Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216.531
Filter
1.
Protein Expr Purif ; 222: 106538, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38950762

ABSTRACT

Nucleotide sugars (UDP-Sugars) are essential for the production of polysaccharides and glycoconjugates utilized in medicines, cosmetics, and food industries. The enzyme Galactose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.12) is responsible for the synthesis of UDP-galactose from α-d-galactose-1-phosphate (Gal-1P) and UTP. A novel bacterial GalU (TiGalU) encoded from a thermophilic bacterium, Thermodesulfatator indicus, was successfully purified using the Ni-NTA column after being expressed in Escherichia coli. The optimal pH for recombinant TiGalU was determined to be 5.5. The optimum temperature of the enzyme was 45 °C. The activity of TiGalU was not dependent on Mg2+ and was strongly inhibited by SDS. When coupled with galactose kinase (GALK1) and ß-1,4-galactosyltransferase 1 (B4GALT1), the enzyme enabled the one-pot synthesis of Gal-ß-1,4-GlcNAc-X by utilizing galactose and UTP as substrates. This study reported the in vitro biosynthesis of Gal-ß-1,4-GlcNAc-X for the first time, providing an environmentally friendly way to biosynthesis glycosides and other polysaccharides.


Subject(s)
Escherichia coli , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/chemistry , Gene Expression , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/chemistry , Cloning, Molecular , Galactosephosphates/metabolism , Galactosephosphates/genetics , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Galactosyltransferases/chemistry
2.
Methods Mol Biol ; 2829: 21-48, 2024.
Article in English | MEDLINE | ID: mdl-38951325

ABSTRACT

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Subject(s)
Baculoviridae , Genetic Vectors , Recombinant Proteins , Baculoviridae/genetics , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Genetic Vectors/genetics , Sf9 Cells , Gene Expression , Humans , Insecta/genetics , Spodoptera , Cell Line , Homologous Recombination , Cost-Benefit Analysis
3.
Methods Mol Biol ; 2829: 49-66, 2024.
Article in English | MEDLINE | ID: mdl-38951326

ABSTRACT

This chapter outlines the workflow using the ExpiSf™ Expression System designed for high-density infection of suspension ExpiSf9™ cells. The system utilizes a chemically defined, serum-free, protein-free, and animal origin free medium, making it suitable for recombinant protein expression experiments. The ExpiSf™ chemically defined medium allows efficient transfection and baculovirus production directly within the same culture medium. The ExpiSf™ Expression System Starter Kit provides all necessary components, including cells, culture medium, and reagents needed to infect one (1) liter of cell culture. The system's versatility and animal origin free nature make it a valuable tool for various protein expression studies and biotechnological applications.


Subject(s)
Baculoviridae , Recombinant Proteins , Workflow , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Baculoviridae/genetics , Transfection/methods , Culture Media/chemistry , Cell Culture Techniques/methods , Cell Line , Gene Expression
4.
Methods Mol Biol ; 2829: 175-183, 2024.
Article in English | MEDLINE | ID: mdl-38951333

ABSTRACT

Monoclonal antibodies have widespread applications in disease treatment and antigen detection. They are traditionally produced using mammalian cell expression system, which is not able to satisfy the increasing demand of these proteins at large scale. Baculovirus expression vector system (BEVS) is an attractive alternative platform for the production of biologically active monoclonal antibodies. In this chapter, we demonstrate the production of an HIV-1 broadly neutralizing antibody b12 in BEVS. The processes including transfer vector construction, recombinant baculovirus generation, and antibody production and detection are described.


Subject(s)
Baculoviridae , Genetic Vectors , Baculoviridae/genetics , Genetic Vectors/genetics , Animals , Humans , Gene Expression , HIV-1/genetics , HIV-1/immunology , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Enzyme-Linked Immunosorbent Assay , HIV Antibodies/immunology , HIV Antibodies/genetics , Sf9 Cells
5.
Methods Mol Biol ; 2829: 127-156, 2024.
Article in English | MEDLINE | ID: mdl-38951331

ABSTRACT

The baculovirus expression vector system (BEVS) has now found acceptance in both research laboratories and industry, which can be attributed to many of its key features including the limited host range of the vectors, their non-pathogenicity to humans, and the mammalian-like post-translational modification (PTMs) that can be achieved in insect cells. In fact, this system acts as a middle ground between prokaryotes and higher eukaryotes to produce complex biologics. Still, industrial use of the BEVS lags compared to other platforms. We have postulated that one reason for this has been a lack of genetic tools that can complement the study of baculovirus vectors, while a second reason is the co-production of the baculovirus vector with the desired product. While some genetic enhancements have been made to improve the BEVS as a production platform, the genome remains under-scrutinized. This chapter outlines the methodology for a CRISPR-Cas9-based transfection-infection assay to probe the baculovirus genome for essential/nonessential genes that can potentially maximize foreign gene expression under a promoter of choice.


Subject(s)
Baculoviridae , CRISPR-Cas Systems , Genetic Vectors , Baculoviridae/genetics , Genetic Vectors/genetics , Animals , Genes, Essential , Gene Expression , Transfection/methods , Gene Editing/methods , Sf9 Cells , Humans
6.
Methods Mol Biol ; 2829: 289-300, 2024.
Article in English | MEDLINE | ID: mdl-38951345

ABSTRACT

Nonviral transfection has been used to express various recombinant proteins, therapeutics, and virus-like particles (VLP) in mammalian and insect cells. Virus-free methods for protein expression require fewer steps for obtaining protein expression by eliminating virus amplification and measuring the infectivity of the virus. The nonviral method uses a nonlytic plasmid to transfect the gene of interest into the insect cells instead of using baculovirus, a lytic system. In this chapter, we describe one of the transfection methods, which uses polyethyleneimine (PEI) as a DNA delivery material into the insect cells to express the recombinant protein in both adherent and suspension cells.


Subject(s)
Polyethyleneimine , Recombinant Proteins , Transfection , Animals , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection/methods , Polyethyleneimine/chemistry , Plasmids/genetics , Insecta/genetics , Sf9 Cells , Cell Line , Gene Expression , Spodoptera
7.
Methods Mol Biol ; 2829: 329-339, 2024.
Article in English | MEDLINE | ID: mdl-38951347

ABSTRACT

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Subject(s)
Baculoviridae , Recombinant Proteins , Baculoviridae/genetics , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , HEK293 Cells , Animals , Transfection/methods , Genetic Vectors/genetics , Cell Culture Techniques/methods , Gene Expression , Glycosylation
8.
Methods Mol Biol ; 2839: 233-241, 2024.
Article in English | MEDLINE | ID: mdl-39008257

ABSTRACT

This chapter presents a method for the heterologous expression and purification of human ALA synthase from Escherichia coli. Mature ALAS is produced with an N-terminal hexahistidine affinity tag followed by a SUMO fusion tag for solubility and ease of purification. The plasmid is introduced into competent E. coli cells, and robust protein expression is induced with IPTG. The ALAS cofactor, pyridoxal 5'-phosphate, is inserted during protein production to yield an active enzyme upon purification. After cell lysis, the tagged ALAS protein is isolated via a multistep purification that involves an initial nickel-affinity step, affinity tag cleavage and removal, and a final size exclusion chromatography polishing step. Importantly, this protocol is amenable to various ALAS truncations and mutations, opening the door to understanding ALAS biology and its intersections with iron utilization across several organisms.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Gene Expression , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Chromatography, Affinity , Histidine/metabolism , Histidine/genetics , Plasmids/genetics , Cloning, Molecular/methods , Chromatography, Gel , Oligopeptides
9.
Protein Expr Purif ; 222: 106539, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960013

ABSTRACT

PF11_0189 is a putative insulin degrading enzyme present in Plasmodium falciparum genome. The catalytic domain of PF11_0189 is about 27 kDa. Substrate specificity study shows PF11_0189 acts upon different types of proteins. The substrate specificity is found to be highest when insulin is used as a substrate. Metal dependency study shows highest dependency of PF11_0189 towards zinc metal for its proteolytic activity. Chelation of zinc metal with EDTA shows complete absence of PF11_0189 activity. Peptide inhibitors, P-70 and P-121 from combinatorial peptide library prepared against PF11_0189 show inhibition with an IC50 value of 4.8 µM and 7.5 µM respectively. A proven natural anti-malarial peptide cyclosporin A shows complete inhibition against PF11_0189 with an IC50 value of 0.75 µM suggesting PF11_0189 as a potential target for peptide inhibitors. The study implicates that PF11_0189 is a zinc metalloprotease involved in catalysis of insulin. The study gives a preliminary insight into the mechanism of complications arising from glucose abnormalities during severe malaria.


Subject(s)
Insulysin , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Insulysin/genetics , Insulysin/chemistry , Insulysin/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Substrate Specificity , Insulin/chemistry , Insulin/metabolism , Insulin/genetics , Zinc/chemistry , Zinc/metabolism , Genome, Protozoan , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Gene Expression , Cloning, Molecular , Antimalarials/chemistry , Antimalarials/pharmacology , Cyclosporine/chemistry , Cyclosporine/pharmacology
10.
Neurobiol Aging ; 141: 160-170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964013

ABSTRACT

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.


Subject(s)
Alzheimer Disease , Cognition , Cognitive Dysfunction , NIMA-Interacting Peptidylprolyl Isomerase , Neocortex , Neurofibrillary Tangles , Sex Characteristics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Humans , Female , Neocortex/pathology , Neocortex/metabolism , Male , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Aged , Aged, 80 and over , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism , Phenotype , Limbic System/pathology , Limbic System/metabolism , Gene Expression , Aging/pathology , Aging/genetics , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation
11.
Medicine (Baltimore) ; 103(28): e38866, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996103

ABSTRACT

BACKGROUND: This study aimed to explore the potential influence of kisspeptin (KISS1) levels on the etiology of placenta previa for early pregnancy diagnosis. METHODS: The study included 20 pregnant women diagnosed with placenta previa and 20 pregnant woman with normal pregnancies between 2021 and 2022. Plasma KISS1 levels were determined through biochemical analysis, while genetic analysis assessed KISS1 and KISS1 receptor gene expression levels. Immunohistochemical methods were employed to determine placenta KISS1 levels. RESULTS: The evaluation of KISS1 concentration in serum revealed a significant decrease in the placenta previa group compared to the control group (P < .001). KISS1 gene expression level 0.043-fold decreased in the placenta previa group (P < .001). Furthermore, the KISS1 receptor gene expression level increased 170-fold in the placenta previa group. CONCLUSIONS: Results from biochemical, immunohistochemical, and genetic analyses consistently indicated significantly reduced KISS1 expression in patients with placenta previa. These findings suggest a potential link between diminished KISS1 levels and the occurrence of placenta previa. KISS1 may play a critical role in the etiology of placenta previa. Detailed studies on angiogenesis, cell migration and tissue modeling should be conducted to understand possible mechanisms.


Subject(s)
Kisspeptins , Placenta Previa , Humans , Kisspeptins/genetics , Kisspeptins/metabolism , Female , Pregnancy , Placenta Previa/metabolism , Adult , Receptors, Kisspeptin-1/genetics , Receptors, Kisspeptin-1/metabolism , Placenta/metabolism , Gene Expression
12.
J Environ Sci (China) ; 146: 176-185, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969446

ABSTRACT

Microplastics (MPs) are commonly found with hydrophobic contaminants in the water column and pose a serious threat to aquatic organisms. The effects of polystyrene microplastics of different particle sizes on the accumulation of triclosan in the gut of Xenopus tropicalis, its toxic effects, and the transmission of resistance genes were evaluated. The results showed that co-exposure to polystyrene (PS-MPs) adsorbed with triclosan (TCS) caused the accumulation of triclosan in the intestine with the following accumulation capacity: TCS + 5 µm PS group > TCS group > TCS + 20 µm PS group > TCS + 0.1 µm PS group. All experimental groups showed increased intestinal inflammation and antioxidant enzyme activity after 28 days of exposure to PS-MPs and TCS of different particle sizes. The TCS + 20 µm PS group exhibited the highest upregulated expression of pro-inflammatory factors (IL-10, IL-1ß). The TCS + 20 µm group showed the highest increase in enzyme activity compared to the control group. PS-MPs and TCS, either alone or together, altered the composition of the intestinal microbial community. In addition, the presence of more antibiotic resistance genes than triclosan resistance genes significantly increased the expression of tetracycline resistance and sulfonamide resistance genes, which may be associated with the development of intestinal inflammation and oxidative stress. This study refines the aquatic ecotoxicity assessment of TCS adsorbed by MPs and provides informative information for the management and control of microplastics and non-antibiotic bacterial inhibitors.


Subject(s)
Microplastics , Particle Size , Polystyrenes , Triclosan , Water Pollutants, Chemical , Xenopus , Animals , Triclosan/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Intestines/drug effects , Adsorption , Gene Expression/drug effects
13.
Protein Pept Lett ; 31(5): e040724231578, 2024.
Article in English | MEDLINE | ID: mdl-38967080

ABSTRACT

BACKGROUND: Staphylococcus aureus is a common pathogen with strains that are resistant to existing antibiotics. MurJ from S. aureus (SaMurJ), an integral membrane protein functioning as Lipid II flippase, is a potential target for developing new antibacterial agents against this pathogen. Successful expression and purification of this protein shall be useful in the development of drugs against this target. OBJECTIVE: In this study, we demonstrated the optimized expression and purification procedures of SaMurJ, identified suitable detergent for extracting and solubilizing the protein, and examined the peptidisc system to generate a detergent-free environment. METHODS: SaMurJ fused with N-terminal ten-His tag was expressed without induction. Six detergents were selected for screening the most efficient candidate for extraction and solubilization of the protein. The thermostability of the detergent-solubilized protein was assessed by evaluated temperature incubation. Different ratios of peptidisc bi-helical peptide (NSPr) to SaMurJ were mixed and the on-bead peptidisc assembly method was applied. RESULTS: SaMurJ expressed in BL21(DE3) was confirmed by peptide fingerprinting, with a yield of 1 mg SaMurJ per liter culture. DDM was identified as the optimum detergent for solubilization and the nickel affinity column enabled SaMurJ purification with a purity of ~88%. However, NSPr could not stabilize SaMurJ. CONCLUSION: The expression and purification of SaMurJ were successful, with high purity and good yield. SaMurJ can be solubilized and stabilized by a DDM-containing buffer.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism , Detergents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Solubility , Gene Expression , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives
14.
Trop Anim Health Prod ; 56(6): 195, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963478

ABSTRACT

This experiment aimed to assess the regulatory effects of treatment with Balanites aegyptiaca fruit ethanol extract (BA-EE) on oxidant/antioxidant status, anti-inflammatory cytokines, and cell apoptosis gene expression in the abomasum of Haemonchus contortus-infected goats. Twenty goat kids were assigned randomly to four equal groups: (G1) infected-untreated, (G2) uninfected-BA-EE-treated, (G3) infected-albendazole-treated, (G4) infected-BA-EE-treated. Each goat in (G1), (G3), and (G4) was orally infected with 10,000 infective third-stage larvae. In the fifth week postinfection, single doses of albendazole (5 mg/kg.BW) and BA-EE (9 g/kg.BW) were given orally. In the ninth week postinfection, the animals were slaughtered to obtain abomasum specimens. The following oxidant/antioxidant markers were determined: malondialdehyde (MDA), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT). The mRNA gene expression of cytokines (IL-3, IL-6, IL-10, TNF-α) and cell apoptosis markers (Bax, Bcl-2) were estimated. (G1) showed significantly reduced GSH content and GST and SOD activities but a markedly increased MDA level. (G3) and (G4) revealed a markedly lower MDA level with pronouncedly elevated GSH, SOD, and GST levels. The antioxidant properties of BA-EE were superior to those of albendazole. The mRNA gene expressions of IL-3, IL-6, IL-10, TNF-α, and Bax-2 were upregulated in (G1) but downregulated in (G3) and (G4). Bcl-2 and Bcl-2/Bax ratio expression followed a reverse course in the infected and both treated groups. We conclude that BA-EE treatment has a protective role in the abomasum of H. contortus-infected goats. This could be attributed to its antioxidant properties and ability to reduce pro-inflammatory cytokines and cell apoptosis.


Subject(s)
Abomasum , Antioxidants , Apoptosis , Cytokines , Goat Diseases , Goats , Haemonchiasis , Haemonchus , Plant Extracts , Animals , Goat Diseases/parasitology , Goat Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Cytokines/metabolism , Cytokines/genetics , Apoptosis/drug effects , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchus/drug effects , Abomasum/parasitology , Antioxidants/metabolism , Anthelmintics/pharmacology , Anthelmintics/administration & dosage , Random Allocation , Ethanol , Gene Expression/drug effects , Albendazole/pharmacology , Albendazole/administration & dosage , Fruit/chemistry , Lamiaceae/chemistry , Male
15.
Acta Cir Bras ; 39: e392724, 2024.
Article in English | MEDLINE | ID: mdl-38958304

ABSTRACT

PURPOSE: Gene expressions of vascular Endothelial Growth Factor Alpha (VEGFa), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells (NFkB) and cytokines could be useful for identifying potential therapeutic targets to alleviate ischemia-reperfusion injury after liver transplantation. Cytokine gene expressions, VEGFa and NFkB were investigated in a preclinical swine model of liver transplantation. METHODS: A total of 12 pigs were used as donors and recipients in liver transplantation without venovenous bypass or aortic clamping. NFkB, IL-6, IL-10, VEGFa and Notch1 gene expression were assessed. These samples were collected in two specific times: group 1 (n= 6) - control, samples were collected before recipient's total hepatectomy and group 2 - liver transplantation group (n=6), where the samples were collected one hour after graft reperfusion. RESULTS: Liver transplantation was successfully performed in all recipients. Liver enzymes were elevated in the transplantation group. NFkB gene expression was significantly decreased in the transplantation group in comparison with the control group (0.62±0.19 versus 0.39±0.08; p= 0.016). No difference was observed between groups Interleucine 6 (IL-6), interleucine 10 (IL-10), VEGFa and Notch homolog 1 (Notch1). CONCLUSIONS: In this survey a decreased NFkB gene expression in a porcine model of liver transplantation was observed.


Subject(s)
Liver Transplantation , NF-kappa B , Vascular Endothelial Growth Factor A , Animals , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/analysis , Swine , NF-kappa B/metabolism , Interleukin-10/analysis , Interleukin-6/analysis , Interleukin-6/genetics , Reperfusion Injury , Gene Expression , Disease Models, Animal , Receptor, Notch1/genetics , Cytokines , Liver/metabolism , Models, Animal , Male
16.
PLoS One ; 19(7): e0302451, 2024.
Article in English | MEDLINE | ID: mdl-38968258

ABSTRACT

Even with advanced plasmid and viral vectors, attaining copy numbers of multiple genes among different transfected cells is challenging. We achieved one gene expression from a single-copy gene in one cell using a transgene competition system, a combination of the Kazusa cDNA clones and our dual recombinase-mediated cassette exchange system. All 48 nuclear receptors were simultaneously expressed in one dish at the same expression level in HEK293 using this system, and the cell proliferation rate was compared. Significant differences were observed between cells transfected with CMV- or EF1 promoter-driven expression of the 48 nuclear receptors after 8 weeks. The EF1-NR1I2 cell line, which exhibited the highest increase from 2 to 8 weeks, showed 1.13-fold higher proliferation than the EF1-DsRed line. On the other hand, the EF1-NR4A1 cell line, which showed the maximum decrease at 8 weeks, showed 0.88-fold lower proliferation than the EF1-DsRed line. The results were confirmed in both our transgene competition system and long-term growth experiments. Our transgene competition system offers a wide-range, simple, and accurate cell competition method.


Subject(s)
Cell Proliferation , Transgenes , Humans , HEK293 Cells , Cell Proliferation/genetics , Gene Expression/genetics , Gene Dosage , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transfection , Promoter Regions, Genetic , Genetic Vectors/genetics
17.
PLoS One ; 19(7): e0303472, 2024.
Article in English | MEDLINE | ID: mdl-38990864

ABSTRACT

Plasmid transfection in cells is widely employed to express exogenous proteins, offering valuable mechanistic insight into their function(s). However, plasmid transfection efficiency in primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs) is restricted with lipid-based transfection reagents such as Lipofectamine. The STING pathway, activated by foreign DNA in the cytosol, prevents foreign gene expression and induces DNA degradation. To address this, we explored the potential of STING inhibitors on the impact of plasmid expression in primary ECs and SMCs. Primary human aortic endothelial cells (HAECs) were transfected with a bicistronic plasmid expressing cytochrome b5 reductase 4 (CYB5R4) and enhanced green fluorescent protein (EGFP) using Lipofectamine 3000. Two STING inhibitors, MRT67307 and BX795, were added during transfection and overnight post-transfection. As a result, MRT67307 significantly enhanced CYB5R4 and EGFP expression, even 24 hours after its removal. In comparison, MRT67307 pretreatment did not affect transfection, suggesting the inhibitor's effect was readily reversible. The phosphorylation of endothelial nitric oxide synthase (eNOS) at Serine 1177 (S1177) by vascular endothelial growth factor is essential for endothelial proliferation, migration, and survival. Using the same protocol, we transfected wild-type and phosphorylation-incapable mutant (S1177A) eNOS in HAECs. Both forms of eNOS localized on the plasma membrane, but only the wild-type eNOS was phosphorylated by vascular endothelial growth factor treatment, indicating normal functionality of overexpressed proteins. MRT67307 and BX795 also improved plasmid expression in human and rat aortic SMCs. In conclusion, this study presents a modification enabling efficient plasmid transfection in primary vascular ECs and SMCs, offering a favorable approach to studying protein function(s) in these cell types, with potential implications for other primary cell types that are challenging to transfect.


Subject(s)
Endothelial Cells , Membrane Proteins , Plasmids , Transfection , Humans , Plasmids/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Animals , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Cells, Cultured , Phosphorylation , Rats , Gene Expression , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism
18.
Methods Mol Biol ; 2830: 131-136, 2024.
Article in English | MEDLINE | ID: mdl-38977574

ABSTRACT

Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.


Subject(s)
Gene Expression Regulation, Plant , Germination , Plant Dormancy , Seeds , Triticum , Triticum/genetics , Triticum/growth & development , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Germination/genetics , Biolistics/methods , Plants, Genetically Modified/genetics , Genes, Plant , Gene Expression/genetics
19.
PLoS One ; 19(6): e0294827, 2024.
Article in English | MEDLINE | ID: mdl-38917138

ABSTRACT

Neutrophil proteinase 3 (PR3) is an important drug target for inflammatory lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Drug discovery efforts targeting PR3 require active enzyme for in vitro characterization, such as inhibitor screening, enzymatic assays, and structural studies. Recombinant expression of active PR3 overcomes the need for enzyme supplies from human blood and in addition allows studies on the influence of mutations on enzyme activity and ligand binding. Here, we report the expression of recombinant PR3 (rPR3) using a baculovirus expression system. The purification and activation process described resulted in highly pure and active PR3. The activity of rPR3 in the presence of commercially available inhibitors was compared with human PR3 by using a fluorescence-based enzymatic assay. Purified rPR3 had comparable activity to the native human enzyme, thus being a suitable alternative for enzymatic studies in vitro. Further, we established a surface plasmon resonance-based assay to determine binding affinities and kinetics of PR3 ligands. These methods provide valuable tools for early drug discovery aiming towards treatment of lung inflammation.


Subject(s)
Myeloblastin , Recombinant Proteins , Humans , Myeloblastin/metabolism , Myeloblastin/genetics , Ligands , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Animals , Sf9 Cells , Surface Plasmon Resonance , Protein Binding , Baculoviridae/genetics , Kinetics , Gene Expression , Spodoptera
20.
Protein Expr Purif ; 222: 106522, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38851552

ABSTRACT

OBJECTIVE: To screen and obtain specific anti-lymphocyte activation gene-3 (LAG3) nanobody sequences, purify and express recombinant anti-LAG3 nanobody, and verify its effect on promoting T cells to kill tumor cells. METHODS: Based on the camel derived natural nanobody phage display library constructed by the research group, the biotinylated LAG3 antigen was used as the target, and the anti-LAG3 nanobody sequences were screened by biotin-streptavidin liquid phase screening, phage-ELISA and sequencing. The sequence-conjµgated human IgG1 Fc fragment was obtained, the recombinant anti-LAG3 nanobody expression vector was constructed, the expression of the recombinant anti-LAG3 nanobody was induced by IPTG and purified, and the characteristics and functions of the recombinant anti-LAG3 nanobody were verified by SDS-PAGE, Western blot, cytotoxicity assay, etc. RESULTS: One anti-LAG3 nanobody sequence was successfully screened, and the corresponding recombinant anti-LAG3 nanobody-expressing bacteria were constructed. The results of SDS-PAGE, Western blot and cytotoxicity assay showed that the recombinant anti-LAG3 nanobody was successfully expressed, which was specific, and it could promote the killing ability of T cells against tumor cells, and the optimal concentration was 200 µg/mL. CONCLUSION: The recombinant anti-LAG3 nanobody screened and expressed has specific and auxiliary anti-tumor cell effects, which lays a foundation for its subsequent application.


Subject(s)
Lymphocyte Activation Gene 3 Protein , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/pharmacology , Humans , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, CD/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/chemistry , Animals , Peptide Library , Camelus/immunology , Camelus/genetics , Cell Line, Tumor , Escherichia coli/genetics , T-Lymphocytes/immunology , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...