Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.169
Filter
1.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39140247

ABSTRACT

Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.


Subject(s)
Dosage Compensation, Genetic , Mammals , X Chromosome Inactivation , X Chromosome , Animals , Humans , X Chromosome/genetics , Mammals/genetics , X Chromosome Inactivation/genetics , Gene Dosage , Evolution, Molecular
2.
Genes (Basel) ; 15(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39062640

ABSTRACT

The model haloarchaeon Haloferax volcanii is polyploid with about 20 copies of its major chromosome. Recently it has been described that highly efficient intermolecular gene conversion operates in H. volcanii to equalize the chromosomal copies. In the current study, 24 genes were selected that encode proteins with orthologs involved in gene conversion or homologous recombination in archaea, bacteria, or eukaryotes. Single gene deletion strains of 22 genes and a control gene were constructed in two parent strains for a gene conversion assay; only radA and radB were shown to be essential. Protoplast fusions were used to generate strains that were heterozygous for the gene HVO_2528, encoding an enzyme for carotinoid biosynthesis. It was revealed that a lack of six of the proteins did not influence the efficiency of gene conversion, while sixteen mutants had severe gene conversion defects. Notably, lack of paralogous proteins of gene families had very different effects, e.g., mutant Δrad25b had no phenotype, while mutants Δrad25a, Δrad25c, and Δrad25d were highly compromised. Generation of a quadruple rad25 and a triple sph deletion strain also indicated that the paralogs have different functions, in contrast to sph2 and sph4, which cannot be deleted simultaneously. There was no correlation between the severity of the phenotypes and the respective transcript levels under non-stressed conditions, indicating that gene expression has to be induced at the onset of gene conversion. Phylogenetic trees of the protein families Rad3/25, MutL/S, and Sph/SMC/Rad50 were generated to unravel the history of the paralogous proteins of H. volcanii. Taken together, unselected intermolecular gene conversion in H. volcanii involves at least 16 different proteins, the molecular roles of which can be studied in detail in future projects.


Subject(s)
Archaeal Proteins , Gene Conversion , Haloferax volcanii , Haloferax volcanii/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Polyploidy , Genome, Archaeal/genetics , Gene Deletion , Gene Dosage
3.
Cell Rep ; 43(7): 114488, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39002124

ABSTRACT

Neuroinflammation is a prominent feature of Alzheimer's disease (AD). Activated microglia undergo a reprogramming of cellular metabolism necessary to power their cellular activities during disease. Thus, selective targeting of microglial immunometabolism might be of therapeutic benefit for treating AD. In the AD brain, the levels of microglial hexokinase 2 (HK2), an enzyme that supports inflammatory responses by promoting glycolysis, are significantly increased. In addition, HK2 displays non-metabolic activities that extend its inflammatory role beyond glycolysis. The antagonism of HK2 affects microglial phenotypes and disease progression in a gene-dose-dependent manner. HK2 complete loss fails to improve pathology by exacerbating inflammation, while its haploinsufficiency reduces pathology in 5xFAD mice. We propose that the partial antagonism of HK2 is effective in slowing disease progression by modulating NF-κB signaling through its cytosolic target, IKBα. The complete loss of HK2 affects additional inflammatory mechanisms related to mitochondrial dysfunction.


Subject(s)
Alzheimer Disease , Disease Progression , Hexokinase , Microglia , Hexokinase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Mice , Humans , NF-kappa B/metabolism , Mice, Transgenic , Signal Transduction , NF-KappaB Inhibitor alpha/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Inflammation/pathology , Inflammation/metabolism , Brain/pathology , Brain/metabolism , Glycolysis/drug effects , Gene Dosage
4.
Sci Adv ; 10(27): eadm7373, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959316

ABSTRACT

Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.


Subject(s)
Down Syndrome , Gene Expression Regulation , Synapses , Transcription Factors , Animals , Humans , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Disease Models, Animal , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Gene Dosage , Neuronal Plasticity , Protein Binding , Synapses/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
5.
Nat Commun ; 15(1): 5571, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956041

ABSTRACT

Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.


Subject(s)
Docosahexaenoic Acids , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mitochondria , X Chromosome , Animals , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Humans , X Chromosome/genetics , Docosahexaenoic Acids/pharmacology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Gene Dosage , Mice, Inbred C57BL , Blood Glucose/metabolism , Blood Glucose/drug effects , Glucose/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/chemically induced , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism
6.
PLoS One ; 19(7): e0302451, 2024.
Article in English | MEDLINE | ID: mdl-38968258

ABSTRACT

Even with advanced plasmid and viral vectors, attaining copy numbers of multiple genes among different transfected cells is challenging. We achieved one gene expression from a single-copy gene in one cell using a transgene competition system, a combination of the Kazusa cDNA clones and our dual recombinase-mediated cassette exchange system. All 48 nuclear receptors were simultaneously expressed in one dish at the same expression level in HEK293 using this system, and the cell proliferation rate was compared. Significant differences were observed between cells transfected with CMV- or EF1 promoter-driven expression of the 48 nuclear receptors after 8 weeks. The EF1-NR1I2 cell line, which exhibited the highest increase from 2 to 8 weeks, showed 1.13-fold higher proliferation than the EF1-DsRed line. On the other hand, the EF1-NR4A1 cell line, which showed the maximum decrease at 8 weeks, showed 0.88-fold lower proliferation than the EF1-DsRed line. The results were confirmed in both our transgene competition system and long-term growth experiments. Our transgene competition system offers a wide-range, simple, and accurate cell competition method.


Subject(s)
Cell Proliferation , Transgenes , Humans , HEK293 Cells , Cell Proliferation/genetics , Gene Expression/genetics , Gene Dosage , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transfection , Promoter Regions, Genetic , Genetic Vectors/genetics
7.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38975838

ABSTRACT

Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Mutation , Zebrafish Proteins , Zebrafish , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Mutation/genetics , Gene Expression Regulation, Developmental , Wnt Signaling Pathway/genetics , Embryonic Development/genetics , Gene Dosage , Mesoderm/metabolism , Mesoderm/embryology
8.
Mol Ecol ; 33(15): e17453, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38953291

ABSTRACT

The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.


Subject(s)
Birds , Evolution, Molecular , Gene Conversion , Major Histocompatibility Complex , Phylogeny , Selection, Genetic , Animals , Birds/genetics , Major Histocompatibility Complex/genetics , Selection, Genetic/genetics , Gene Dosage , Haplotypes/genetics , Genetic Variation
10.
Mol Biol Rep ; 51(1): 784, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940864

ABSTRACT

BACKGROUND: The mutational status of ovarian cancer cell line IGROV-1 is inconsistent across the literature, suggestive of multiple clonal populations of the cell line. IGROV-1 has previously been categorised as an inappropriate model for high-grade serous ovarian cancer. METHODS: IGROV-1 cells were obtained from the Netherlands Cancer Institute (IGROV-1-NKI) and the MD Anderson Cancer Centre (IGROV-1-MDA). Cell lines were STR fingerprinted and had their chromosomal copy number analysed and BRCA1/2 genes sequenced. Mutation status of ovarian cancer-related genes were extracted from the literature. RESULTS: The IGROV-1-NKI cell line has a tetraploid chromosomal profile. In contrast, the IGROV-1-MDA cell line has pseudo-normal chromosomes. The IGROV-1-NKI and IGROV-MDA are both STR matches (80.7% and 84.6%) to the original IGROV-1 cells isolated in 1985. However, IGROV-1-NKI and IGROV-1-MDA are not an STR match to each other (78.1%) indicating genetic drift. The BRCA1 and BRCA2 gene sequences are 100% identical between IGROV-1-MDA and IGROV-1-NKI, including a BRCA1 heterozygous deleterious mutation. The IGROV-1-MDA cells are more resistant to cisplatin and olaparib than IGROV-1-NKI. IGROV-1 has a mutational profile consistent with both Type I (PTEN, PIK3CA and ARID1A) and Type II ovarian cancer (BRCA1, TP53) and is likely to be a Type II high-grade serous carcinoma of the SET (Solid, pseudo-Endometroid and Transitional cell carcinoma-like morphology) subtype. CONCLUSIONS: Routine testing of chromosomal copy number as well as the mutational status of ovarian cancer related genes should become the new standard alongside STR fingerprinting to ensure that ovarian cancer cell lines are appropriate models.


Subject(s)
Mutation , Ovarian Neoplasms , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Humans , Cell Line, Tumor , Mutation/genetics , DNA Copy Number Variations/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Gene Dosage
11.
Sci Rep ; 14(1): 14282, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902329

ABSTRACT

Culture-independent 16S rRNA gene metabarcoding is a commonly used method for microbiome profiling. To achieve more quantitative cell fraction estimates, it is important to account for the 16S rRNA gene copy number (hereafter 16S GCN) of different community members. Currently, there are several bioinformatic tools available to estimate the 16S GCN values, either based on taxonomy assignment or phylogeny. Here we present a novel approach ANNA16, Artificial Neural Network Approximator for 16S rRNA gene copy number, a deep learning-based method that estimates the 16S GCN values directly from the 16S gene sequence strings. Based on 27,579 16S rRNA gene sequences and gene copy number data from the rrnDB database, we show that ANNA16 outperforms the commonly used 16S GCN prediction algorithms. Interestingly, Shapley Additive exPlanations (SHAP) shows that ANNA16 can identify unexpected informative positions in 16S rRNA gene sequences without any prior phylogenetic knowledge, which suggests potential applications beyond 16S GCN prediction.


Subject(s)
Deep Learning , Gene Dosage , Phylogeny , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Computational Biology/methods , Algorithms , Microbiota/genetics , Neural Networks, Computer
12.
J Transl Med ; 22(1): 589, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915068

ABSTRACT

BACKGROUND: Predictive markers for fecal microbiota transplantation (FMT) outcomes in patients with active ulcerative colitis (UC) are poorly defined. We aimed to investigate changes in gut microbiota pre- and post-FMT and to assess the potential value in determining the total copy number of fecal bacterial siderophore genes in predicting FMT responsiveness. METHODS: Patients with active UC (Mayo score ≥ 3) who had undergone two FMT procedures were enrolled. Fecal samples were collected before and 8 weeks after each FMT session. Patients were classified into clinical response and non-response groups, based on their Mayo scores. The fecal microbiota profile was accessed using metagenomic sequencing, and the total siderophore genes copy number via quantitative real-time polymerase chain reaction. Additionally, we examined the association between the total siderophore genes copy number and FMT efficacy. RESULTS: Seventy patients with UC had undergone FMT. The clinical response and remission rates were 50% and 10% after the first FMT procedure, increasing to 72.41% and 27.59% after the second FMT. The cumulative clinical response and clinical remission rates were 72.86% and 25.71%. Compared with baseline, the response group showed a significant increase in Faecalibacterium, and decrease in Enterobacteriaceae, consisted with the changes of the total bacterial siderophore genes copy number after the second FMT (1889.14 vs. 98.73 copies/ng, P < 0.01). Virulence factor analysis showed an enriched iron uptake system, especially bacterial siderophores, in the pre-FMT response group, with a greater contribution from Escherichia coli. The total baseline copy number was significantly higher in the response group than non-response group (1889.14 vs. 94.86 copies/ng, P < 0.01). A total baseline copy number cutoff value of 755.88 copies/ng showed 94.7% specificity and 72.5% sensitivity in predicting FMT responsiveness. CONCLUSIONS: A significant increase in Faecalibacterium, and decrease in Enterobacteriaceae and the total fecal siderophore genes copy number were observed in responders after FMT. The siderophore genes and its encoding bacteria may be of predictive value for the clinical responsiveness of FMT to active ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Siderophores , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/genetics , Male , Female , Feces/microbiology , Adult , Middle Aged , Gastrointestinal Microbiome/genetics , Siderophores/metabolism , Treatment Outcome , Bacteria/genetics , Genes, Bacterial , Gene Dosage , ROC Curve
13.
Sci Adv ; 10(23): eadj0385, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848354

ABSTRACT

Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.


Subject(s)
Cell Differentiation , Down Syndrome , Gene Dosage , Induced Pluripotent Stem Cells , Neurogenesis , RNA, Long Noncoding , Down Syndrome/genetics , Humans , Neurogenesis/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , Cell Differentiation/genetics , Chromosomes, Human, Pair 21/genetics , Neurons/metabolism
14.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709366

ABSTRACT

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Dosage , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Gene Expression , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
15.
Nat Commun ; 15(1): 3981, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730266

ABSTRACT

Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.


Subject(s)
Anti-Bacterial Agents , DNA Copy Number Variations , Escherichia coli , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Mice , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Gene Dosage , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , DNA Transposable Elements/genetics , Female
16.
Nat Commun ; 15(1): 4551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811562

ABSTRACT

Although the effects of genetic and environmental perturbations on multicellular organisms are rarely restricted to single phenotypic layers, our current understanding of how developmental programs react to these challenges remains limited. Here, we have examined the phenotypic consequences of disturbing the bicoid regulatory network in early Drosophila embryos. We generated flies with two extra copies of bicoid, which causes a posterior shift of the network's regulatory outputs and a decrease in fitness. We subjected these flies to EMS mutagenesis, followed by experimental evolution. After only 8-15 generations, experimental populations have normalized patterns of gene expression and increased survival. Using a phenomics approach, we find that populations were normalized through rapid increases in embryo size driven by maternal changes in metabolism and ovariole development. We extend our results to additional populations of flies, demonstrating predictability. Together, our results necessitate a broader view of regulatory network evolution at the systems level.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Gene Dosage , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/embryology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Phenotype , Male , Embryo, Nonmammalian/metabolism , Drosophila/genetics , Drosophila/embryology , Drosophila/metabolism , Mutagenesis , Trans-Activators
17.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
18.
Appl Microbiol Biotechnol ; 108(1): 340, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777914

ABSTRACT

Horizontal gene transfer occurs frequently in bacteria, but the mechanism driving activation and optimization of the expression of horizontally transferred genes (HTGs) in new recipient strains is not clear. Our previous study found that spontaneous tandem DNA duplication resulted in rapid activation of HTGs. Here, we took advantage of this finding to develop a novel technique for tandem gene duplication, named tandem gene duplication selected by activation of horizontally transferred gene in bacteria (TDAH), in which tandem duplication was selected by the activation of horizontally transferred selectable marker gene. TDAH construction does not contain any reported functional elements based on homologous or site-specific recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection and 9-bp-microhomology border sequences for precise illegitimate recombination. One transformation and 3 days were enough to produce a high-copy strain, so its procedure is simple and fast. Without subsequent knockout of the endogenous recombination system, TDAH could also generate the relatively stable high-copy tandem duplication for plasmid-carried and genome-integrated DNA. TDAH also showed an excellent capacity for increase gene expression and worked well in different industrial bacteria. We also applied TDAH to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5 times and remained stable even after 12 subcultures. TDAH is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. KEY POINTS: • We develop a novel and efficient technique (TDAH) for tandem gene duplication in bacterium. TDAH is based on the mechanism of HTG rapid activation. TDAH does not contain any reported functional elements based on homologous recombination and DNA amplification. TDAH only contains an essential selectable marker for copy number selection, so its construction and procedure are very simple and fast. • TDAH is the first reported selected and stable tandem-gene-duplication technique in which the selected high-copy plasmid-carried and genome-integrated DNA could remain stable without the subsequent knockout of recombination system. • TDAH showed an excellent capacity for regulating gene expression and worked well in different industrial bacteria, indicating it is a useful tool for recombinant protein production and expression optimization of biosynthetic pathways. • TDAH was applied to select the optimal high copy number of ribA for vitamin B2 production in E. coli; the yield was improved by 3.5-fold and remained stable even after 12 subcultures.


Subject(s)
Escherichia coli , Gene Duplication , Gene Transfer, Horizontal , Plasmids , Escherichia coli/genetics , Escherichia coli/metabolism , Plasmids/genetics , Bacteria/genetics , Bacteria/metabolism , Gene Dosage , Recombination, Genetic
19.
Nat Plants ; 10(6): 923-935, 2024 06.
Article in English | MEDLINE | ID: mdl-38802561

ABSTRACT

The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.


Subject(s)
Gene Dosage , Genome, Plastid , Inverted Repeat Sequences , Nicotiana , Nicotiana/genetics , Inverted Repeat Sequences/genetics , Plastids/genetics , Genome Size , DNA Copy Number Variations , Genome, Plant
20.
Microbiol Spectr ; 12(6): e0397323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700352

ABSTRACT

Plasmids play important roles in microbial ecosystems, serving as carriers of antibiotic resistance and virulence. In the laboratory, they are essential tools for genetic manipulation and recombinant protein expression. We uncovered an intriguing survival phenotype in a fraction of the bacterial population while using plasmid-mediated arabinose-inducible gene expression to monitor the production of toxic ParE proteins. This phenotype was not correlated with changes to the plasmid sequence and could not be rescued by increasing arabinose uptake. Instead, survival correlates with a marked reduction in plasmid copy number (PCN). Reduced PCN is reproducible, not a function of the pre-existing population, and can be sequentially enriched by continual passage with induction. The reduction in PCN appears to allow mitigation of toxicity from the expression of ParE proteins while balancing the need to maintain a threshold PCN to withstand selection conditions. This indicates an adaptive cellular response to stressful conditions, likely by altering the regulation of plasmid replication. Furthermore, this survival mechanism appears to not be limited to a specific bacterial strain of Escherichia coli or ParE toxin family member, suggesting a generalized response. Finally, bacterial whole genome sequencing indicated an N845S residue substitution in DNA polymerase I, which correlates with the observed reduction in PCN and has been previously reported to impact plasmid replication. Further understanding this molecular mechanism has broader implications for this adaptive response of the dynamics of plasmid-mediated gene expression, microbial adaptation, and genetic engineering methodologies. IMPORTANCE: This research has increased our understanding of how bacteria respond to the pressure from plasmid-borne toxic genes, such as those found in toxin-antitoxin systems. Surprisingly, we found that bacteria survived toxic ParE protein expression by reducing the number of these plasmids in the cells. This discovery reveals another way in which bacteria can balance toxin expression with antibiotic selection to attenuate the effects of deleterious genes. This insight is not only valuable for understanding bacterial survival strategies but may also influence the development of better tools in biotechnology, where plasmids are often used to study the functional roles of genes.


Subject(s)
Bacterial Toxins , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Arabinose/metabolism , Gene Dosage
SELECTION OF CITATIONS
SEARCH DETAIL