069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914216

ABSTRACT

Bovine intestinal alkaline phosphatase (biALP), a membrane-bound plasma metalloenzyme, maintains intestinal homeostasis, regulates duodenal surface pH, and protects against infections caused by pathogenic bacteria. The N-glycans of biALP regulate its enzymatic activity, protein folding, and thermostability, but their structures are not fully reported. In this study, the structures and quantities of the N-glycans of biALP were analyzed by liquid chromatography-electrospray ionization-high energy collision dissociation-tandem mass spectrometry. In total, 48 N-glycans were identified and quantified, comprising high-mannose [6 N-glycans, 33.1 % (sum of relative quantities of each N-glycan)], hybrid (6, 11.9 %), and complex (36, 55.0 %) structures [bi- (13, 26.1 %), tri- (16, 21.5 %), and tetra-antennary (7, 7.4 %)]. These included bisecting N-acetylglucosamine (33, 56.6 %), mono-to tri-fucosylation (32, 53.3 %), mono-to tri-α-galactosylation (16, 20.7 %), and mono-to tetra-ß-galactosylation (36, 58.5 %). No sialylation was identified. N-glycans with non-bisecting GlcNAc (9, 10.3 %), non-fucosylation (10, 13.6 %), non-α-galactosylation (26, 46.2 %), and non-ß-galactosylation (6, 8.4 %) were also identified. The activity (100 %) of biALP was reduced to 37.3 ± 0.2 % (by de-fucosylation), 32.7 ± 2.9 % (by de-α-galactosylation), and 0.2 ± 0.2 % (by de-ß-galactosylation), comparable to inhibition by 10-4 to 101 mM EDTA, a biALP inhibitor. These results indicate that fucosylated and galactosylated N-glycans, especially ß-galactosylation, affected the activity of biALP. This study is the first to identify 48 diverse N-glycan structures and quantities of bovine as well as human intestinal ALP and to demonstrate the importance of the role of fucosylation and galactosylation for maintaining the activity of biALP.


Subject(s)
Alkaline Phosphatase , Galactose , Polysaccharides , Animals , Cattle , Polysaccharides/metabolism , Polysaccharides/chemistry , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Galactose/metabolism , Fucose/metabolism , Fucose/chemistry , Intestines/enzymology , Glycosylation
12.
Glycobiology ; 34(8)2024 06 22.
Article in English | MEDLINE | ID: mdl-38869882

ABSTRACT

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Subject(s)
Mannose , Polysaccharides , Humans , Female , Polysaccharides/metabolism , Polysaccharides/chemistry , Mannose/metabolism , Mannose/chemistry , Middle Aged , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Glycomics , Breast/metabolism , Breast/chemistry , Breast/pathology , Fucose/metabolism , Fucose/chemistry , Adult , Tumor Microenvironment
13.
J Agric Food Chem ; 72(19): 11013-11028, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691641

ABSTRACT

Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.


Subject(s)
Milk, Human , Oligosaccharides , alpha-L-Fucosidase , Milk, Human/chemistry , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/genetics , Glycosylation , Hydrolysis , Fucose/metabolism , Fucose/chemistry , Hydrogen-Ion Concentration , Biocatalysis
14.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771321

ABSTRACT

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Milk, Human , Trisaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Humans , Trisaccharides/metabolism , Milk, Human/chemistry , Lactose/metabolism , Oligosaccharides/metabolism , Mutagenesis, Site-Directed , Infant , Fucose/metabolism
15.
Eur J Pharm Biopharm ; 200: 114325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759899

ABSTRACT

N-glycosylation of the Fc part is a (critical) quality attribute of therapeutic antibodies and Fc-containing biotherapeutics, that impacts their stability, immunogenicity, pharmacokinetics, and effector functions. Current glycosylation analysis methods focus on the absolute amounts of glycans, neglecting the apparent glycan distribution over the entirety of proteins. The combination of the two Fc N-glycans, herein referred to as glyco-pair, therefore remains unknown, which is a major drawback for N-glycan impact assessment. This study presents a comprehensive workflow for the analysis and characterization of Fc N-glycan pairing in biotherapeutics, addressing the limitations of current glycosylation analysis methods. The applicability of the method across various biotherapeutic proteins including antibodies, bispecific antibody formats, and a Fc-Fusion protein is demonstrated, and the impact of method conditions on glycan pairing analysis is highlighted. Moreover, the influence of the molecular format, Fc backbone, production process, and cell line on glycan pairing pattern was investigated. The results underscore the significance of comprehensive glycan pairing analysis to accurately assess the impact of N-glycans on important product quality attributes of therapeutic antibodies and Fc-containing biotherapeutics.


Subject(s)
Antibodies , Biological Therapy , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/metabolism , Antibodies/chemistry , Antibodies/therapeutic use , Glycosylation , Biological Therapy/methods , Workflow , Glycoside Hydrolases/metabolism , Fucose/chemistry
16.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735264

ABSTRACT

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Fibroblasts , Mannose , Humans , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Mannose/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Male , Fucose/metabolism , Glycosylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Proteomics
17.
Mol Genet Genomic Med ; 12(5): e2445, 2024 May.
Article in English | MEDLINE | ID: mdl-38722107

ABSTRACT

BACKGROUND: FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS: In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS: Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION: This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.


Subject(s)
CRISPR-Cas Systems , Congenital Disorders of Glycosylation , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Humans , Fucose/metabolism , Glycosylation , Receptors, Notch/metabolism , Receptors, Notch/genetics , Phosphotransferases (Alcohol Group Acceptor)
18.
Front Immunol ; 15: 1333848, 2024.
Article in English | MEDLINE | ID: mdl-38596683

ABSTRACT

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Subject(s)
Fucose , Polysaccharides , Sodium Chloride, Dietary , Mice , Animals , Fucose/pharmacology , Inflammation/metabolism , Diet
19.
Anal Chem ; 96(15): 5741-5745, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38573003

ABSTRACT

Fucosylation is an important structural feature of glycans and plays an essential role in the regulation of glycoprotein functions. Fucosylation can be classified into core- (CF) and antenna-fucosylation (AF, also known as (sialyl-) Lewis) based on the location on N-glycans, and they perform distinct biological functions. In this study, core- and antenna-fucosylated N-glycans on human serum glycoproteins that hold great clinical application values were systematically characterized at the site-specific level using StrucGP combined with the recently developed fucosylation assignment method. The results showed that fucosylation was widely distributed on serum glycoproteins, with 50% of fucosylated glycopeptides modified by AF N-glycans, 37% by CF N-glycans, and 13% by dual-fucosylated N-glycans. Interestingly, CF and AF N-glycans preferred to modify different groups of serum glycoproteins with different tissue origins and were involved in distinctive biological processes. Specifically, AF N-glycoproteins are mainly from the liver and participated in complement activation, blood coagulation, and endopeptidase activities, while CF N-glycoproteins originate from diverse tissues and are mainly involved in cell adhesion and signaling transduction. These data further enhanced our understanding of fucosylation on circulation glycoproteins.


Subject(s)
Glycoproteins , Liver , Humans , Glycoproteins/chemistry , Glycosylation , Liver/metabolism , Polysaccharides/chemistry , Fucose/chemistry
20.
Glycobiology ; 34(6)2024 04 24.
Article in English | MEDLINE | ID: mdl-38590172

ABSTRACT

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Subject(s)
Blood Group Antigens , Caliciviridae Infections , Fucose , Glycoproteins , Histocompatibility Antigens , Jejunum , Organoids , Glycomics , Proteomics , Genotype , Phenotype , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Fucose/metabolism , Glycosylation , Blood Group Antigens/chemistry , Blood Group Antigens/genetics , Blood Group Antigens/metabolism , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Humans , Glycopeptides/chemistry , Caliciviridae Infections/blood , Caliciviridae Infections/immunology , Caliciviridae Infections/metabolism , Organoids/metabolism , Jejunum/metabolism , Jejunum/virology
SELECTION OF CITATIONS
SEARCH DETAIL