Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.165
Filter
1.
BMC Pediatr ; 24(1): 620, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350089

ABSTRACT

BACKGROUND: The recommended diet attitude in the recently described galactose mutarotase (GALM) deficiency is not yet established. We describe two 9-years twins who remain asymptomatic despite prolonged partial dietary liberalization from 18 months of age, after two periods of galactose-free diet. It represents the second report in Europe of GALM deficiency. CASE PRESENTATION: Two male monochorionic diamniotic twins were detected through newborn screening by galactosuria and increased total blood galactose. They started galactose dietary restriction with biochemical normalization. After exclusion of the three previously described types of galactosemia, a progressively galactose reintroduction was initiated. The clinical follow-up developed include neurological assessment and intelligence quotient, annual ophthalmological evaluation and biannual abdominal ultrasound; whereas the biochemical assessment comprises quarterly determinations of galactose 1-phosphate and galactosuria and annual determination of liver and renal function, 25-OH-vitamin D and calcium levels. Sanger sequencing of GALM gene was complemented by the study of gene dose using SNPs array and a protein modeling to study the conformational changes induced in GALM protein. In both siblings a novel and complete deletion of exon 4 in GALM gene was detected. Both remained asymptomatic, with normal growth and intellectual development, despite dietary liberalization. Evolutionarily, the biochemical profile in blood remained normal with intermittent galactosuria. CONCLUSIONS: The absence of clinical involvement after 7 years of dietary liberalization is interesting to expand the knowledge about the recommended dietary management in this pathology.


Subject(s)
Galactosemias , Humans , Galactosemias/diet therapy , Galactosemias/genetics , Galactosemias/diagnosis , Male , Child , Galactose/deficiency , Diseases in Twins , Neonatal Screening , Twins, Monozygotic , Carbohydrate Epimerases
2.
Orphanet J Rare Dis ; 19(1): 325, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243040

ABSTRACT

BACKGROUND: Classic galactosemia is a rare inherited metabolic disease with long-term complications, particularly in the psychosocial domain. Patients report a lower quality of social life, difficulties in interactions and social relationships, and a lower mental health. We hypothesised that social cognition deficits could partially explain this psychological symptomatology. Eleven adults with galactosemia and 31 control adults participated in the study. We measured social cognition skills in cognitive and affective theory of Mind, and in basic and complex emotion recognition. We explored psychosocial development and mental well-being. RESULTS: We found significant deficits on all 4 social cognition measures. Compared to controls, participants with galactosemia were impaired in the 2nd-order cognitive theory of mind, in affective theory of mind, and in basic and complex emotion recognition. Participants with galactosemia had a significant delay in their psychosexual development, but we found no delay in social development and no significant decrease in mental health. CONCLUSION: Social cognition processes seem impaired among our participants with galactosemia. We discuss the future path research may follow. More research is needed to replicate and strengthen these results and establish the links between psychosocial complications and deficits in social cognition.


Subject(s)
Galactosemias , Social Cognition , Humans , Galactosemias/psychology , Female , Male , Adult , Young Adult , Middle Aged
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167340, 2024 10.
Article in English | MEDLINE | ID: mdl-38986816

ABSTRACT

Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.


Subject(s)
Electron Transport Complex IV , Galactosemias , Galactosephosphates , Mitochondria , Galactosemias/metabolism , Galactosemias/pathology , Galactosemias/genetics , Galactosephosphates/metabolism , Humans , Animals , Rats , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/drug effects , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Oxidative Phosphorylation/drug effects , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Galactose/metabolism
4.
BMC Infect Dis ; 24(1): 599, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898413

ABSTRACT

BACKGROUND: Phytobacter diazotrophicus (P. diazotrophicus) is an opportunistic pathogen that causes nosocomial outbreaks and sepsis. However, there are no reports of P. diazotrophicus isolated from human blood in China. CASE PRESENTATION: A 27-day-old female infant was admitted to our hospital with fever and high bilirubin levels. The clinical features included jaundice, abnormal coagulation, cholestasis, fever, convulsions, weak muscle tension, sucking weakness, ascites, abnormal tyrosine metabolism, cerebral oedema, abnormal liver function, clavicle fracture, and haemolytic anaemia. The strain isolated from the patient's blood was identified as P. diazotrophicus by whole-genome sequencing (WGS). Galactosemia type 1 (GALAC1) was diagnosed using whole-exome sequencing (WES). Based on drug sensitivity results, 10 days of anti-infective treatment with meropenem combined with lactose-free milk powder improved symptoms. CONCLUSION: P. diazotrophicus was successfully identified in a patient with neonatal sepsis combined with galactosemia. Galactosemia may be an important factor in neonatal sepsis. This case further expands our understanding of the clinical characteristics of GALAC1.


Subject(s)
Galactosemias , Sepsis , Humans , Female , China , Galactosemias/complications , Galactosemias/microbiology , Sepsis/microbiology , Sepsis/drug therapy , Sepsis/complications , Infant, Newborn , Anti-Bacterial Agents/therapeutic use , Meropenem/therapeutic use , Whole Genome Sequencing , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification
5.
Anal Bioanal Chem ; 416(16): 3811-3819, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38702448

ABSTRACT

Galactosemia, a severe genetic metabolic disorder, results from the absence of galactose-degrading enzymes, leading to harmful galactose accumulation. In this study, we introduce a novel capillary-based surface-enhanced Raman spectroscopy (SERS) sensor for convenient and sensitive galactose detection. The developed sensor enhances SERS signals by introducing gold nanoparticles (Au NPs) onto the surface of silver nanoshells (Ag NSs) within a capillary, creating Ag NSs with Au NPs as satellites. Utilizing 4-mercaptophenylboronic acid (4-MPBA) as a Raman reporter molecule, the detection method relies on the conversion of 4-MPBA to 4-mercaptophenol (4-MPhOH) driven by hydrogen peroxide (H2O2) generated during galactose oxidation by galactose oxidase (GOx). A new SERS signal was observed, which was generated by H2O2 produced when galactose and GOx reacted. Our strategy yielded a quantitative change in the SERS signal, specifically in the band intensity ratio of 998 to 1076 cm-1 (I998/I1076) as the galactose concentration increased. Our capillary-based SERS biosensor provides a promising platform for early galactosemia diagnosis.


Subject(s)
Galactose , Gold , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Galactose/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Biosensing Techniques/methods , Humans , Hydrogen Peroxide/chemistry , Limit of Detection , Galactosemias/diagnosis , Galactosemias/blood , Galactose Oxidase/chemistry , Galactose Oxidase/metabolism , Boronic Acids/chemistry , Sulfhydryl Compounds/chemistry
6.
BMC Pediatr ; 24(1): 352, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778342

ABSTRACT

BACKGROUND: Galactosemia is an autosomal recessive disorder resulting from an enzyme defect in the galactose metabolic pathway. The most severe manifestation of classic galactosemia is caused by galactose-1-phosphate uridylyltransferase (GALT) deficiency, and this condition can be fatal during infancy if left untreated. It also may result in long-term complications in affected individuals. CASE PRESENTATION: This report describes a patient whose initial clinical symptoms were jaundice and liver dysfunction. The patient's liver and coagulation functions did not improve after multiple admissions and treatment with antibiotics, hepatoprotective and choleretic agents and blood transfusion. Genetic analysis revealed the presence of two variants in the GALT gene in the compound heterozygous state: c.377 + 2dup and c.368G > C (p.Arg123Pro). Currently, the variant locus (c.377 + 2dup) in the GALT gene has not been reported in the Human Gene Mutation Database (HGMD), while c.368G > C (p.Arg123Pro) has not been reported in the Genome Aggregation Database (GnomAD) nor the HGMD in East Asian population. We postulated that the two variants may contribute to the development of classical galactosemia. CONCLUSIONS: Applications of whole-exome sequencing to detect the two variants can improve the detection and early diagnosis of classical galactosemia and, more specifically, may identify individuals who are compound heterozygous with variants in the GALT gene. Variants in the GALT gene have a potential therapeutic significance for classical galactosemia.


Subject(s)
Galactosemias , UTP-Hexose-1-Phosphate Uridylyltransferase , Humans , Galactosemias/genetics , Galactosemias/diagnosis , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Male , Female , Mutation , Infant
7.
Genet Med ; 26(8): 101165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762772

ABSTRACT

PURPOSE: Galactose mutarotase (GALM) deficiency was first reported in 2019 as the fourth type of galactosemia. This study aimed to investigate the clinical and genotypic spectra of GALM deficiency. METHODS: This was a questionnaire-based retrospective survey conducted in Japan between February 2022 and March 2023. RESULTS: We identified 40 patients with GALM deficiency in Japan (estimated prevalence: 1:181,835). Four of 38 patients (10.5%) developed cataracts, which resolved with lactose restriction in 3 out of 4 patients. Transient transaminitis was the most common symptom (23.1%). All of the patients followed lactose restriction; discontinuation of the restriction after infancy did not cause any complications. Moreover, none of the participants experienced long-term complications. Two variants, GALM NM_138801.3: c.294del and c.424G>A, accounted for 72.5% of the identified pathogenic variants. The patients showed moderately elevated blood galactose levels with lactose intake; however, the elevation was lower than that observed in galactokinase deficiency. CONCLUSION: GALM deficiency is characterized by a similar but milder phenotype and lower blood galactose elevation than in galactokinase deficiency. Diagnosis and initiation of lactose restriction in early infancy should be essential for prevention of cataracts, especially in cases of irreversible opacity.


Subject(s)
Galactose , Galactosemias , Phenotype , Humans , Japan/epidemiology , Galactosemias/genetics , Galactosemias/epidemiology , Female , Male , Child, Preschool , Infant , Retrospective Studies , Child , Adolescent , Adult , Surveys and Questionnaires , Mutation/genetics , Genotype , Cataract/genetics , Cataract/epidemiology , Cataract/blood
9.
Orphanet J Rare Dis ; 19(1): 202, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760795

ABSTRACT

BACKGROUND: There is a notable lack of harmonisation in newborn screening (NBS) programmes worldwide. The Galician programme for early detection of inborn errors of metabolism (IEM) was one of the first NBS programmes in Europe to incorporate mass spectrometry (July 2000). This programme currently screens for 26 IEMs in dried blood and urine samples collected 24-72 h after birth. RESULTS: In its 22-year history, this programme has analysed samples from 440,723 neonates and identified 326 cases of IEM with a prevalence of 1:1351. The most prevalent IEMs were hyperphenylalaninaemia (n = 118), followed by medium chain acyl-CoA dehydrogenase deficiency (MCADD, n = 26), galactosaemia (n = 20), and cystinurias (n = 43). Sixty-one false positives and 18 conditions related to maternal pathologies were detected. Urine samples have been identified as a useful secondary sample to reduce the rate of false positives and identify new defects. There were 5 false negatives. The overall positive value was 84.23%. The fatality rate over a median of 12.1 years of follow-up was 2.76%. The intelligence quotient of patients was normal in 95.7% of cases, and school performance was largely optimal, with pedagogic special needs assistance required in < 10% of cases. Clinical onset of disease preceded diagnosis in 4% of cases. The age at which first NBS report is performed was reduced by 4 days since 2021. CONCLUSIONS: This study highlights the benefits of collecting urine samples, reduce NBS reporting time and expanding the number of IEMs included in NBS programmes.


Subject(s)
Metabolism, Inborn Errors , Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Metabolism, Inborn Errors/diagnosis , Female , Male , Galactosemias/diagnosis , Lipid Metabolism, Inborn Errors/diagnosis , Phenylketonurias/diagnosis , Phenylketonurias/epidemiology , Follow-Up Studies , Spain , Acyl-CoA Dehydrogenase/deficiency
10.
J Inherit Metab Dis ; 47(4): 690-702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38600724

ABSTRACT

Classical galactosaemia (CG) is a hereditary disease in galactose metabolism that despite dietary treatment is characterized by a wide range of cognitive deficits, among which is language production. CG brain functioning has been studied with several neuroimaging techniques, which revealed both structural and functional atypicalities. In the present study, for the first time, we compared the oscillatory dynamics, especially the power spectrum and time-frequency representations (TFR), in the electroencephalography (EEG) of CG patients and healthy controls while they were performing a language production task. Twenty-one CG patients and 19 healthy controls described animated scenes, either in full sentences or in words, indicating two levels of complexity in syntactic planning. Based on previous work on the P300 event related potential (ERP) and its relation with theta frequency, we hypothesized that the oscillatory activity of patients and controls would differ in theta power and TFR. With regard to behavior, reaction times showed that patients are slower, reflecting the language deficit. In the power spectrum, we observed significant higher power in patients in delta (1-3 Hz), theta (4-7 Hz), beta (15-30 Hz) and gamma (30-70 Hz) frequencies, but not in alpha (8-12 Hz), suggesting an atypical oscillatory profile. The time-frequency analysis revealed significantly weaker event-related theta synchronization (ERS) and alpha desynchronization (ERD) in patients in the sentence condition. The data support the hypothesis that CG language difficulties relate to theta-alpha brain oscillations.


Subject(s)
Electroencephalography , Galactosemias , Humans , Female , Male , Adult , Young Adult , Galactosemias/physiopathology , Brain/physiopathology , Brain/metabolism , Case-Control Studies , Language , Reaction Time , Adolescent , Event-Related Potentials, P300/physiology
SELECTION OF CITATIONS
SEARCH DETAIL