Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
World J Microbiol Biotechnol ; 40(8): 236, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850454

ABSTRACT

Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.


Subject(s)
Alternaria , Fungal Proteins , GATA Transcription Factors , Gene Expression Regulation, Fungal , Lactones , Mycotoxins , Nitrogen , Alternaria/genetics , Alternaria/metabolism , Alternaria/growth & development , Mycotoxins/metabolism , Mycotoxins/biosynthesis , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Nitrogen/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lactones/metabolism , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics
3.
Int J Biol Macromol ; 268(Pt 1): 131820, 2024 May.
Article in English | MEDLINE | ID: mdl-38670184

ABSTRACT

In this study, an NSDD gene, which encoded a GATA-type transcription factor involved in the regulation and biosynthesis of melanin, pullulan, and polymalate (PMA) in Aureobasidium melanogenum, was characterized. After the NSDD gene was completely removed, melanin production by the Δnsd mutants was enhanced, while pullulan and polymalate production was significantly reduced. Transcription levels of the genes involved in melanin biosynthesis were up-regulated while expression levels of the genes responsible for pullulan and PMA biosynthesis were down-regulated in the Δnsdd mutants. In contrast, the complementation of the NSDD gene in the Δnsdd mutants made the overexpressing mutants restore melanin production and transcription levels of the genes responsible for melanin biosynthesis. Inversely, the complementation strains, compared to the wild type strains, showed enhanced pullulan and PMA yields. These results demonstrated that the NsdD was not only a negative regulator for melanin biosynthesis, but also a key positive regulator for pullulan and PMA biosynthesis in A. melanogenum. It was proposed how the same transcriptional factor could play a negative role in melanin biosynthesis and a positive role in pullulan and PMA biosynthesis. This study provided novel insights into the regulatory mechanisms of multiple A. melanogenum metabolites and the possibility for improving its yields of some industrial products through genetic approaches.


Subject(s)
Aureobasidium , Gene Expression Regulation, Fungal , Glucans , Melanins , Glucans/biosynthesis , Glucans/metabolism , Melanins/biosynthesis , Aureobasidium/metabolism , Aureobasidium/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Plant Mol Biol ; 114(3): 43, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630371

ABSTRACT

The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.


Subject(s)
Phaseolus , Phaseolus/genetics , GATA Transcription Factors/genetics , Agrobacterium , Amino Acid Sequence , Droughts , Plant Growth Regulators
5.
Medicine (Baltimore) ; 103(12): e37487, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518015

ABSTRACT

GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.


Subject(s)
GATA Transcription Factors , Hematologic Neoplasms , Humans , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation , Hematopoiesis/genetics , Hematologic Neoplasms/genetics
6.
Elife ; 122024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446031

ABSTRACT

The survival of hosts during infections relies on their ability to mount effective molecular and behavioral immune responses. Despite extensive research on these defense strategies in various species, including the model organism Caenorhabditis elegans, the neural mechanisms underlying their interaction remain poorly understood. Previous studies have highlighted the role of neural G-protein-coupled receptors (GPCRs) in regulating both immunity and pathogen avoidance, which is particularly dependent on aerotaxis. To address this knowledge gap, we conducted a screen of mutants in neuropeptide receptor family genes. We found that loss-of-function mutations in npr-15 activated immunity while suppressing pathogen avoidance behavior. Through further analysis, NPR-15 was found to regulate immunity by modulating the activity of key transcription factors, namely GATA/ELT-2 and TFEB/HLH-30. Surprisingly, the lack of pathogen avoidance of npr-15 mutant animals was not influenced by oxygen levels. Moreover, our studies revealed that the amphid sensory neuron ASJ is involved in mediating the immune and behavioral responses orchestrated by NPR-15. Additionally, NPR-15 was found to regulate avoidance behavior via the TRPM (transient receptor potential melastatin) gene, GON-2, which may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance. Our study contributes to a broader understanding of host defense strategies and mechanisms underlining the interaction between molecular and behavioral immune responses.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Basic Helix-Loop-Helix Transcription Factors , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chemotaxis , GATA Transcription Factors , Immunity , Intestines , Sensory Receptor Cells
7.
Proc Natl Acad Sci U S A ; 121(8): e2310502121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346193

ABSTRACT

The placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.5. Single-cell RNA sequencing analysis revealed excessive accumulation of multipotent LaTPs upon conditional deletion of GATA factors. The GATA factor-deleted multipotent progenitors were unable to differentiate into matured SynTs. We also show that the GATA factor-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. Loss of either GATA2 or GATA3 in cytotrophoblast-derived human trophoblast stem cells (human TSCs) drastically inhibits SynT differentiation potential. Identification of GATA2 and GATA3 target genes along with comparative bioinformatics analyses revealed that GATA factors directly regulate hundreds of common genes in human TSCs, including genes that are essential for SynT development and implicated in preeclampsia and fetal growth retardation. Thus, our study uncovers a conserved molecular mechanism, in which coordinated function of GATA2 and GATA3 promotes trophoblast progenitor-to-SynT commitment, ensuring establishment of the maternal-fetal exchange interface.


Subject(s)
Gene Expression Regulation, Developmental , Maternal-Fetal Exchange , Pregnancy , Female , Humans , Animals , Mice , Placenta , Trophoblasts , Cell Differentiation/physiology , Fetal Development , GATA Transcription Factors
8.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377146

ABSTRACT

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Subject(s)
Breast Neoplasms , Chromatin , Fingers , Hair Diseases , Langer-Giedion Syndrome , Nose , Female , Humans , Breast Neoplasms/genetics , Chromatin/genetics , Estrogen Receptor alpha/genetics , Fingers/abnormalities , GATA Transcription Factors , Gene Expression , Genes, cdc , Nose/abnormalities , Repressor Proteins/genetics
9.
Curr Genet ; 70(1): 1, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353733

ABSTRACT

GATA family transcription factors (GATA-TFs) are metalloproteins that regulate many metabolic pathways. These conserved proteins recognize the consensus sequence (A/T)GATA(A/G) in the promoter regions of many genes and regulate their transcription in response to environmental signals. Currently, the study of GATA-TFs is of increasing interest. GATA genes and their proteins are most actively studied in vascular plants and fungi. Based on the results of numerous studies, it has been shown that GATA factors regulate the metabolic pathways of nitrogen and carbon, and also play a major role in the processes induced by light and circadian rhythms. In algae, GATA-TFs remain poorly studied, and information about them is scattered. In this work, all known data on GATA-TFs in the unicellular green alga Chlamydomonas reinhardtii has been collected and systematized. The genome of this alga contains 12 GATA coding genes. Using the phylogenetic analysis, we identified three classes of GATA factors in C. reinhardtii according to the structure of the zinc finger domain and showed their difference from the classification of GATA factors developed on vascular plants.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Phylogeny , Carbon , Circadian Rhythm , GATA Transcription Factors/genetics
10.
Plant Mol Biol ; 114(1): 15, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329633

ABSTRACT

Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.


Subject(s)
Arabidopsis , Secologanin Tryptamine Alkaloids , Uncaria , Light , Red Light , GATA Transcription Factors
11.
Transl Psychiatry ; 14(1): 33, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238293

ABSTRACT

GATAD2B (GATA zinc finger domain containing 2B) variants are associated with the neurodevelopmental syndrome GAND, characterized by intellectual disability (ID), infantile hypotonia, apraxia of speech, epilepsy, macrocephaly and distinct facial features. GATAD2B encodes for a subunit of the Nucleosome Remodeling and Histone Deacetylase (NuRD) complex. NuRD controls transcriptional programs critical for proper neurodevelopment by coupling histone deacetylase with ATP-dependent chromatin remodeling activity. To study mechanisms of pathogenesis for GAND, we characterized a mouse model harboring an inactivating mutation in Gatad2b. Homozygous Gatad2b mutants die perinatally, while haploinsufficient Gatad2b mice exhibit behavioral abnormalities resembling the clinical features of GAND patients. We also observed abnormal cortical patterning, and cellular proportions and cell-specific alterations in the developmental transcriptome in these mice. scRNAseq of embryonic cortex indicated misexpression of genes key for corticogenesis and associated with neurodevelopmental syndromes such as Bcl11b, Nfia and H3f3b and Sox5. These data suggest a crucial role for Gatad2b in brain development.


Subject(s)
Intellectual Disability , Repressor Proteins , Humans , Animals , Mice , GATA Transcription Factors/genetics , Intellectual Disability/genetics , Intellectual Disability/complications , Transcription Factors/genetics , Histone Deacetylases , Syndrome , Tumor Suppressor Proteins
12.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255805

ABSTRACT

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Subject(s)
Sapindaceae , Sapindaceae/genetics , Introns , GATA Transcription Factors/genetics , Hormones
13.
BMC Plant Biol ; 23(1): 611, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041099

ABSTRACT

BACKGROUND: GATA transcription factors are type IV zinc-finger proteins that play key roles in plant growth and responses to environmental stimuli. Although these proteins have been studied in model plants, the related studies of GATA gene family under abiotic stresses are rarely reported in grapevine (Vitis vinifera L.). RESULTS: In the current study, a total of 23 VviGATA genes were identified in grapevine and classified into four groups (I, II, III, and IV), based on phylogenetic analysis. The proteins in the same group exhibited similar exon-intron structures and conserved motifs and were found to be unevenly distributed among the thirteen grapevine chromosomes. Accordingly, it is likely that segmental and tandem duplication events contributed to the expansion of the VviGATA gene family. Analysis of cis-acting regulatory elements in their promoters suggested that VviGATA genes respond to light and are influenced by multiple hormones and stresses. Organ/tissue expression profiles showed tissue specificity for most of the VviGATA genes, and five were preferentially upregulated in different fruit developmental stages, while others were strongly induced by drought, salt and cold stress treatments. Heterologously expressed VamGATA5a, VamGATA8b, VamGATA24a, VamGATA24c and VamGATA24d from cold-resistant V. amurensis 'Shuangyou' showed nuclear localization and transcriptional activity was shown for VamGATA5a, VamGATA8b and VamGATA24d. CONCLUSIONS: The results of this study provide useful information for GATA gene function analysis and aid in the understanding of stress responses in grapevine for future molecular breeding initiatives.


Subject(s)
GATA Transcription Factors , Vitis , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Vitis/metabolism , Phylogeny , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Multigene Family
14.
Nat Cell Biol ; 25(11): 1704-1715, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37932452

ABSTRACT

X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.


Subject(s)
GATA Transcription Factors , RNA, Long Noncoding , Animals , Female , Mice , Fertilization/genetics , GATA Transcription Factors/genetics , Mammals , RNA, Long Noncoding/genetics , Up-Regulation , X Chromosome , X Chromosome Inactivation/genetics
15.
J Biol Chem ; 299(12): 105419, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923140

ABSTRACT

The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.


Subject(s)
Fos-Related Antigen-2 , GATA Transcription Factors , Glutaredoxins , Homeostasis , Iron-Sulfur Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Humans , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Iron/metabolism , Iron-Sulfur Proteins/metabolism , Oxidoreductases/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
16.
Genes (Basel) ; 14(10)2023 10 15.
Article in English | MEDLINE | ID: mdl-37895292

ABSTRACT

GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.


Subject(s)
Lycium , Solanum tuberosum , Lycium/genetics , GATA Transcription Factors/genetics , Salt Stress/genetics , Stress, Physiological/genetics , Solanum tuberosum/genetics
17.
Elife ; 122023 09 20.
Article in English | MEDLINE | ID: mdl-37728328

ABSTRACT

The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGE (MG-H1)-induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Furthermore, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGE-rich diets.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Pyruvaldehyde/metabolism , Magnesium Oxide/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Signal Transduction , Tyramine/metabolism , Glycation End Products, Advanced/metabolism , Eating
18.
Pestic Biochem Physiol ; 194: 105516, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532331

ABSTRACT

Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.


Subject(s)
Helicoverpa armigera , Insecticides , GATA Transcription Factors , Multidrug Resistance-Associated Protein 2/genetics , Animals , Insecticides/toxicity
19.
Proc Natl Acad Sci U S A ; 120(34): e2303234120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579141

ABSTRACT

Aedes aegypti female mosquitoes require vertebrate blood for their egg production and consequently they become vectors of devastating human diseases. Amino acids (AAs) and nutrients originating from a blood meal activate vitellogenesis and fuel embryo development of anautogenous mosquitoes. Insulin-like peptides (ILPs) are indispensable in reproducing female mosquitoes, regulating glycogen and lipid metabolism, and other essential functions. However, how ILPs coordinate their action in response to the AA influx in mosquito reproduction was unknown. We report here that the AA/Target of Rapamycin (TOR) signaling pathway regulates ILPs through GATA transcription factors (TFs). AA infusion combined with RNA-interference TOR silencing of revealed their differential action on ILPs, elevating circulating levels of several ILPs but inhibiting others, in the female mosquito. Experiments involving isoform-specific CRISPR-Cas9 genomic editing and chromatin immunoprecipitation assays showed that the expression of ilp4, ilp6, and ilp7 genes was inhibited by the GATA repressor (GATAr) isoform in response to low AA-TOR signaling, while the expression of ilp1, ilp2, ilp3, ilp5, and ilp8 genes was activated by the GATA activator isoform after a blood meal in response to the increased AA-TOR signaling. FoxO, a downstream TF in the insulin pathway, was involved in the TOR-GATAr-mediated repression of ilp4, ilp6, and ilp7 genes. This work uncovered how AA/TOR signaling controls the ILP pathway in modulation of metabolic requirements of reproducing female mosquitoes.


Subject(s)
Aedes , Animals , Female , Humans , Aedes/metabolism , Insulin/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acids/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Mosquito Vectors/genetics , Signal Transduction , Insect Proteins/genetics , Insect Proteins/metabolism
20.
Sci Rep ; 13(1): 11926, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488161

ABSTRACT

High Hb F determinants are genetic defects associated with increased expression of hemoglobin F in adult life, classified as deletional and non-deletional forms. We report the first description of non-deletional hereditary persistence of fetal hemoglobin (HFPH) in Thailand. Study was done on 388 subjects suspected of non-deletional HPFH with elevated Hb F expression. Mutations in the Gγ- and Aγ-globin genes were examined by DNA analysis and rapid diagnosis of HPFH mutations were developed by PCR-based methods. Twenty subjects with five different mutations were identified including three known mutations, - 202 Aγ (C>T) (n = 3), - 196 Aγ (C>T) (n = 3), and - 158 Aγ (C>T) (n = 12), and two novel mutations, - 117 Aγ (G>C) (n = 1) and - 530 Gγ (A>G) (n = 1). Interaction of the - 117 Aγ (G>C) and Hb E (HBB:c.79G>A) resulted in elevation of Hb F to the level of 13.5%. Two plain heterozygous subjects with - 530 Gγ (A>G) had marginally elevated Hb F with 1.9% and 3.0%, whereas the proband with homozygous - 530 Gγ (A>G) had elevated Hb F of 11.5%. Functional prediction indicated that the - 117 Aγ (G>C) and - 530 Gγ (A>G) mutations dramatically alter the binding of transcription factors to respective γ-globin gene promotors, especially the CCAAT and GATA-1 transcription factors. Diverse heterogeneity of non-deletional HFPH with both known and new mutations, and complex interactions of them with other forms of thalassemia are encountered in Thai population.


Subject(s)
GATA Transcription Factors , gamma-Globins , Adult , Humans , Thailand , Binding Sites , Transcription Factors , Fetal Hemoglobin , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...