Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.791
Filter
1.
Bioorg Med Chem Lett ; 110: 129875, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964520

ABSTRACT

Eupenifeldin (1) is a fungal secondary metabolite possessing bis-tropolone moieties that demonstrates nanomolar cytotoxic activity against a number of cancer cell types. As a potential anticancer lead, this meroterpenoid was used to access 29 semisynthetic analogues via functionalization of the reactive hydroxy groups of the bis-tropolones. A series of ester (2-6), carbonate (7-8), sulfonate (9-16), carbamate (17-20), and ether (21-30) analogues of 1 were generated via 22 reactions. Most of these compounds were disubstituted, produced via functionalization of both of the tropolonic hydroxy moieties, although three mono-functionalized analogues (6, 8, and 24) and one tri-functionalized analogue (3) were also obtained. The cytotoxic activities of 1-30 were evaluated against human melanoma and ovarian cancer cell lines (i.e., MDA-MB-435 and OVCAR3, respectively). Ester and carbonate analogues of 1 (i.e., 2-8) maintained cytotoxicity at the nanomolar level, and the greatest improvement in aqueous solubility came from the monosuccinate analogue (6), which was acylated on the secondary hydroxy at the 11 position.


Subject(s)
Antineoplastic Agents , Tropolone , Humans , Tropolone/chemistry , Tropolone/pharmacology , Tropolone/analogs & derivatives , Tropolone/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Molecular Structure , Fungi/drug effects , Fungi/metabolism , Dose-Response Relationship, Drug , Cell Proliferation/drug effects
2.
Naturwissenschaften ; 111(4): 36, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951264

ABSTRACT

Gut microbial communities are part of the regulatory array of various processes within their hosts, ranging from nutrition to pathogen control. Recent evidence shows that dung beetle's gut microbial communities release substances with antifungal activity. Because of the enormous diversity of gut microorganisms in dung beetles, there is a possibility of discovering novel compounds with antifungal properties. We tested the antifungal activity mediated by gut microbial communities of female dung beetles against nine phytopathogenic fungi strains (Colletotrichum asianum-339, C. asianum-340, C. asianum-1, C. kahawae-390, C. karstii-358, C. siamense-220, Fusarium oxysporum-ATCC338, Nectria pseudotrichia-232, Verticillium zaelandica-22). Our tests included the gut microbial communities of three species of dung beetles: Canthon cyanellus (roller beetle), Digitonthophagus gazella (burrower beetle), and Onthophagus batesi (burrower beetle), and we followed the dual confrontation protocol, i.e., we challenged each fungal strain with the microbial communities of each species of beetles in Petri dishes containing culture medium. Our results showed that gut microbial communities of the three dung beetle species exhibit antifungal activity against at least seven of the nine phytopathogenic fungal strains. The gut microbial communities of Onthophagus batesi significantly decreased the mycelial growth of the nine phytopathogenic fungi strains; the gut microbial communities of Canthon cyanellus and Digitonthophagus gazella significantly reduced the mycelial growth of seven strains. These results provide a basis for investigating novel antifungal substances within gut microbial communities of dung beetles.


Subject(s)
Antifungal Agents , Coleoptera , Fungi , Gastrointestinal Microbiome , Animals , Coleoptera/microbiology , Gastrointestinal Microbiome/drug effects , Antifungal Agents/pharmacology , Fungi/drug effects , Female
3.
Sci Rep ; 14(1): 15050, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951205

ABSTRACT

Chalcones are intermediate products in the biosynthesis of flavonoids, which possess a wide range of biological properties, including antimicrobial and anticancer activities. The introduction of a chlorine atom and the glucosyl moiety into their structure may increase their bioavailability, bioactivity, and pharmacological use. The combined chemical and biotechnological methods can be applied to obtain such compounds. Therefore, 2-chloro-2'-hydroxychalcone and 3-chloro-2'-hydroxychalcone were synthesized and biotransformed in cultures of two strains of filamentous fungi, i.e. Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5 to obtain their novel glycosylated derivatives. Pharmacokinetics, drug-likeness, and biological activity of them were predicted using cheminformatics tools. 2-Chloro-2'-hydroxychalcone, 3-chloro-2'-hydroxychalcone, their main glycosylation products, and 2'-hydrochychalcone were screened for antimicrobial activity against several microbial strains. The growth of Escherichia coli 10,536 was completely inhibited by chalcones with a chlorine atom and 3-chlorodihydrochalcone 2'-O-ß-D-(4″-O-methyl)-glucopyranoside. The strain Pseudomonas aeruginosa DSM 939 was the most resistant to the action of the tested compounds. However, chalcone aglycones and glycosides with a chlorine atom almost completely inhibited the growth of bacteria Staphylococcus aureus DSM 799 and yeast Candida albicans DSM 1386. The tested compounds had different effects on lactic acid bacteria depending on the tested species. In general, chlorinated chalcones were more effective in the inhibition of the tested microbial strains than their unchlorinated counterparts and aglycones were a little more effective than their glycosides.


Subject(s)
Anti-Infective Agents , Biotransformation , Chalcones , Chlorine , Microbial Sensitivity Tests , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis , Chlorine/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Beauveria/metabolism , Fungi/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development
4.
Parasitol Res ; 123(7): 275, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017922

ABSTRACT

Ticks are ectoparasites responsible for the transmission of various pathogens to vertebrates. They represent one of the major threats to livestock production worldwide due to their impact on the health, production and welfare of livestock destined for human consumption. The development of resistance to the main families of ixodicides used for their control has led to the search for new alternatives, where microbial control is an option. The use of microbial control agents against the tick Rhipicephalus microplus is reviewed in this paper. Bacteria such as Bacillus thuringiensis, Serratia marcescens and Staphylococcus spp. the nematodes Steinernema spp. and Heterorhabditis spp. as well as the fungi Metarhizium anisopliae and Beauveria bassiana are the most studied organisms for use as biological control agents against ticks. Laboratory, stable and field trials with free-living and parasitised ticks have shown that microbial agents can control both susceptible and ixodicide-resistant tick populations. However, multidisciplinary studies using novel tools like genomics, transcriptomics and proteomics should be carried out to understand the virulence factors which microbial agents use to induce pathogenesis and virulence in ticks. In addition, applied research will be carried out with the aim of improving techniques for large-scale application, as well as the improvement of cultivation, storage, formulation and application methods.


Subject(s)
Rhipicephalus , Animals , Rhipicephalus/microbiology , Bacteria/drug effects , Pest Control, Biological/methods , Biological Control Agents , Tick Infestations/veterinary , Tick Infestations/prevention & control , Tick Infestations/parasitology , Tick Control/methods , Fungi/drug effects
5.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999990

ABSTRACT

Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.


Subject(s)
Organic Agriculture , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Organic Agriculture/methods , Fungi/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Secondary Metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
6.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967261

ABSTRACT

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungi/drug effects , Fungi/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Drug Design , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrimidines/chemistry , Pyrimidines/pharmacology , Molecular Structure , Imidazoles/chemistry , Imidazoles/pharmacology
7.
NPJ Biofilms Microbiomes ; 10(1): 60, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043687

ABSTRACT

Cadmium (Cd), a heavy metal, is negatively associated with plant growth. AMT (ammonium transporter) genes can confer Cd resistance and enhance nitrogen (N) uptake in soybeans. The potential of AMT genes to alleviate Cd toxicity by modulating rhizosphere microbiota remains unkonwn. Here, the rhizosphere microbial taxonomic and metabolic differences in three genotypes, i.e., double knockout and overexpression lines and wild type, were identified. The results showed that GmAMT2.1/2.2 genes could induce soybean to recruit beneficial microorganisms, such as Tumebacillus, Alicyclobacillus, and Penicillium, by altering metabolites. The bacterial, fungal, and cross-kingdom synthetic microbial communities (SynComs) formed by these microorganisms can help soybean resist Cd toxicity. The mechanisms by which SynComs help soybeans resist Cd stress include reducing Cd content, increasing ammonium (NH4+-N) uptake and regulating specific functional genes in soybeans. Overall, this study provides valuable insights for the developing microbial formulations that enhance Cd resistance in sustainable agriculture.


Subject(s)
Ammonium Compounds , Cadmium , Glycine max , Microbiota , Nitrogen , Rhizosphere , Soil Microbiology , Cadmium/metabolism , Cadmium/toxicity , Glycine max/microbiology , Ammonium Compounds/metabolism , Nitrogen/metabolism , Microbiota/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Fungi/genetics , Fungi/metabolism , Fungi/drug effects , Plant Roots/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Mycopathologia ; 189(4): 64, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990395

ABSTRACT

Since its inception in 2002, the EUCAST Antifungal Susceptibility Testing Subcommittee (AFST) has developed and refined susceptibility testing methods for yeast, moulds and dermatophytes, and established epidemiological cut-off values and breakpoints for antifungals. For yeast, three challenges have been addressed. Interpretation of trailing growth in fluconazole susceptibility testing, which has been proven without impact on efficacy if below the 50% endpoint. Variability in rezafungin MIC testing due to laboratory conditions, which has been solved by the addition of Tween 20 to the growth medium in E.Def 7.4. And third, interpretation of MICs for rare yeast with no breakpoints, where recommendations have been established for MIC-based clinical advice. For moulds, refinements include the validation of spectrophotometer reading for A. fumigatus to facilitate objective MIC determination, and for dermatophytes the establishment of a microdilution method with automated reading and a selective medium to minimise the risk of contaminations. Recent initiatives involve development and validation of agar-based screening assays for detection of potential azole and echinocandin resistance in A. fumigatus and Aspergillus species, respectively, and of terbinafine resistance in Trichophyton species. Moreover, the development of a EUCAST guidance document for molecular resistance testing represents an advancement, particularly for identifying target gene alterations associated with resistance. In summary, EUCAST AFST continues to play a pivotal role in standardizing AFST and facilitating accurate interpretation of susceptibility data for clinical decision-making. Adoption of EUCAST breakpoints for commercial test methods, however, requires thorough validation to ensure concordance with EUCAST reference testing species-specific MIC distributions.


Subject(s)
Antifungal Agents , Fungi , Microbial Sensitivity Tests , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/standards , Antifungal Agents/pharmacology , Humans , Fungi/drug effects , Drug Resistance, Fungal
9.
PeerJ ; 12: e17461, 2024.
Article in English | MEDLINE | ID: mdl-38952992

ABSTRACT

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Subject(s)
Chromium , Edible Grain , Rhizosphere , Soil Microbiology , Soil Pollutants , Chromium/toxicity , Chromium/adverse effects , Chromium/metabolism , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Edible Grain/microbiology , Stress, Physiological/drug effects , Fungi/drug effects , Fungi/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism
10.
Sci Rep ; 14(1): 15211, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956076

ABSTRACT

Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.


Subject(s)
Metal Nanoparticles , Silver , Soil Microbiology , Silver/chemistry , Silver/pharmacology , Saudi Arabia , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Desert Climate , Fungi/drug effects , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000304

ABSTRACT

This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed.


Subject(s)
Decontamination , Disinfectants , Fungi , Hypochlorous Acid , Hypochlorous Acid/pharmacology , Fungi/drug effects , Disinfectants/pharmacology , Decontamination/methods , Bacteria/drug effects , Viruses/drug effects , Spores, Fungal/drug effects , Spores, Bacterial/drug effects , Electronics
12.
PLoS One ; 19(7): e0307452, 2024.
Article in English | MEDLINE | ID: mdl-39024374

ABSTRACT

Modern production of vegetable oils has reached impressive levels, and the ever-growing quantities of waste cooking oil (WCO) provide a local source of raw materials for innovative materials. The WCO composite production process involves a series of reactions, including polymerisation, esterification, and transesterification, which lead to the hardening of composite materials. In light of the growing problem of bacterial and fungal diseases, materials with high strength properties and biocidal properties are being sought. Fungal infections of the skin are a widespread problem, and the number of cases is steadily increasing. This article presents a study of the antibacterial potential of WCO-based composites enriched with hops or sorrel root in the context of their application in the construction industry. The compressive and flexural strength of the oil composites, their absorbability and hydrophobicity, and their effects on Gram-positive (S. aureus and S. epidermidis) and Gram-negative (E. coli and P. aeruginosa) bacteria and fungi (A. niger, P. anomala) were investigated. Maximum split tensile strength (4.3 MPa) and flexural strength (5.1 MPa) were recorded for oil-hop composites. Oil composites enriched with curly sorrel and hops showed antibacterial activity against S. aureus at 27% and 25%. High biocidal activity (up to 70%) was recorded against E. coli and against S. epidermidis (up to 99%) due to the action of composites with curly sorrel. The antifungal activities of composites with hops was 15% and 19% for P. anomala and A. niger, respectively, while with curly sorrel they were 42% and 30%.


Subject(s)
Plant Oils , Plant Oils/pharmacology , Plant Oils/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Tensile Strength , Cooking , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Fungi/drug effects
13.
Int J Food Microbiol ; 421: 110782, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38851175

ABSTRACT

The impact of paprika and dextrose addition on the surface of dry cured loins was analysed attending to differences in microbiota composition and aroma profile. Three different types of loins containing either dextrose (D), paprika (P) or a mixture of dextrose and paprika (DP) were manufactured. The loins were characterized using physic-chemical parameters, free amino acids, volatile compounds and aroma sensorial analysis, as well as applying microbiological counts and metagenomics of the 16S rRNA gene and its rDNA region. The analysis of volatile compounds clearly distinguished all loins, whereas the total content of free amino acids only separated P from D and DP loins. The main sensory differences were linked to paprika addition, which increased the perception of paprika and smoky odors as well as cured, savoury and cheesy notes. Microbial counts analysis could not differentiate between the three loin types; however, metagenomics analysis revealed clear differences in key bacterial and fungal genera among the three loins. Paprika addition favoured dominance of Latilactobacillus in the microbiota of P loins. On the contrary, dextrose addition caused the dominance of Staphylococcus in the microbiota of D loins. In DP loins, both genera were similarly represented in the bacterial community. Regarding fungi, large differences could be observed within the P and D loins, whereas the proportion of Debaryomyces in DP loins increased. The microbiota composition of DP loins controlled the lipid oxidation phenomenon, reducing the generation of derived volatiles producing rancid notes and increase the volatile compounds derived from amino acids such as branched aldehydes, pyrazines and pyrroles, providing particular aroma notes to the loins.


Subject(s)
Bacteria , Glucose , Microbiota , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology , Odorants/analysis , Glucose/metabolism , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Microbiota/drug effects , Humans , Fungi/classification , Fungi/drug effects , Fungi/growth & development , Amino Acids/metabolism , Food Microbiology
14.
Microb Cell Fact ; 23(1): 161, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822407

ABSTRACT

Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 µg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.


Subject(s)
Antifungal Agents , Endophytes , Antifungal Agents/pharmacology , Endophytes/metabolism , Humans , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/metabolism , Fungi/drug effects , Fungi/metabolism , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Candida albicans/drug effects
15.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844852

ABSTRACT

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Subject(s)
Bacteria , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Microbial Sensitivity Tests/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/drug effects , Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Fungi/drug effects , Fungi/isolation & purification , Blood Culture/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Time Factors , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Sepsis/microbiology , Sepsis/drug therapy , Sepsis/diagnosis
16.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930909

ABSTRACT

In this work, a group of ten sesquiterpene drimanes, including polygodial (1), isopolygodial (2), and drimenol (3) obtained from the bark of Drimys winteri F. and seven synthetic derivatives, were tested in vitro against a unique panel of bacteria, fungi, and oomycetes with standardized procedures against bacterial strains K. pneumoniae, S. tiphy, E. avium, and E. coli. The minimum inhibitory concentrations and bactericidal activities were evaluated using standardized protocols. Polygodial (1) was the most active compound, with MBC 8 µg/mL and MIC 16 µg/mL in E. avium; MBC 16 µg/mL and MIC 32 µg/mL in K. pneumoniae; MBC 64 µg/mL and MIC 64 µg/mL in S. typhi; and MBC 8 µg/mL and MIC 16 µg/mL and MBC 32 µg/mL and MIC 64 µg/mL in E. coli, respectively. The observed high potency could be attributed to the presence of an aldehyde group at the C8-C9 position. The antifungal activity of 1 from different microbial isolates has been evaluated. The results show that polygodial affects the growth of normal isolates and against filamentous fungi and oomycetes with MFC values ranging from 8 to 64 µg/mL. Sesquiterpene drimanes isolated from this plant have shown interesting antimicrobial properties.


Subject(s)
Anti-Infective Agents , Drimys , Microbial Sensitivity Tests , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Drimys/chemistry , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Escherichia coli/drug effects , Fungi/drug effects , Bacteria/drug effects
17.
Bioorg Med Chem ; 109: 117810, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906069

ABSTRACT

The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.


Subject(s)
Antifungal Agents , Aspergillus fumigatus , Candida albicans , Microbial Sensitivity Tests , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Porphyrins/chemical synthesis , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Positive Bacteria/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Fungi/drug effects
18.
Mycopathologia ; 189(4): 56, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869662

ABSTRACT

The incidence of breakthrough mold infections (bIMI) has been increasing, due to routine administration of broad-spectrum antifungal prophylaxis and an increasing pool of high-risk patient populations, with fungi more challenging to treat, resulting in a sustained high mortality, despite progress in diagnostic and therapeutic options. Pharmacokinetics of antifungal drugs, fungal, and host, including genetic, factors play a role in the emergence of bIMI. Suggested therapeutic approaches have included change of antifungal class treatment, with amphotericin-B products predominating as first-line empirical treatment and switching from one broad-spectrum azole to another remaining the most frequently used treatment modalities. Future perspectives include determining individual susceptibility to IMI to tailor prophylaxis and treatment strategies, improved diagnostic tests, and the introduction of new antifungal agents that may reduce morbidity and mortality caused by bIMI.


Subject(s)
Antifungal Agents , Invasive Fungal Infections , Humans , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/prevention & control , Invasive Fungal Infections/diagnosis , Antifungal Agents/therapeutic use , Fungi/drug effects , Incidence , Drug Resistance, Fungal
19.
Fungal Biol ; 128(4): 1847-1858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876537

ABSTRACT

Post-harvest decay of fresh agricultural produce is a major threat to food security globally. Synthetic fungicides, commonly used in practice for managing the post-harvest losses, have negative impacts on consumers' health. Studies have reported the effectiveness of fungal isolates from plants as biocontrol agents of post-harvest diseases, although this is still poorly established in tomatoes (Solanum lycopersicum L. cv. Jasmine). In this study, 800 endophytic fungi were isolated from mature green and ripe untreated and fungicide-treated tomato fruits grown in open soil and hydroponics systems. Of these, five isolates (Aureobasidium pullulans SUG4.1, Coprinellus micaceus SUG4.3, Epicoccum nigrum SGT8.6, Fusarium oxysporum HTR8.4, Preussia africana SUG3.1) showed antagonistic properties against selected post-harvest pathogens of tomatoes (Alternaria alternata, Fusarium solani, Fusarium oxysporum, Geotrichum candidum, Rhizopus stolonifera, Rhizoctonia solani), with Lactiplantibacillus plantarum as a positive control. P. africana SUG3.1 and C. micaceus SUG4.3 significantly inhibited growth of all the pathogens, with antagonistic capabilities comparable to that exhibited by L. plantarum. Furthermore, the isolates produced an array of enzymes, including among others, amylase, cellulose and protease; and were able to utilize several carbohydrates (glucose, lactose, maltose, mannitol, sucrose). In conclusion, P. africana SUG3.1 and C. micaceus SUG4.3 may complement L. plantarum as biocontrol agents against post-harvest pathogens of tomatoes.


Subject(s)
Endophytes , Fruit , Fungi , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Fruit/microbiology , Endophytes/isolation & purification , Endophytes/physiology , Endophytes/classification , Fungi/isolation & purification , Fungi/physiology , Fungi/classification , Fungi/drug effects , Antibiosis , Biological Control Agents , Fungicides, Industrial/pharmacology
20.
Ecotoxicol Environ Saf ; 280: 116583, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38878333

ABSTRACT

The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.5, MA) or highly strong acid rain (pH=3.0, HA), and soil Cd pollution on the composition and diversity of microbial communities, as well as the physiochemical properties in the rhizosphere soil. The results showed that Cd decreased the content of inorganic nitrogen, resulting in an overall decrease of 49.10 % and 46.67 % in ammonium nitrogen and nitrate nitrogen, respectively. Conversely, acid rain was found to elevate the content of total potassium and soil organic carbon by 4.68 %-6.18 % and 8.64-19.16 %, respectively. Additionally, simulated acid rain was observed to decrease the pH level by 0.29-0.35, while Cd increased the pH level by 0.11. Moreover, Cd alone reduced the rhizosphere bacterial diversity, however, when combined with acid rain, regardless of its intensity, Cd was observed to increase the diversity. Fungal diversity was not influenced by the acid rain, but Cd increased fungal diversity to some extend under HA as observed in bacterial diversity. In addition, composition of the rhizosphere bacterial community was primarily influenced by the inorganic nitrogen components, while the fungal community was driven mainly by soil pH. Furthermore, "Metabolism" was emerged as the most significant bacterial function, which was markedly affected by the combined pollution, while Cd pollution led to a shift from symbiotroph to other trophic types for fungi. These findings suggest that simulated acid rain has a mitigating effect on the diversity of rhizosphere bacteria affected by Cd pollution, and also alters the trophic type of these microorganisms. This can be attributed to the acid rain-induced direct acidic environment, as well as the indirect changes in the availability or sources of carbon, nitrogen, or potassium.


Subject(s)
Acid Rain , Cadmium , Nitrogen , Populus , Rhizosphere , Seedlings , Soil Microbiology , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Populus/drug effects , Populus/microbiology , Populus/growth & development , Soil Pollutants/toxicity , Soil Pollutants/analysis , Seedlings/drug effects , Seedlings/growth & development , Seedlings/microbiology , Nitrogen/analysis , Soil/chemistry , Microbiota/drug effects , Hydrogen-Ion Concentration , Bacteria/drug effects , Fungi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL