Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894161

ABSTRACT

Technological advancements have expanded the range of methods for capturing human body motion, including solutions involving inertial sensors (IMUs) and optical alternatives. However, the rising complexity and costs associated with commercial solutions have prompted the exploration of more cost-effective alternatives. This paper presents a markerless optical motion capture system using a RealSense depth camera and intelligent computer vision algorithms. It facilitates precise posture assessment, the real-time calculation of joint angles, and acquisition of subject-specific anthropometric data for gait analysis. The proposed system stands out for its simplicity and affordability in comparison to complex commercial solutions. The gathered data are stored in comma-separated value (CSV) files, simplifying subsequent analysis and data mining. Preliminary tests, conducted in controlled laboratory environments and employing a commercial MEMS-IMU system as a reference, revealed a maximum relative error of 7.6% in anthropometric measurements, with a maximum absolute error of 4.67 cm at average height. Stride length measurements showed a maximum relative error of 11.2%. Static joint angle tests had a maximum average error of 10.2%, while dynamic joint angle tests showed a maximum average error of 9.06%. The proposed optical system offers sufficient accuracy for potential application in areas such as rehabilitation, sports analysis, and entertainment.


Subject(s)
Algorithms , Anthropometry , Gait Analysis , Gait , Humans , Anthropometry/methods , Gait/physiology , Gait Analysis/methods , Gait Analysis/instrumentation , Male , Biomechanical Phenomena , Adult , Motion Capture
2.
Sensors (Basel) ; 24(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38894386

ABSTRACT

An easy-to-use and reliable tool is essential for gait assessment of people with gait pathologies. This study aimed to assess the reliability and validity of the OneStep smartphone application compared to the C-Mill-VR+ treadmill (Motek, Nederlands), among patients undergoing rehabilitation for unilateral lower extremity disability. Spatiotemporal gait parameters were extracted from the treadmill and from two smartphones, one on each leg. Inter-device reliability was evaluated using Pearson correlation, intra-cluster correlation coefficient (ICC), and Cohen's d, comparing the application's readings from the two phones. Validity was assessed by comparing readings from each phone to the treadmill. Twenty-eight patients completed the study; the median age was 45.5 years, and 61% were males. The ICC between the phones showed a high correlation (r = 0.89-1) and good-to-excellent reliability (ICC range, 0.77-1) for all the gait parameters examined. The correlations between the phones and the treadmill were mostly above 0.8. The ICC between each phone and the treadmill demonstrated moderate-to-excellent validity for all the gait parameters (range, 0.58-1). Only 'step length of the impaired leg' showed poor-to-good validity (range, 0.37-0.84). Cohen's d effect size was small (d < 0.5) for all the parameters. The studied application demonstrated good reliability and validity for spatiotemporal gait assessment in patients with unilateral lower limb disability.


Subject(s)
Gait Analysis , Gait , Lower Extremity , Mobile Applications , Smartphone , Humans , Male , Middle Aged , Female , Lower Extremity/physiopathology , Lower Extremity/physiology , Adult , Gait/physiology , Gait Analysis/methods , Gait Analysis/instrumentation , Reproducibility of Results , Disabled Persons/rehabilitation , Exercise Test/methods , Aged
3.
Acta Vet Scand ; 66(1): 25, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902837

ABSTRACT

BACKGROUND: Kinetic and kinematic gait analysis is increasingly practised as a part of lameness evaluation in dogs. The aim of this study was to examine the normal short- and long-term variation in forelimb gait in sound control dogs (CD) at a walk using seven selected variables of objective kinetic and kinematic gait analyses. Also, to compare the findings in CD to a group of forelimb lame dogs with elbow osteoarthritis (OAD). An additional aim was to test a kinetic based graphic method for lameness detection; symmetry squares (SS). A prospective longitudinal study was carried out on client owned CD and OAD. Clinical and orthopaedic evaluations were performed to ensure soundness and detect and grade lameness. Seven kinetic and kinematic variables and SS were tested for lameness evaluation. The CD were divided into two subgroups, CD1 and CD2, and examined twice: CD1 with two months interval and CD2 with 3-4 h interval. The OAD group was evaluated once and compared to the CD groups' first examination. RESULTS: Thirteen CD and 19 OAD were included. For CD1 and CD2, there were no significant differences in any examined variable between examination occasions. Total peak force/impulse symmetry and fore-hind peak force/impulse symmetry differed significantly between OAD and CD. Symmetry squares had a 74% agreement to subjective orthopaedic evaluations. CONCLUSIONS: In CD, no difference in the examined variables was seen between examination occasions. Four out of seven objective variables differed significantly between CD and OAD. The graphic SS method might have diagnostic potential for lameness detection, making it possible to detect a shift from lame to non-lame limbs. Potentially, this might be especially helpful in bilaterally lame dogs, which often represent a clinical challenge in lameness evaluation.


Subject(s)
Dog Diseases , Forelimb , Gait Analysis , Gait , Lameness, Animal , Animals , Dogs , Lameness, Animal/diagnosis , Lameness, Animal/physiopathology , Dog Diseases/diagnosis , Dog Diseases/physiopathology , Forelimb/physiopathology , Gait/physiology , Gait Analysis/veterinary , Gait Analysis/methods , Gait Analysis/instrumentation , Male , Prospective Studies , Longitudinal Studies , Female , Biomechanical Phenomena , Osteoarthritis/veterinary , Osteoarthritis/diagnosis , Osteoarthritis/physiopathology , Walking/physiology
4.
Orthopadie (Heidelb) ; 53(7): 494-502, 2024 Jul.
Article in German | MEDLINE | ID: mdl-38847874

ABSTRACT

The objective acquisition and assessment of joint movements and loads using instrumented gait analysis has become an established tool in clinical diagnostics. In particular, marker-based 3D gait analyses make use of an increasingly comprehensive database for the assessment of orthopaedic or neurological questions. Based on this data and medical-scientific experience, increasingly reliable approaches and evaluation strategies are emerging, which also draw on methods from artificial intelligence and musculoskeletal modelling. This article focusses on marker-based gait analyses of the lower extremity (hip, knee, foot) and how these can be used in a clinically relevant way using current methods, e.g. for determining indications or optimization of surgical planning. Finally, current developments and applications by using alternative methods from sensor technology and optical motion capture will be briefly discussed.


Subject(s)
Gait Analysis , Humans , Artificial Intelligence , Biomechanical Phenomena , Gait/physiology , Gait Analysis/methods , Gait Analysis/instrumentation
5.
J Neuroeng Rehabil ; 21(1): 104, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890696

ABSTRACT

BACKGROUND: Recently, the use of inertial measurement units (IMUs) in quantitative gait analysis has been widely developed in clinical practice. Numerous methods have been developed for the automatic detection of gait events (GEs). While many of them have achieved high levels of efficiency in healthy subjects, detecting GEs in highly degraded gait from moderate to severely impaired patients remains a challenge. In this paper, we aim to present a method for improving GE detection from IMU recordings in such cases. METHODS: We recorded 10-meter gait IMU signals from 13 healthy subjects, 29 patients with multiple sclerosis, and 21 patients with post-stroke equino varus foot. An instrumented mat was used as the gold standard. Our method detects GEs from filtered acceleration free from gravity and gyration signals. Firstly, we use autocorrelation and pattern detection techniques to identify a reference stride pattern. Next, we apply multiparametric Dynamic Time Warping to annotate this pattern from a model stride, in order to detect all GEs in the signal. RESULTS: We analyzed 16,819 GEs recorded from healthy subjects and achieved an F1-score of 100%, with a median absolute error of 8 ms (IQR [3-13] ms). In multiple sclerosis and equino varus foot cohorts, we analyzed 6067 and 8951 GEs, respectively, with F1-scores of 99.4% and 96.3%, and median absolute errors of 18 ms (IQR [8-39] ms) and 26 ms (IQR [12-50] ms). CONCLUSIONS: Our results are consistent with the state of the art for healthy subjects and demonstrate a good accuracy in GEs detection for pathological patients. Therefore, our proposed method provides an efficient way to detect GEs from IMU signals, even in degraded gaits. However, it should be evaluated in each cohort before being used to ensure its reliability.


Subject(s)
Multiple Sclerosis , Humans , Male , Female , Multiple Sclerosis/diagnosis , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Adult , Middle Aged , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait Analysis/methods , Gait Analysis/instrumentation , Gait/physiology , Aged , Stroke/diagnosis , Stroke/physiopathology , Stroke/complications , Accelerometry/instrumentation , Accelerometry/methods , Young Adult
6.
Sensors (Basel) ; 24(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793945

ABSTRACT

The progress in markerless technologies is providing clinicians with tools to shorten the time of assessment rapidly, but raises questions about the potential trade-off in accuracy compared to traditional marker-based systems. This study evaluated the OpenCap system against a traditional marker-based system-Vicon. Our focus was on its performance in capturing walking both toward and away from two iPhone cameras in the same setting, which allowed capturing the Timed Up and Go (TUG) test. The performance of the OpenCap system was compared to that of a standard marker-based system by comparing spatial-temporal and kinematic parameters in 10 participants. The study focused on identifying potential discrepancies in accuracy and comparing results using correlation analysis. Case examples further explored our results. The OpenCap system demonstrated good accuracy in spatial-temporal parameters but faced challenges in accurately capturing kinematic parameters, especially in the walking direction facing away from the cameras. Notably, the two walking directions observed significant differences in pelvic obliquity, hip abduction, and ankle flexion. Our findings suggest areas for improvement in markerless technologies, highlighting their potential in clinical settings.


Subject(s)
Gait Analysis , Gait , Smartphone , Walking , Humans , Pilot Projects , Gait Analysis/methods , Gait Analysis/instrumentation , Male , Biomechanical Phenomena/physiology , Female , Gait/physiology , Walking/physiology , Adult
7.
Sensors (Basel) ; 24(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38733050

ABSTRACT

Gait phase monitoring wearable sensors play a crucial role in assessing both health and athletic performance, offering valuable insights into an individual's gait pattern. In this study, we introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a micropatterned polydimethylsiloxane dielectric layer placed between screen-printed silver electrodes. The sensor demonstrated inherent stretchability and durability, even when the electrode was bent at a 45-degree angle, it maintained an electrode resistance of approximately 3 Ω. This feature is particularly advantageous for gait monitoring applications. Furthermore, the fabricated flexible capacitive pressure sensor exhibited higher sensitivity and linearity at both low and high pressure and displayed very good stability. Notably, the sensors demonstrated rapid response and recovery times for both under low and high pressure. To further explore the capabilities of these new sensors, they were successfully tested as insole-type pressure sensors for real-time gait signal monitoring. The sensors displayed a well-balanced combination of sensitivity and response time, making them well-suited for gait analysis. Beyond gait analysis, the proposed sensor holds the potential for a wide range of applications within biomedical, sports, and commercial systems where soft and conformable sensors are preferred.


Subject(s)
Gait , Pressure , Wearable Electronic Devices , Wireless Technology , Humans , Gait/physiology , Wireless Technology/instrumentation , Gait Analysis/methods , Gait Analysis/instrumentation , Electrodes , Shoes , Equipment Design
8.
ACS Nano ; 18(22): 14672-14684, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38760182

ABSTRACT

Flexible sensing systems (FSSs) designed to measure plantar pressure can deliver instantaneous feedback on human movement and posture. This feedback is crucial not only for preventing and controlling diseases associated with abnormal plantar pressures but also for optimizing athletes' postures to minimize injuries. The development of an optimal plantar pressure sensor hinges on key metrics such as a wide sensing range, high sensitivity, and long-term stability. However, the effectiveness of current flexible sensors is impeded by numerous challenges, including limitations in structural deformability, mechanical incompatibility between multifunctional layers, and instability under complex stress conditions. Addressing these limitations, we have engineered an integrated pressure sensing system with high sensitivity and reliability for human plantar pressure and gait analysis. It features a high-modulus, porous laminated ionic fiber structure with robust self-bonded interfaces, utilizing a unified polyimide material system. This system showcases a high sensitivity (156.6 kPa-1), an extensive sensing range (up to 4000 kPa), and augmented interfacial toughness and durability (over 150,000 cycles). Additionally, our FSS is capable of real-time monitoring of plantar pressure distribution across various sports activities. Leveraging deep learning, the flexible sensing system achieves a high-precision, intelligent recognition of different plantar types with a 99.8% accuracy rate. This approach provides a strategic advancement in the field of flexible pressure sensors, ensuring prolonged stability and accuracy even amidst complex pressure dynamics and providing a feasible solution for long-term gait monitoring and analysis.


Subject(s)
Pressure , Humans , Gait Analysis/instrumentation , Gait Analysis/methods , Wearable Electronic Devices , Gait/physiology , Foot/physiology
9.
Sci Rep ; 14(1): 10774, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38729999

ABSTRACT

Muscular dystrophies (MD) are a group of genetic neuromuscular disorders that cause progressive weakness and loss of muscles over time, influencing 1 in 3500-5000 children worldwide. New and exciting treatment options have led to a critical need for a clinical post-marketing surveillance tool to confirm the efficacy and safety of these treatments after individuals receive them in a commercial setting. For MDs, functional gait assessment is a common approach to evaluate the efficacy of the treatments because muscle weakness is reflected in individuals' walking patterns. However, there is little incentive for the family to continue to travel for such assessments due to the lack of access to specialty centers. While various existing sensing devices, such as cameras, force plates, and wearables can assess gait at home, they are limited by privacy concerns, area of coverage, and discomfort in carrying devices, which is not practical for long-term, continuous monitoring in daily settings. In this study, we introduce a novel functional gait assessment system using ambient floor vibrations, which is non-invasive and scalable, requiring only low-cost and sparsely deployed geophone sensors attached to the floor surface, suitable for in-home usage. Our system captures floor vibrations generated by footsteps from patients while they walk around and analyzes such vibrations to extract essential gait health information. To enhance interpretability and reliability under various sensing scenarios, we translate the signal patterns of floor vibration to pathological gait patterns related to MD, and develop a hierarchical learning algorithm that aggregates insights from individual footsteps to estimate a person's overall gait performance. When evaluated through real-world experiments with 36 subjects (including 15 patients with MD), our floor vibration sensing system achieves a 94.8% accuracy in predicting functional gait stages for patients with MD. Our approach enables accurate, accessible, and scalable functional gait assessment, bringing MD progressive tracking into real life.


Subject(s)
Gait , Muscular Dystrophies , Vibration , Humans , Child , Gait/physiology , Muscular Dystrophies/physiopathology , Muscular Dystrophies/diagnosis , Muscular Dystrophies/therapy , Male , Female , Gait Analysis/methods , Gait Analysis/instrumentation , Adolescent
10.
Foot (Edinb) ; 59: 102094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579518

ABSTRACT

Plantar pressure measurement systems are routinely used in sports and health applications to assess locomotion. The purpose of this review is to describe and critically discuss: (a) applications of the pressure measurement systems in sport and healthcare, (b) testing protocols and considerations for clinical gait analysis, (c) clinical recommendations for interpreting plantar pressure data, (d) calibration procedures and their accuracy, and (e) the future of pressure sensor data analysis. Rigid pressure platforms are typically used to measure plantar pressures for the assessment of foot function during standing and walking, particularly when barefoot, and are the most accurate for measuring plantar pressures. For reliable data, two step protocol prior to contacting the pressure plate is recommended. In-shoe systems are most suitable for measuring plantar pressures in the field during daily living or dynamic sporting movements as they are often wireless and can measure multiple steps. They are the most suitable equipment to assess the effects of footwear and orthotics on plantar pressures. However, they typically have lower spatial resolution and sampling frequency than platform systems. Users of pressure measurement systems need to consider the suitability of the calibration procedures for their chosen application when selecting and using a pressure measurement system. For some applications, a bespoke calibration procedure is required to improve validity and reliability of the pressure measurement system. The testing machines that are commonly used for dynamic calibration of pressure measurement systems frequently have loading rates of less than even those found in walking, so the development of testing protocols that truly measure the loading rates found in many sporting movements are required. There is clear potential for AI techniques to assist in the analysis and interpretation of plantar pressure data to enable the more complete use of pressure system data in clinical diagnoses and monitoring.


Subject(s)
Foot , Pressure , Humans , Foot/physiology , Gait Analysis/methods , Gait Analysis/instrumentation , Shoes , Calibration , Sports/physiology
11.
Gait Posture ; 111: 30-36, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615566

ABSTRACT

BACKGROUND: Approaches to gait analysis are evolving rapidly and now include a wide range of options: from e-patches to video platforms to wearable inertial measurement unit systems. Newer options for gait analysis are generally more inclusive for the assessment of children, more cost effective and easier to administer. However, there is limited data on the comparability of newer systems with more established traditional approaches in young children. RESEARCH QUESTION: To determine comparability between the Physilog®5 wearable inertial sensor and GAITRite® electronic walkway for spatiotemporal (stride length, time and velocity, cadence) and relative phase (double support time, stance, swing, loading, foot flat and push off) data in young children. METHODS: A total 34 typically developing participants (41% female) aged 6-11 years old median age 8.99 years old (interquartile range 2.83) were assessed walking at self-selected speed over the GAITRite® electronic walkway while concurrently wearing shoe-attached Physilog®5 IMU sensors. Level of agreement was analysed by Lin's concordance correlation coefficient (CCC), Bland-Altman plots and 95% limit of agreement. Systematic bias was assessed using 95% confidence interval of the mean difference. RESULTS: Excellent to almost perfect agreement was observed between systems for spatiotemporal metrics: cadence (CCC=0.996), stride length (CCC=0.993), stride time (CCC=0.996), stride velocity (CCC=0.988). The relative phase metrics adjusted for stride velocity showed improved comparability when compared to the unadjusted metrics: swing adjusted (adj) (CCC=0.635); stance adj (CCC: 0.879); loading adj: (CCC=0.626). SIGNIFICANCE: Spatiotemporal metrics are highly compatible across GAITRite® electronic walkway and Physilog®5 IMU systems in young children. Relative phase metrics were somewhat compatible between systems when adjusted for stride velocity.


Subject(s)
Gait Analysis , Wearable Electronic Devices , Humans , Child , Female , Male , Gait Analysis/instrumentation , Accelerometry/instrumentation , Biomechanical Phenomena , Walking/physiology , Gait/physiology , Spatio-Temporal Analysis
12.
Elife ; 132024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686919

ABSTRACT

Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole-derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time-series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.


The way we walk ­ our 'gait' ­ is a key indicator of health. Gait irregularities like limping, shuffling or a slow pace can be signs of muscle or joint problems. Assessing a patient's gait is therefore an important element in diagnosing these conditions, and in evaluating whether treatments are working. Gait is often assessed via a simple visual inspection, with patients being asked to walk back and forth in a doctor's office. While quick and easy, this approach is highly subjective and therefore imprecise. 'Objective gait analysis' is a more accurate alternative, but it relies on tests being conducted in specialised laboratories with large-scale, expensive equipment operated by highly trained staff. Unfortunately, this means that gait laboratories are not accessible for everyday clinical use. In response, Wipperman et al. aimed to develop a low-cost alternative to the complex equipment used in gait laboratories. To do this, they harnessed wearable sensor technologies ­ devices that can directly measure physiological data while embedded in clothing or attached to the user. Wearable sensors have the advantage of being cheap, easy to use, and able to provide clinically useful information without specially trained staff. Wipperman et al. analysed data from classic gait laboratory devices, as well as 'digital insoles' equipped with sensors that captured foot movements and pressure as participants walked. The analysis first 'trained' on data from gait laboratories (called force plates) and then applied the method to gait measurements obtained from digital insoles worn by either healthy participants or patients with knee problems. Analysis of the pressure data from the insoles confirmed that they could accurately predict which measurements were from healthy individuals, and which were from patients. The gait characteristics detected by the insoles were also comparable to lab-based measurements ­ in other words, the insoles provided similar type and quality of data as a gait laboratory. Further analysis revealed that information from just a single step could reveal additional information about the subject's walking. These results support the use of wearable devices as a simple and relatively inexpensive way to measure gait in everyday clinical practice, without the need for specialised laboratories and visits to the doctor's office. Although the digital insoles will require further analytical and clinical study before they can be widely used, Wipperman et al. hope they will eventually make monitoring muscle and joint conditions easier and more affordable.


Subject(s)
Gait , Machine Learning , Osteoarthritis, Knee , Wearable Electronic Devices , Humans , Gait/physiology , Male , Female , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/diagnosis , Middle Aged , Aged , Gait Analysis/methods , Gait Analysis/instrumentation
13.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676029

ABSTRACT

The increasing use of inertial measurement units (IMU) in biomedical sciences brings new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04, height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed. The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s. With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid physical recovery of stride length and horizontal velocity from data collected with the IMU-based wearable Syde® device.


Subject(s)
Ankle , Gait , Wearable Electronic Devices , Humans , Gait/physiology , Male , Ankle/physiology , Female , Adult , Young Adult , Biomechanical Phenomena/physiology , Accelerometry/instrumentation , Accelerometry/methods , Gait Analysis/methods , Gait Analysis/instrumentation
14.
Arthritis Care Res (Hoboken) ; 76(7): 984-992, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523250

ABSTRACT

OBJECTIVE: The objective of this study was to identify gait alterations related to worsening knee pain and worsening physical function, using machine learning approaches applied to wearable sensor-derived data from a large observational cohort. METHODS: Participants in the Multicenter Osteoarthritis Study (MOST) completed a 20-m walk test wearing inertial sensors on their lower back and ankles. Parameters describing spatiotemporal features of gait were extracted from these data. We used an ensemble machine learning technique ("super learning") to optimally discriminate between those with and without worsening physical function and, separately, those with and without worsening pain over two years. We then used log-binomial regression to evaluate associations of the top 10 influential variables selected with super learning with each outcome. We also assessed whether the relation of altered gait with worsening function was mediated by changes in pain. RESULTS: Of 2,324 participants, 29% and 24% had worsening knee pain and function over two years, respectively. From the super learner, several gait parameters were found to be influential for worsening pain and for worsening function. After adjusting for confounders, greater gait asymmetry, longer average step length, and lower dominant frequency were associated with worsening pain, and lower cadence was associated with worsening function. Worsening pain partially mediated the association of cadence with function. CONCLUSION: We identified gait alterations associated with worsening knee pain and those associated with worsening physical function. These alterations could be assessed with wearable sensors in clinical settings. Further research should determine whether they might be therapeutic targets to prevent worsening pain and worsening function.


Subject(s)
Arthralgia , Gait , Machine Learning , Osteoarthritis, Knee , Wearable Electronic Devices , Humans , Female , Male , Osteoarthritis, Knee/physiopathology , Aged , Middle Aged , Gait/physiology , Arthralgia/physiopathology , Arthralgia/diagnosis , Knee Joint/physiopathology , Pain Measurement , Disease Progression , Functional Status , Walk Test , Gait Analysis/instrumentation , United States/epidemiology , Predictive Value of Tests
15.
IEEE Trans Biomed Eng ; 71(7): 2265-2275, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38376981

ABSTRACT

Shortened step length is a prominent motor abnormality in Parkinson's disease (PD) patients. Current methods for estimating short step length have the limitation of relying on laboratory scenarios, wearing multiple sensors, and inaccurate estimation results from a single sensor. In this paper, we proposed a novel method for estimating short step length for PD patients by fusing data from camera and inertial measurement units in smart glasses. A simultaneous localization and mapping technique and acceleration thresholding-based step detection technique were combined to realize the step length estimation. Two sets of experiments were conducted to demonstrate the performance of our method. In the first set of experiments with 12 healthy subjects, the proposed method demonstrated an average error of 8.44% across all experiments including six fixed step lengths below 30 cm. The second set of straightly walking experiments were implemented with 12 PD patients, the proposed method exhibited an average error of 4.27% compared to a standard gait evaluation technique in total walking distance. Notably, among the results of step lengths below 40 cm, our method agreed with the standard technique (R 2=0.8659). This study offers a promising approach for estimating short step length for PD patients during smart glasses-based gait training.


Subject(s)
Parkinson Disease , Smart Glasses , Humans , Parkinson Disease/physiopathology , Male , Female , Middle Aged , Aged , Algorithms , Accelerometry/instrumentation , Accelerometry/methods , Gait/physiology , Signal Processing, Computer-Assisted , Eyeglasses , Gait Analysis/methods , Gait Analysis/instrumentation , Adult , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods
16.
J Arthroplasty ; 39(7): 1741-1746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38280616

ABSTRACT

BACKGROUND: Gait abnormalities such as Trendelenburg gait (TG) in patients who have hip osteoarthritis (OA) have traditionally been evaluated using clinicians' visual assessment. Recent advances in portable inertial gait sensors offer more sensitive, quantitative methods for gait assessment in clinical settings. This study sought to compare sensor-derived metrics in a cohort of hip OA patients when stratified by clinical TG severity. METHODS: There were 42 patients who had hip OA and were grouped by TG severity (mild, moderate, and severe) through visual assessment by a single arthroplasty surgeon who had > 30 years of experience. After informed consent, wireless inertial sensors placed at the midpoint of the intercristal line collected gait parameters including pelvic shift, support time, toe-off symmetry, impact, and cadence. Clinical data on hip strength, range of motion, and Kellgren-Lawrence grade were collected. RESULTS: Worsening TG severity had a higher mean Kellgren-Lawrence grade (2.5 versus 3.2 versus 3.4; P = .014) and reduced passive hip abduction (P = .004). Severe TG group demonstrated predominantly contralateral pelvic shift (n = 9 of 10, 90.0%), while ipsilateral shift was more frequently detected in moderate (n = 10 of 18, 55.6%) and mild groups (n = 9 of 14, 64.3%; P = .021). Contralateral single support time bias was greatest in severe TG (35.7% versus 50.0 versus 90.0%; P = .027). Asymmetric toe-off, impact, and support times were observed in all groups. CONCLUSIONS: Traditional understanding of TG is that truncal shift occurs to the ipsilateral side. Using sensor-based measurements, the present study demonstrates a shift of the weight-bearing axis toward the contralateral side with increasing TG severity, which has not been previously described. Inertial sensors are feasible, quantitative gait measuring tools, and may reveal subtle patterns not readily discernible by traditional methods.


Subject(s)
Gait Analysis , Gait , Osteoarthritis, Hip , Range of Motion, Articular , Humans , Osteoarthritis, Hip/physiopathology , Osteoarthritis, Hip/surgery , Female , Male , Middle Aged , Aged , Gait Analysis/instrumentation , Gait/physiology , Hip Joint/physiopathology , Severity of Illness Index , Arthroplasty, Replacement, Hip/instrumentation
17.
Adv Sci (Weinh) ; 9(4): e2103694, 2022 02.
Article in English | MEDLINE | ID: mdl-34796695

ABSTRACT

Gait and waist motions always contain massive personnel information and it is feasible to extract these data via wearable electronics for identification and healthcare based on the Internet of Things (IoT). There also remains a demand to develop a cost-effective human-machine interface to enhance the immersion during the long-term rehabilitation. Meanwhile, triboelectric nanogenerator (TENG) revealing its merits in both wearable electronics and IoT tends to be a possible solution. Herein, the authors present wearable TENG-based devices for gait analysis and waist motion capture to enhance the intelligence and performance of the lower-limb and waist rehabilitation. Four triboelectric sensors are equidistantly sewed onto a fabric belt to recognize the waist motion, enabling the real-time robotic manipulation and virtual game for immersion-enhanced waist training. The insole equipped with two TENG sensors is designed for walking status detection and a 98.4% identification accuracy for five different humans aiming at rehabilitation plan selection is achieved by leveraging machine learning technology to further analyze the signals. Through a lower-limb rehabilitation robot, the authors demonstrate that the sensory system performs well in user recognition, motion monitoring, as well as robot and gaming-aided training, showing its potential in IoT-based smart healthcare applications.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Gait Analysis/instrumentation , Gait Analysis/methods , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Wearable Electronic Devices , Electric Power Supplies , Equipment Design , Humans , Internet of Things , Motion , Robotics
18.
Sci Rep ; 11(1): 20976, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697377

ABSTRACT

Falls are among the most common cause of decreased mobility and independence in older adults and rank as one of the most severe public health problems with frequent fatal consequences. In the present study, gait characteristics from 171 community-dwelling older adults were evaluated to determine their predictive ability for future falls using a wearable system. Participants wore a wearable sensor (inertial measurement unit, IMU) affixed to the sternum and performed a 10-m walking test. Measures of gait variability, complexity, and smoothness were extracted from each participant, and prospective fall incidence was evaluated over the following 6-months. Gait parameters were refined to better represent features for a random forest classifier for the fall-risk classification utilizing three experiments. The results show that the best-trained model for faller classification used both linear and nonlinear gait parameters and achieved an overall 81.6 ± 0.7% accuracy, 86.7 ± 0.5% sensitivity, 80.3 ± 0.2% specificity in the blind test. These findings augment the wearable sensor's potential as an ambulatory fall risk identification tool in community-dwelling settings. Furthermore, they highlight the importance of gait features that rely less on event detection methods, and more on time series analysis techniques. Fall prevention is a critical component in older individuals' healthcare, and simple models based on gait-related tasks and a wearable IMU sensor can determine the risk of future falls.


Subject(s)
Accidental Falls/prevention & control , Gait Analysis/instrumentation , Gait/physiology , Accidental Falls/statistics & numerical data , Aged , Aged, 80 and over , Humans , Incidence , Independent Living , Machine Learning , Prospective Studies , Risk Factors , Sensitivity and Specificity , Wearable Electronic Devices
19.
J Orthop Surg Res ; 16(1): 419, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210345

ABSTRACT

BACKGROUND: Walking is a fundamental part of living, and its importance is not limited by age or medical status. Reduced walking speed (WS), or gait velocity, is a sign of advancing age, various disease states, cognitive impairment, mental illness and early mortality. Activity levels, as defined in the literature as "daily step count" (DSC), is also a relevant measure of health status. A deterioration in our walking metrics, such as reduced WS and DSC, is associated with poor health outcomes. These objective measures are of such importance, that walking speed has been dubbed "the 6th vital sign". We report a new objective measure that scores walking using the relevant metrics of walking speed and daily step count, into an easy-to-understand score from 0 (nil mobility) to 100 (excellent mobility), termed the Simplified Mobility Score (SMoS™). We have provided equal weighting to walking speed and daily step count, using a simple algorithm to score each metric out of 50. METHODS: Gait data was collected from 182 patients presenting to a tertiary hospital spinal unit with complaints of pain and reduced mobility. Walking speed was measured from a timed walk along an unobstructed pathway. Daily step count information was obtained from patients who had enabled step count tracking on their devices. The SMoS of the sample group were compared to expected population values calculated from the literature using 2-tailed Z tests. RESULTS: There were significantly reduced SMoS in patients who presented to the spinal unit than those expected at each age group for both genders, except for the 50-59 age bracket where no statistically significant reduction was observed. Even lower scores were present in those that went on to have surgical management. There was a significant correlation of SMoS scores with subjective disability scores such as the Oswestry Disability Index (ODI) and Visual Analogue Scale (VAS) in this cohort. CONCLUSIONS: The SMoS is a simple and effective scoring tool which is demonstrably altered in spinal patients across age and gender brackets and correlates well with subjective disability scores. The SMoS has the potential to be used as a screening tool in primary and specialised care settings.


Subject(s)
Accelerometry/methods , Algorithms , Benchmarking , Disability Evaluation , Gait Analysis/methods , Accelerometry/instrumentation , Adult , Aged , Female , Gait Analysis/instrumentation , Humans , Male , Middle Aged , Mobility Limitation , Retrospective Studies , Smartphone , Walking , Walking Speed
20.
J Orthop Surg Res ; 16(1): 425, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217352

ABSTRACT

BACKGROUND: The Opti_Knee system, a marker-based motion capture system, tracks and analyzes the 6 degrees of freedom (6DOF) motion of the knee joint. However, the validation of the accuracy of this gait system had not been previously reported. The objective of this study was to validate and the system. Two healthy subjects were recruited for the study. METHODS: The 6DOF kinematics of the knee during flexion-extension and level walking cycles of the knee were recorded by Opti_Knee and compared to those from a biplanar fluoroscopy system. The root mean square error (RMSE) of knee kinematics in flexion-extension cycles were compared between the two systems to validate the accuracy at which they detect basic knee motions. The RMSE of kinematics at key events of gait cycles (level walking) were compared to validate the accuracy at which the systems detect functional knee motion. Pearson correlation tests were conducted to assess similarities in knee kinematic trends between the two systems. RESULTS: In flexion-extension cycles, the average translational accuracy (RMSE) was between 2.7 and 3.7 mm and the average rotational accuracy was between 1.7 and 3.8°. The Pearson correlation of coefficients for flexion-extension cycles was between 0.858 and 0.994 for translation and 0.995-0.999 for angles. In gait cycles, the RMSEs of angular knee kinematics were 2.3° for adduction/abduction, 3.2° for internal/external rotation, and 1.4° for flexion/extension. The RMSEs of translational kinematics were 4.2 mm for anterior/posterior translation, 3.3 mm for distal/proximal translation, and 3.2 mm for medial/lateral translation. The Pearson correlation of coefficients values was between 0.964 and 0.999 for angular kinematics and 0.883 and 0.938 for translational kinematics. CONCLUSION: The Opti_Knee gait system exhibited acceptable accuracy and strong correlation strength compared to biplanar fluoroscopy. The Opti _Knee may serve as a promising portable clinical system for dynamic functional assessments of the knee.


Subject(s)
Gait Analysis/instrumentation , Knee Joint/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Correlation of Data , Fluoroscopy , Gait Analysis/methods , Healthy Volunteers , Humans , Male , Range of Motion, Articular , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...