Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.749
Filter
1.
PeerJ ; 12: e17461, 2024.
Article in English | MEDLINE | ID: mdl-38952992

ABSTRACT

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Subject(s)
Chromium , Edible Grain , Rhizosphere , Soil Microbiology , Soil Pollutants , Chromium/toxicity , Chromium/adverse effects , Chromium/metabolism , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Edible Grain/microbiology , Stress, Physiological/drug effects , Fungi/drug effects , Fungi/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism
2.
Curr Microbiol ; 81(8): 257, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955825

ABSTRACT

Soil represents a complex and dynamic ecosystem, hosting a myriad of microorganisms that coexist and play vital roles in nutrient cycling and organic matter transformation. Among these microorganisms, bacteria and fungi are key members of the microbial community, profoundly influencing the fate of nitrogen, sulfur, and carbon in terrestrial environments. Understanding the intricacies of soil ecosystems and the biological processes orchestrated by microbial communities necessitates a deep dive into their composition and metabolic activities. The advent of next-generation sequencing and 'omics' techniques, such as metagenomics and metaproteomics, has revolutionized our understanding of microbial ecology and the functional dynamics of soil microbial communities. Metagenomics enables the identification of microbial community composition in soil, while metaproteomics sheds light on the current biological functions performed by these communities. However, metaproteomics presents several challenges, both technical and computational. Factors such as the presence of humic acids and variations in extraction methods can influence protein yield, while the absence of high-resolution mass spectrometry and comprehensive protein databases limits the depth of protein identification. Notwithstanding these limitations, metaproteomics remains a potent tool for unraveling the intricate biological processes and functions of soil microbial communities. In this review, we delve into the methodologies and challenges of metaproteomics in soil research, covering aspects such as protein extraction, identification, and bioinformatics analysis. Furthermore, we explore the applications of metaproteomics in soil bioremediation, highlighting its potential in addressing environmental challenges.


Subject(s)
Bacteria , Metagenomics , Microbiota , Proteomics , Soil Microbiology , Proteomics/methods , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/metabolism , Fungi/isolation & purification , Soil/chemistry , Computational Biology/methods
3.
Arch Microbiol ; 206(7): 338, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955856

ABSTRACT

Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.


Subject(s)
Biofuels , Dietary Supplements , Fungi , Fungi/metabolism , Fungi/genetics , Dietary Supplements/analysis , Lipids/biosynthesis , Lipids/analysis , Lipid Metabolism , Metabolic Engineering , Fatty Acids/metabolism , Fatty Acids/analysis , Biomass , Carbon/metabolism
4.
BMC Microbiol ; 24(1): 232, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951807

ABSTRACT

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.


Subject(s)
Birds , Diet , Fungi , Gastrointestinal Microbiome , Seasons , Animals , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Birds/microbiology , Gastrointestinal Tract/microbiology , DNA, Fungal/genetics , Phylogeny
5.
Arch Microbiol ; 206(8): 340, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960981

ABSTRACT

Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.


Subject(s)
Endophytes , Fungi , Secologanin Tryptamine Alkaloids , Endophytes/metabolism , Endophytes/genetics , Fungi/metabolism , Fungi/genetics , Secologanin Tryptamine Alkaloids/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Biosynthetic Pathways , Plants, Medicinal/microbiology , Plants, Medicinal/metabolism , Biological Products/metabolism
6.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961393

ABSTRACT

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Subject(s)
Formates , Fungi , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fungi/classification , Fungi/isolation & purification , Fungi/chemistry , Fungi/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Formates/chemistry
7.
BMC Bioinformatics ; 25(1): 228, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956506

ABSTRACT

BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .


Subject(s)
Fungi , Machine Learning , Fungi/genetics , Fungi/classification , DNA, Ribosomal Spacer/genetics , Software
8.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
9.
Sci Rep ; 14(1): 15456, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965317

ABSTRACT

Medicinal plant microbiomes undergo selection due to secondary metabolite presence. Resident endophytic/epiphytic microorganisms directly influence plant's bioactive compound synthesis. Hypothesizing low microbial diversity in Serjania erecta leaves, we assessed leaf colonization by epiphytic and endophytic fungi. Given its traditional medicinal importance, we estimated diversity in the endophytic fungal microbiome. Analyses included scanning electron microscopy (SEM), isolation of cultivable species, and metagenomics. Epiphytic fungi interacted with S. erecta leaf tissues, horizontally transmitted via stomata/trichome bases, expressing traits for nematode trapping. Cultivable endophytic fungi, known for phytopathogenic habits, didn't induce dysbiosis symptoms. This study confirms low leaf microbiome diversity in S. erecta, with a tendency towards more fungal species, likely due to antibacterial secondary metabolite selection. The classification of Halicephalobus sp. sequence corroborated the presence of nematode eggs on the epidermal surface of S. erecta by SEM. In addition, we confirmed the presence of methanogenic archaea and a considerable number of methanotrophs of the genus Methylobacterium. The metagenomic study of endophytic fungi highlighted plant growth-promoting yeasts, mainly Malassezia, Leucosporidium, Meyerozyma, and Hannaella. Studying endophytic fungi and S. erecta microbiomes can elucidate their impact on beneficial bioactive compound production, on the other hand, it is possible that the bioactive compounds produced by this plant can recruit specific microorganisms, impacting the biological system.


Subject(s)
Fungi , Microbiota , Nematoda , Plant Leaves , Plant Leaves/microbiology , Plant Leaves/parasitology , Animals , Nematoda/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Endophytes/genetics , Endophytes/isolation & purification , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Metagenomics/methods , Biodiversity
10.
PeerJ ; 12: e17597, 2024.
Article in English | MEDLINE | ID: mdl-38974417

ABSTRACT

The huhu beetle (Prionoplus reticularis) is the largest endemic beetle found throughout Aotearoa New Zealand, and is characterised by feeding on wood during its larval stage. It has been hypothesised that its gut microbiome plays a fundamental role in the degradation of wood. To explore this idea we examined the fungal and bacterial community composition of huhu grubs' frass, using amplicon sequencing. Grubs were reared on an exclusive diet of either a predominantly cellulose source (cotton) or lignocellulose source (pine) for 4 months; subsequently a diet switch was performed and the grubs were grown for another 4 months. The fungal community of cellulose-reared huhu grubs was abundant in potential cellulose degraders, contrasting with the community of lignocellulose-reared grubs, which showed abundant potential soft rot fungi, yeasts, and hemicellulose and cellulose degraders. Cellulose-reared grubs showed a less diverse fungal community, however, diet switch from cellulose to lignocellulose resulted in a change in community composition that showed grubs were still capable of utilising this substrate. Conversely, diet seemed to have a limited influence on huhu grub gut bacterial communities.


Subject(s)
Coleoptera , Gastrointestinal Microbiome , Lignin , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/drug effects , Animals , Lignin/metabolism , Coleoptera/microbiology , Cellulose/metabolism , Diet , New Zealand , Fungi/genetics , Fungi/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism
11.
Sci Rep ; 14(1): 14905, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942826

ABSTRACT

Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.


Subject(s)
Bacteria , Multigene Family , Secondary Metabolism , Secondary Metabolism/genetics , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Phylogeny , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Fungi/genetics , Genomics/methods , Gene Transfer, Horizontal
12.
Environ Microbiol Rep ; 16(4): e13267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943366

ABSTRACT

Till now, the diversity of entomopathogenic fungi in subtropical mountain forest was less studied. Here, the vertical distribution of forest soil fungi, entomopathogenic fungi, and their environmental influencing factors in a subtropical mountain in western China were investigated. Soil samples were collected from four elevations in a subtropical forest in Shaanxi. The results indicated a greater richness of soil fungi at middle elevations and soil fungi were more even at low elevation. Soil pH, available iron, available potassium, total potassium, and available zinc were the most important influencing factors affecting this vertical distribution of fungi. Interestingly, the Isaria genus was predominant while Metarhizium and Beauveria showed decreasing abundance. The presence of Isaria showed a significant positive correlation with both total phosphorus and available iron, while, available zinc was negatively correlated. Metarhizium was influenced by elevation, pH, available phosphorus, and available copper and Beauveria was influenced by soil organic carbon, total nitrogen, total potassium, available potassium, and available zinc. Overall, as environmental factors affecting soil fungi, elevation, and plant species diversity were less important than soil physical and chemical properties. The virulence of isolated entomopathogenic fungi were tested against larvae of Tenebrio molitor, with mortality ranging from 31.11% to 100%. The above findings provide valuable data to deepen our understanding of the diversity of entomopathogenic fungi in subtropical mountain forests.


Subject(s)
Biodiversity , Forests , Fungi , Soil Microbiology , Soil , China , Animals , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Soil/chemistry , Tenebrio/microbiology , Larva/microbiology , Potassium/analysis , Potassium/metabolism , Hydrogen-Ion Concentration
13.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886123

ABSTRACT

Fungi are increasingly recognized to play diverse roles within honey bee hives, acting as pathogens, mutualists, and commensals. Pollen products, essential for hive nutrition, host significant fungal communities with potential protective and nutritional benefits. In this study, we profile the fungal communities and antifungal properties of three pollen products from healthy and stressed hives: fresh pollen collected by forager bees from local plants; stored pollen packed into the comb inside the hive; and bee bread, which is stored pollen following anaerobic fermentation used for bee and larval nutrition. Using amplicon sequencing, we found significant differences in fungal community composition, with hive health and sample type accounting for 8.8% and 19.3% of variation in beta diversity, respectively. Pollen and bee bread extracts had species-specific antimicrobial activity and inhibited the fungal hive pathogens Ascosphaera apis, Aspergillus flavus, and Aspergillus fumigatus, and the bacterial hive pathogen Paenibacillus larvae. Activity was positively correlated with phenolic and antioxidant content and was diminished in stressed hives. The plant source of pollen determined by amplicon sequencing differed in stressed hives, suggesting altered foraging behaviour. These findings illustrate the complex interplay between honey bees, fungal communities, and hive products, which should be considered in hive management and conservation.


Subject(s)
Fungi , Pollen , Bees/microbiology , Animals , Fungi/genetics , Fungi/classification , Stress, Physiological , Paenibacillus larvae/genetics , Mycobiome , Ascomycota , Anti-Infective Agents/pharmacology
14.
Genes (Basel) ; 15(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38927669

ABSTRACT

Despite remarkable advances in the diagnosis of invasive fungal infections (IFIs), rapid, specific, sensitive, and cost-effective detection methods remain elusive. Due to their stability, ease of production, and specificity to signature molecules of fungal pathogens, short single-stranded sequences of DNA, RNA, and XNA, collectively called aptamers, have emerged as promising diagnostic markers. In this perspective, we summarize recent progress in aptamer-based diagnostic tools for IFIs and discuss how these tools could potentially meet the needs and provide economical and simple solutions for point-of-care for better management of IFIs.


Subject(s)
Aptamers, Nucleotide , Invasive Fungal Infections , Humans , Aptamers, Nucleotide/genetics , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , Fungi/genetics , SELEX Aptamer Technique/methods
15.
BMC Genomics ; 25(1): 631, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914930

ABSTRACT

BACKGROUND: Current RNA-seq analysis software for RNA-seq data tends to use similar parameters across different species without considering species-specific differences. However, the suitability and accuracy of these tools may vary when analyzing data from different species, such as humans, animals, plants, fungi, and bacteria. For most laboratory researchers lacking a background in information science, determining how to construct an analysis workflow that meets their specific needs from the array of complex analytical tools available poses a significant challenge. RESULTS: By utilizing RNA-seq data from plants, animals, and fungi, it was observed that different analytical tools demonstrate some variations in performance when applied to different species. A comprehensive experiment was conducted specifically for analyzing plant pathogenic fungal data, focusing on differential gene analysis as the ultimate goal. In this study, 288 pipelines using different tools were applied to analyze five fungal RNA-seq datasets, and the performance of their results was evaluated based on simulation. This led to the establishment of a relatively universal and superior fungal RNA-seq analysis pipeline that can serve as a reference, and certain standards for selecting analysis tools were derived for reference. Additionally, we compared various tools for alternative splicing analysis. The results based on simulated data indicated that rMATS remained the optimal choice, although consideration could be given to supplementing with tools such as SpliceWiz. CONCLUSION: The experimental results demonstrate that, in comparison to the default software parameter configurations, the analysis combination results after tuning can provide more accurate biological insights. It is beneficial to carefully select suitable analysis software based on the data, rather than indiscriminately choosing tools, in order to achieve high-quality analysis results more efficiently.


Subject(s)
RNA-Seq , Software , Workflow , RNA-Seq/methods , Fungi/genetics , Computational Biology/methods , Sequence Analysis, RNA/methods , Alternative Splicing
16.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1776-1791, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914491

ABSTRACT

Filamentous fungi are a group of eukaryotic microorganisms widely found in nature. Some filamentous fungi have been developed as "cell factories" and extensively used for the production of recombinant proteins, organic acids, and secondary metabolites due to their strong protein secretion capabilities or effective synthesis of many natural products. The growth morphology of filamentous fungi significantly influences the quality and quantity of fermented products. Previous research conducted by the authors' group revealed that an increase in hyphal branches leads to enhanced protein secretion during liquid fermentation. With the development of morphological engineering of filamentous fungi, an increasing number of studies have focused on modifying fungal mycelium morphology to improve the yield of target metabolites during fermentation. While there have been a few reviews on the relationship between fungal fermentation morphology and productivity, research in this area is rapidly developing and requires updates. The paper presents a comprehensive review of domestic and international research reports, along with the authors' own research findings, to systematically review the morphological patterns of filamentous fungi, the impact of fungal morphology on industrial fermentation, as well as methods and strategies for regulating mycelial morphology. The aim of this review is to enhance the understanding of relevant domestic scholars regarding the morphological development of filamentous fungi and provide ideas for the rational engineering of fungal strains suitable for industrial fermentation.


Subject(s)
Fermentation , Fungi , Mycelium , Fungi/genetics , Fungi/metabolism , Mycelium/genetics , Mycelium/metabolism , Mycelium/growth & development , Industrial Microbiology , Genetic Engineering , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Hyphae/genetics , Hyphae/growth & development
17.
Anim Genet ; 55(4): 621-643, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923598

ABSTRACT

The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.


Subject(s)
Bacteria , Elephants , Feces , Gastrointestinal Microbiome , Metagenome , Animals , Elephants/genetics , Elephants/microbiology , Feces/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Archaea/genetics , Archaea/classification , Metagenomics , Fungi/genetics , Fungi/classification
18.
Microbiologyopen ; 13(3): e1422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847331

ABSTRACT

The root nodules of actinorhizal plants are home to nitrogen-fixing bacterial symbionts, known as Frankia, along with a small percentage of other microorganisms. These include fungal endophytes and non-Frankia bacteria. The taxonomic and functional diversity of the microbial consortia within these root nodules is not well understood. In this study, we surveyed and analyzed the cultivable, non-Frankia fungal and bacterial endophytes of root nodules from red and Sitka alder trees that grow together. We examined their taxonomic diversity, co-occurrence, differences between hosts, and potential functional roles. For the first time, we are reporting numerous fungal endophytes of alder root nodules. These include Sporothrix guttuliformis, Fontanospora sp., Cadophora melinii, an unclassified Cadophora, Ilyonectria destructans, an unclassified Gibberella, Nectria ramulariae, an unclassified Trichoderma, Mycosphaerella tassiana, an unclassified Talaromyces, Coniochaeta sp., and Sistotrema brinkmanii. We are also reporting several bacterial genera for the first time: Collimonas, Psychrobacillus, and Phyllobacterium. Additionally, we are reporting the genus Serratia for the second time, with the first report having been recently published in 2023. Pseudomonas was the most frequently isolated bacterial genus and was found to co-inhabit individual nodules with both fungi and bacteria. We found that the communities of fungal endophytes differed by host species, while the communities of bacterial endophytes did not.


Subject(s)
Alnus , Bacteria , Endophytes , Fungi , Root Nodules, Plant , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Alnus/microbiology , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Root Nodules, Plant/microbiology , Biodiversity , Symbiosis , Phylogeny
19.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876534

ABSTRACT

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Subject(s)
Endophytes , Plant Stems , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Plant Stems/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity
20.
Fungal Biol ; 128(4): 1836-1846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876536

ABSTRACT

Fungal endophytes inhabit a similar ecological niche to that occupied by many phytopathogens, with several pathogens isolated from healthy tissues in their latent phase. This study aimed to evaluate the pathogenicity, the colonisation ability, and the enzyme activity of 37 endophytic fungal isolates recovered from apparently healthy apple shoot and leaf tissues. The pathogenicity of the isolates was assessed on 'Royal Gala' and 'Braeburn' fruit and detached 'Royal Gala' shoots. For the non-pathogenic isolates, their ability to endophytically colonise detached 'Royal Gala' shoots was evaluated. Enzyme activity assays were undertaken to determine whether the pathogenicity of the endophytes was related to the production of the extracellular enzymes, amylase, cellulase, pectinase, protease, and xylanase. Of the 37 isolates studied, eight isolates, representing the genera Colletotrichum, Diaporthe, Fusarium, and Penicillium, were shown to be pathogenic on both apple shoots and fruit. Two isolates identified as Trichoderma atroviride, were pathogenic only on shoots, and three isolates, representing the genus Diaporthe, were pathogenic only on fruit. Of the remaining 24 isolates, 22 (Biscogniauxia (n = 8), Chaetomium (n = 4), Trichoderma (n = 3), Epicoccum (n = 2), Neosetophoma (n = 2), Xylaria (n = 1), Daldinia (n = 1), and Paraphaeosphaeria (n = 1)) were recovered from the inoculated apple shoots but two failed to colonise the shoot tissues. Of the isolates tested, 20 produced amylase, 15 cellulase, 25 pectinase, 26 protease, and 13 xylanase. There was no correlation between the range and type of enzymes produced by the isolates and their pathogenicity or ability to endophytically colonise the shoot tissue. The study showed that approximately one-third (13/37) of the isolates recovered from the apparently healthy apple shoot tissues were observed as latent pathogens. The isolates that did not cause disease symptoms may have the ability to reduce colonisation of apple tissues by pathogens including Neonectria ditissima associated with European canker of apple.


Subject(s)
Endophytes , Fungi , Malus , Plant Leaves , Malus/microbiology , Endophytes/isolation & purification , Endophytes/classification , Endophytes/genetics , Plant Leaves/microbiology , Fungi/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/pathogenicity , Plant Diseases/microbiology , Plant Shoots/microbiology , Fruit/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...