Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.458
Filter
1.
J Proteome Res ; 23(7): 2431-2440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965920

ABSTRACT

Alpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.


Subject(s)
Orosomucoid , Humans , Orosomucoid/metabolism , Orosomucoid/chemistry , Female , Pregnancy , Chromatography, Ion Exchange/methods , Glycosylation , Mass Spectrometry/methods , Fucose/chemistry , Fucose/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/blood
2.
Nat Commun ; 15(1): 4764, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834561

ABSTRACT

Bacteriophage are sophisticated cellular parasites that can not only parasitize bacteria but are increasingly recognized for their direct interactions with mammalian hosts. Phage adherence to mucus is known to mediate enhanced antimicrobial effects in vitro. However, little is known about the therapeutic efficacy of mucus-adherent phages in vivo. Here, using a combination of in vitro gastrointestinal cell lines, a gut-on-a-chip microfluidic model, and an in vivo murine gut model, we demonstrated that a E. coli phage, øPNJ-6, provided enhanced gastrointestinal persistence and antimicrobial effects. øPNJ-6 bound fucose residues, of the gut secreted glycoprotein MUC2, through domain 1 of its Hoc protein, which led to increased intestinal mucus production that was suggestive of a positive feedback loop mediated by the mucus-adherent phage. These findings extend the Bacteriophage Adherence to Mucus model into phage therapy, demonstrating that øPNJ-6 displays enhanced persistence within the murine gut, leading to targeted depletion of intestinal pathogenic bacteria.


Subject(s)
Escherichia coli Infections , Escherichia coli , Intestinal Mucosa , Mucin-2 , Animals , Escherichia coli/virology , Mice , Intestinal Mucosa/microbiology , Intestinal Mucosa/virology , Mucin-2/metabolism , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Phage Therapy/methods , Bacterial Adhesion , Female , Mucus/metabolism , Mucus/virology , Coliphages/physiology , Fucose/metabolism , Mice, Inbred C57BL
3.
Glycobiology ; 34(8)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38869882

ABSTRACT

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Subject(s)
Mannose , Polysaccharides , Humans , Female , Polysaccharides/metabolism , Polysaccharides/chemistry , Mannose/metabolism , Mannose/chemistry , Middle Aged , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Glycomics , Breast/metabolism , Breast/chemistry , Breast/pathology , Fucose/metabolism , Fucose/chemistry , Adult , Tumor Microenvironment
4.
Methods Mol Biol ; 2810: 249-271, 2024.
Article in English | MEDLINE | ID: mdl-38926284

ABSTRACT

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Subject(s)
CRISPR-Cas Systems , Cricetulus , Fucose , Fucosyltransferases , Gene Editing , CHO Cells , Animals , Gene Editing/methods , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glycosylation , Fucose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cricetinae , Humans
5.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917011

ABSTRACT

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Animals , CHO Cells , Glycosylation , Humans , Trastuzumab/pharmacology , Trastuzumab/metabolism , Fucosyltransferases/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects
6.
Anal Chem ; 96(26): 10506-10514, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874382

ABSTRACT

Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.


Subject(s)
Fucose , Polysaccharides , Humans , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/analysis , Fucose/chemistry , Fucose/metabolism , Glycosylation , Tandem Mass Spectrometry , Cell Line, Tumor , Glycopeptides/chemistry , Glycopeptides/analysis , Glycopeptides/metabolism
7.
J Agric Food Chem ; 72(19): 11013-11028, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691641

ABSTRACT

Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.


Subject(s)
Milk, Human , Oligosaccharides , alpha-L-Fucosidase , Milk, Human/chemistry , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/genetics , Glycosylation , Hydrolysis , Fucose/metabolism , Fucose/chemistry , Hydrogen-Ion Concentration , Biocatalysis
8.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735264

ABSTRACT

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Fibroblasts , Mannose , Humans , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Mannose/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Male , Fucose/metabolism , Glycosylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Proteomics
9.
Mol Genet Genomic Med ; 12(5): e2445, 2024 May.
Article in English | MEDLINE | ID: mdl-38722107

ABSTRACT

BACKGROUND: FCSK-congenital disorder of glycosylation (FCSK-CDG) is a recently discovered rare autosomal recessive genetic disorder with defective fucosylation due to mutations in the fucokinase encoding gene, FCSK. Despite the essential role of fucokinase in the fucose salvage pathway and severe multisystem manifestations of FCSK-CDG patients, it is not elucidated which cells or which types of fucosylation are affected by its deficiency. METHODS: In this study, CRISPR/Cas9 was employed to construct an FCSK-CDG cell model and explore the molecular mechanisms of the disease by lectin flow cytometry and real-time PCR analyses. RESULTS: Comparison of cellular fucosylation by lectin flow cytometry in the created CRISPR/Cas9 FCSK knockout and the same unedited cell lines showed no significant change in the amount of cell surface fucosylated glycans, which is consistent with the only documented previous study on different cell types. It suggests a probable effect of this disease on secretory glycoproteins. Investigating O-fucosylation by analysis of the NOTCH3 gene expression as a potential target revealed a significant decrease in the FCSK knockout cells compared with the same unedited ones, proving the effect of fucokinase deficiency on EGF-like repeats O-fucosylation. CONCLUSION: This study expands insight into the FCSK-CDG molecular mechanism; to the best of our knowledge, it is the first research conducted to reveal a gene whose expression level alters due to this disease.


Subject(s)
CRISPR-Cas Systems , Congenital Disorders of Glycosylation , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Humans , Fucose/metabolism , Glycosylation , Receptors, Notch/metabolism , Receptors, Notch/genetics , Phosphotransferases (Alcohol Group Acceptor)
10.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771321

ABSTRACT

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Milk, Human , Trisaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Humans , Trisaccharides/metabolism , Milk, Human/chemistry , Lactose/metabolism , Oligosaccharides/metabolism , Mutagenesis, Site-Directed , Infant , Fucose/metabolism
11.
Microbiol Res ; 283: 127709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593579

ABSTRACT

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Subject(s)
Bifidobacterium longum , Bifidobacterium , Humans , Bifidobacterium/genetics , Bifidobacterium/metabolism , Fucose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carbohydrate Metabolism , Bifidobacterium longum/genetics , Bifidobacterium longum/metabolism
12.
Glycobiology ; 34(6)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38590172

ABSTRACT

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Subject(s)
Blood Group Antigens , Caliciviridae Infections , Fucose , Glycoproteins , Histocompatibility Antigens , Jejunum , Organoids , Glycomics , Proteomics , Genotype , Phenotype , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Fucose/metabolism , Glycosylation , Blood Group Antigens/chemistry , Blood Group Antigens/genetics , Blood Group Antigens/metabolism , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Humans , Glycopeptides/chemistry , Caliciviridae Infections/blood , Caliciviridae Infections/immunology , Caliciviridae Infections/metabolism , Organoids/metabolism , Jejunum/metabolism , Jejunum/virology
13.
Front Immunol ; 15: 1353570, 2024.
Article in English | MEDLINE | ID: mdl-38646527

ABSTRACT

Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.


Subject(s)
Dendritic Cells , Fucose , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Fucose/metabolism , Antigen Presentation , Female , Mice, Inbred C57BL , Cell Polarity , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Melanoma, Experimental/immunology , Lymphocyte Activation/immunology
14.
J Exp Clin Cancer Res ; 43(1): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654325

ABSTRACT

BACKGROUND: Aberrant fucosylation observed in cancer cells contributes to an augmented release of fucosylated exosomes into the bloodstream, where miRNAs including miR-4732-3p hold promise as potential tumor biomarkers in our pilot study. However, the mechanisms underlying the sorting of miR-4732-3p into fucosylated exosomes during lung cancer progression remain poorly understood. METHODS: A fucose-captured strategy based on lentil lectin-magnetic beads was utilized to isolate fucosylated exosomes and evaluate the efficiency for capturing tumor-derived exosomes using nanoparticle tracking analysis (NTA). Fluorescence in situ hybridization (FISH) and qRT-PCR were performed to determine the levels of miR-4732-3p in non-small cell lung cancer (NSCLC) tissue samples. A co-culture system was established to assess the release of miRNA via exosomes from NSCLC cells. RNA immunoprecipitation (RIP) and miRNA pull-down were applied to validate the interaction between miR-4732-3p and heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein. Cell functional assays, cell derived xenograft, dual-luciferase reporter experiments, and western blot were applied to examine the effects of miR-4732-3p on MFSD12 and its downstream signaling pathways, and the impact of hnRNPK in NSCLC. RESULTS: We enriched exosomes derived from NSCLC cells using the fucose-captured strategy and detected a significant upregulation of miR-4732-3p in fucosylated exosomes present in the serum, while its expression declined in NSCLC tissues. miR-4732-3p functioned as a tumor suppressor in NSCLC by targeting 3'UTR of MFSD12, thereby inhibiting AKT/p21 signaling pathway to induce cell cycle arrest in G2/M phase. NSCLC cells preferentially released miR-4732-3p via exosomes instead of retaining them intracellularly, which was facilitated by the interaction of miR-4732-3p with hnRNPK protein for selective sorting into fucosylated exosomes. Moreover, knockdown of hnRNPK suppressed NSCLC cell proliferation, with the elevated levels of miR-4732-3p in NSCLC tissues but the decreased expression in serum fucosylated exosomes. CONCLUSIONS: NSCLC cells escape suppressive effects of miR-4732-3p through hnRNPK-mediated sorting of them into fucosylated exosomes, thus supporting cell malignant properties and promoting NSCLC progression. Our study provides a promising biomarker for NSCLC and opens a novel avenue for NSCLC therapy by targeting hnRNPK to prevent the "exosome escape" of tumor-suppressive miR-4732-3p from NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Fucose , Heterogeneous-Nuclear Ribonucleoprotein K , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycosylation , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , MicroRNAs/blood , MicroRNAs/metabolism , Genes, Tumor Suppressor , Fucose/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Down-Regulation , Animals , Mice , Mice, Nude , Cell Proliferation , Cell Cycle Checkpoints , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prognosis , Signal Transduction , Disease Progression , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood
15.
Food Funct ; 15(8): 4140-4153, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38445991

ABSTRACT

Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.


Subject(s)
Gastrointestinal Microbiome , Immune Tolerance , Nuclear Receptor Subfamily 1, Group F, Member 3 , Polysaccharides , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Female , Polysaccharides/metabolism , Lactobacillus , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Milk, Human/immunology , Humans , Fucose/metabolism , Animals, Newborn , Mice, Inbred C57BL , Milk
16.
J Proteome Res ; 23(4): 1379-1398, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38507902

ABSTRACT

Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.


Subject(s)
Colorectal Neoplasms , Fucosyltransferases , Humans , Colorectal Neoplasms/genetics , Fucose/metabolism , Fucosyltransferases/genetics , Mass Spectrometry , Polysaccharides/chemistry , Proteomics
17.
J Agric Food Chem ; 72(8): 4367-4375, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38374607

ABSTRACT

Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).


Subject(s)
Escherichia coli , Fucose , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Fucose/metabolism , Trisaccharides/metabolism , Guanosine Diphosphate Fucose , Oligosaccharides/metabolism , Milk, Human/metabolism , Metabolic Engineering
18.
Biotechnol Prog ; 40(3): e3438, 2024.
Article in English | MEDLINE | ID: mdl-38415431

ABSTRACT

Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Fucose/chemistry , Animals , CHO Cells , Glycosylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/biosynthesis , Rhamnose/chemistry , Rhamnose/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects , Humans , Guanosine Diphosphate Fucose/metabolism , Guanosine Diphosphate Fucose/chemistry
19.
J Agric Food Chem ; 72(2): 1178-1189, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38183288

ABSTRACT

3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.


Subject(s)
Bacillus subtilis , Fucosyltransferases , Trisaccharides , Humans , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Trisaccharides/metabolism , Fucose/metabolism , Escherichia coli/metabolism , Oligosaccharides/metabolism
20.
Biochim Biophys Acta Gen Subj ; 1868(4): 130561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218458

ABSTRACT

BACKGROUND: Core fucose, a structure added to the reducing end N-acetylglucosamine of N-glycans, has been shown to regulate various physiological and pathological processes, including melanoma metastasis, exacerbation of chronic obstructive pulmonary disease, and severe outcomes in COVID-19. SCOPE OF REVIEW: Recent research has shed light on regulation of the activity and subcellular localization of a1,6-fucosyltransferase (FUT8), the glycosyltransferase responsible for core fucose biosynthesis, unraveling the mechanisms for controlling core fucosylation in vivo. MAJOR CONCLUSIONS: This review summarizes the various features of FUT8, including its domains, structures, and substrate specificity. Additionally, we discuss the potential involvement of FUT8-binding proteins, such as oligosaccharyltransferase subunits, in the regulation of FUT8 activity, substrate specificity, and the secretion of FUT8. GENERAL SIGNIFICANCE: We anticipate that this review will contribute to a deeper understanding of the control of core fucose levels in vivo and involvement of core fucosylation in FUT8-relevant functions and diseases.


Subject(s)
Fucose , Fucosyltransferases , Humans , Fucose/metabolism , Fucosyltransferases/metabolism , Glycosylation , Polysaccharides/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...