Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273.655
Filter
1.
Cardiovasc Diabetol ; 23(1): 249, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992718

ABSTRACT

BACKGROUND: Previous studies have shown that peptides encoded by noncoding RNAs (ncRNAs) can be used as peptide drugs to alleviate diseases. We found that microRNA-31 (miR-31) is involved in the regulation of hypertension and that the peptide miPEP31, which is encoded by the primary transcript of miR-31 (pri-miR-31), can inhibit miR-31 expression. However, the role and mechanism of miPEP31 in hypertension have not been elucidated. METHODS: miPEP31 expression was determined by western blot analysis. miPEP31-deficient mice (miPEP31-/-) were used, and synthetic miPEP31 was injected into Ang II-induced hypertensive mice. Blood pressure was monitored through the tail-cuff method. Histological staining was used to evaluate renal damage. Regulatory T (Treg) cells were assessed by flow cytometry. Differentially expressed genes were analysed through RNA sequencing. The transcription factors were predicted by JASPAR. Luciferase reporter and electrophoretic mobility shift assays (EMSAs) were used to determine the effect of pri-miR-31 on the promoter activity of miPEP31. Images were taken to track the entry of miPEP31 into the cell. RESULTS: miPEP31 is endogenously expressed in target organs and cells related to hypertension. miPEP31 deficiency exacerbated but exogenous miPEP31 administration mitigated the Ang II-induced systolic blood pressure (SBP) elevation, renal impairment and Treg cell decreases in the kidney. Moreover, miPEP31 deletion increased the expression of genes related to Ang II-induced renal fibrosis. miPEP31 inhibited the transcription of miR-31 and promoted Treg differentiation by occupying the Cebpα binding site. The minimal functional domain of miPEP31 was identified and shown to regulate miR-31. CONCLUSION: miPEP31 was identified as a potential therapeutic peptide for treating hypertension by promoting Treg cell differentiation in vivo. Mechanistically, we found that miPEP31 acted as a transcriptional repressor to specifically inhibit miR-31 transcription by competitively occupying the Cebpα binding site in the pri-miR-31 promoter. Our study highlights the significant therapeutic effect of miPEP31 on hypertension and provides novel insight into the role and mechanism of miPEPs.


Subject(s)
Angiotensin II , Blood Pressure , Disease Models, Animal , Hypertension , Kidney , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs , Promoter Regions, Genetic , T-Lymphocytes, Regulatory , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/genetics , Binding Sites , Blood Pressure/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Kidney/metabolism , Kidney/pathology , Male , Mice , Gene Expression Regulation , Signal Transduction , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Antihypertensive Agents/pharmacology , Humans
2.
Nat Commun ; 15(1): 5537, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956413

ABSTRACT

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.


Subject(s)
Circadian Clocks , Circadian Rhythm , Liver , Proteome , Animals , Liver/metabolism , Proteome/metabolism , Male , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Transcriptome , Mice , Mice, Inbred C57BL , Gene Expression Regulation , Jet Lag Syndrome/metabolism , Shift Work Schedule
3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000019

ABSTRACT

Isoscopoletin is a compound derived from various plants traditionally used for the treatment of skin diseases. However, there have been no reported therapeutic effects of isoscopoletin on atopic dermatitis (AD). AD is a chronic inflammatory skin disease, and commonly used treatments have side effects; thus, there is a need to identify potential natural candidate substances. In this study, we aimed to investigate whether isoscopoletin regulates the inflammatory mediators associated with AD in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin treated RBL-2H3 cells. We determined the influence of isoscopoletin on cell viability through an MTT assay and investigated the production of inflammatory mediators using ELISA and RT-qPCR. Moreover, we analyzed the transcription factors that regulate inflammatory mediators using Western blots and ICC. The results showed that isoscopoletin did not affect cell viability below 40 µM in either HaCaT or RBL-2H3 cells. Isoscopoletin suppressed the production of TARC/CCL17, MDC/CCL22, MCP-1/CCL2, IL-8/CXCL8, and IL-1ß in TNF-α/IFN-γ-treated HaCaT cells and IL-4 in PMA/ionomycin-treated RBL-2H3 cells. Furthermore, in TNF-α/IFN-γ-treated HaCaT cells, the phosphorylation of signaling pathways, including MAPK, NF-κB, STAT, and AKT/PKB, increased but was decreased by isoscopoletin. In PMA/ionomycin-treated RBL-2H3 cells, the activation of signaling pathways including PKC, MAPK, and AP-1 increased but was decreased by isoscopoletin. In summary, isoscopoletin reduced the production of inflammatory mediators by regulating upstream transcription factors in TNF-α/IFN-γ-treated HaCaT cells and PMA/ionomycin-treated RBL-2H3 cells. Therefore, we suggest that isoscopoletin has the potential for a therapeutic effect, particularly in skin inflammatory diseases such as AD, by targeting keratinocytes and basophils.


Subject(s)
Basophils , Cell Survival , Cytokines , Keratinocytes , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Basophils/drug effects , Basophils/metabolism , Cell Survival/drug effects , HaCaT Cells , Cell Line , Tumor Necrosis Factor-alpha/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Signal Transduction/drug effects , Gene Expression Regulation/drug effects , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism
4.
Elife ; 122024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010741

ABSTRACT

Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.


Subject(s)
Neuroglia , Protein Biosynthesis , Animals , Neuroglia/metabolism , Neurons/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Brain/cytology , Ribosomes/metabolism , Drosophila/genetics
5.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39003726

ABSTRACT

Recent advances in chromatin conformation capture technologies, such as SPRITE and Pore-C, have enabled the detection of simultaneous contacts among multiple chromatin loci. This has made it possible to investigate the cooperative transcriptional regulation involving multiple genes and regulatory elements at the resolution of a single molecule. However, these technologies are unavoidably subject to the random polymer looping effect and technical biases, making it challenging to distinguish genuine regulatory relationships directly from random polymer interactions. Here, we present HyperloopFinder, a method for identifying regulatory multi-way chromatin contacts (hyperloops) by jointly modeling the random polymer looping effect and technical biases to estimate the statistical significance of multi-way contacts. The results show that our model can accurately estimate the expected interaction frequency of multi-way contacts based on the distance distribution of pairwise contacts, revealing that most multi-way contacts can be formed by randomly linking the pairwise contacts adjacent to each other. Moreover, we observed the spatial colocalization of the interaction sites of hyperloops from image-based data. Our results also revealed that hyperloops can function as scaffolds for the cooperation among multiple genes and regulatory elements. In summary, our work contributes novel insights into higher-order chromatin structures and functions and has the potential to enhance our understanding of transcriptional regulation and other cellular processes.


Subject(s)
Chromatin , Models, Statistical , Chromatin/chemistry , Chromatin/metabolism , Chromatin/genetics , Humans , Computational Biology/methods , Algorithms , Gene Expression Regulation
6.
Open Biol ; 14(7): 230355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981515

ABSTRACT

Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.


Subject(s)
Circadian Rhythm , Co-Repressor Proteins , Epigenesis, Genetic , Neurons , Period Circadian Proteins , Animals , Neurons/metabolism , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Mice , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Histones/metabolism , Histone Code , Mutation , Circadian Clocks/genetics , Gene Expression Regulation
7.
Open Biol ; 14(7): 240089, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981514

ABSTRACT

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Subject(s)
ARNTL Transcription Factors , Arthritis, Experimental , Circadian Rhythm , Fibroblasts , Synoviocytes , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Circadian Clocks/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Mice, Knockout , Disease Models, Animal , Gene Expression Regulation , Male
8.
Vet Microbiol ; 295: 110154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959808

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.


Subject(s)
Disease Resistance , Fetus , Porcine Reproductive and Respiratory Syndrome , Transcriptome , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Disease Resistance/genetics , Disease Resistance/immunology , Pregnancy , Animals , Swine , Female , Fetus/immunology , Fetus/virology , Gene Expression Regulation/immunology , Myocardium/immunology , Liver/immunology , Disease Susceptibility/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/veterinary , Kidney/immunology
9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000199

ABSTRACT

Adiponectin is a circulating hormone secreted by adipose tissue that exerts, unlike other adipokines such as leptin, anti-inflammatory, anti-atherosclerotic and other protective effects on health. Adiponectin receptor agonists are being tested in clinical trials and are expected to show benefits in many diseases. In a recent article, LW Chen's group used monocyte chemoattractant protein-1 (MCP-1/CCL2) to improve plasma levels of adiponectin, suggesting the involvement of dipeptidyl peptidase 4 (DPP4/CD26) in the mechanism. Here, we discuss the significance of the role of DPP4, favoring the increase in DPP4-positive interstitial progenitor cells, a finding that fits with the greater stemness and persistence of other DPP4/CD26-positive cells.


Subject(s)
Adipogenesis , Adipose Tissue , Dipeptidyl Peptidase 4 , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Adipogenesis/genetics , Adipogenesis/drug effects , Humans , Adipose Tissue/metabolism , Animals , Adiponectin/metabolism , Adiponectin/genetics , Gene Expression Regulation/drug effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Stromal Cells/metabolism , Adipocytes/metabolism , Adipocytes/drug effects
10.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000215

ABSTRACT

The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.


Subject(s)
Epithelial Cells , Transcriptome , Animals , Female , Swine , Epithelial Cells/metabolism , Epithelial Cells/cytology , Gene Expression Profiling , Cells, Cultured , Oviducts/metabolism , Oviducts/cytology , Cell Culture Techniques/methods , Gene Expression Regulation , Fallopian Tubes/metabolism , Fallopian Tubes/cytology
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000232

ABSTRACT

Various human diseases are triggered by molecular alterations influencing the fine-tuned expression and activity of transcription factors, usually due to imbalances in targets including protein-coding genes and non-coding RNAs, such as microRNAs (miRNAs). The transcription factor EB (TFEB) modulates human cellular networks, overseeing lysosomal biogenesis and function, plasma-membrane trafficking, autophagic flux, and cell cycle progression. In endothelial cells (ECs), TFEB is essential for the maintenance of endothelial integrity and function, ensuring vascular health. However, the comprehensive regulatory network orchestrated by TFEB remains poorly understood. Here, we provide novel mechanistic insights into how TFEB regulates the transcriptional landscape in primary human umbilical vein ECs (HUVECs), using an integrated approach combining high-throughput experimental data with dedicated bioinformatics analysis. By analyzing HUVECs ectopically expressing TFEB using ChIP-seq and examining both polyadenylated mRNA and small RNA sequencing data from TFEB-silenced HUVECs, we have developed a bioinformatics pipeline mapping the different gene regulatory interactions driven by TFEB. We show that TFEB directly regulates multiple miRNAs, which in turn post-transcriptionally modulate a broad network of target genes, significantly expanding the repertoire of gene programs influenced by this transcription factor. These insights may have significant implications for vascular biology and the development of novel therapeutics for vascular disease.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Computational Biology , Gene Regulatory Networks , Human Umbilical Vein Endothelial Cells , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Computational Biology/methods , Gene Expression Regulation , Endothelial Cells/metabolism
12.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000259

ABSTRACT

Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.


Subject(s)
Adipogenesis , Chickens , Glutathione Transferase , Promoter Regions, Genetic , Animals , Adipogenesis/genetics , Chickens/genetics , Chickens/growth & development , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Adipocytes/metabolism , Adipocytes/cytology , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation , Adipose Tissue/metabolism
13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000280

ABSTRACT

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Subject(s)
Energy Metabolism , Polycystic Kidney, Autosomal Dominant , Systems Biology , Humans , Systems Biology/methods , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Oxidative Phosphorylation , Gene Expression Regulation
14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000297

ABSTRACT

Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats. Using a transcriptomic approach, novel genes in the ARC affected by voluntary wheel running were assessed alongside physiology, pharmacology, and bioinformatics analysis to evaluate the role of miR-211 in reversing obesity. Exercise curbed weight gain and fat mass, and restored ARC gene expression. High-fat diet (HFD) consumption can dysregulate satiety/hunger mechanisms in the ARC. Transcriptional clusters revealed that running altered gene expression patterns, including inflammation and cellular structure genes. To uncover regulatory mechanisms governing gene expression in DIO attenuation, we explored miR-211, which is implicated in systemic inflammation. Exercise ameliorated DIO overexpression of miR-211, demonstrating its pivotal role in regulating inflammation in the ARC. Further, in vivo central administration of miR-211-mimic affected the expression of immunity and cell cycle-related genes. By cross-referencing exercise-affected and miR-211-regulated genes, potential candidates for obesity reduction through exercise were identified. This research suggests that exercise may rescue obesity through gene expression changes mediated partially through miR-211.


Subject(s)
Arcuate Nucleus of Hypothalamus , Diet, High-Fat , MicroRNAs , Obesity , Physical Conditioning, Animal , Animals , Arcuate Nucleus of Hypothalamus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity/genetics , Obesity/metabolism , Rats , Female , Diet, High-Fat/adverse effects , Gene Expression Regulation , Inflammation/genetics , Inflammation/metabolism
15.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000336

ABSTRACT

Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.


Subject(s)
MicroRNAs , Neurodegenerative Diseases , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Gene Expression Regulation
16.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000362

ABSTRACT

Exposure to microgravity during spaceflight induces the alterations in endothelial cell function associated with post-flight cardiovascular deconditioning. PIEZO1 is a major mechanosensitive ion channel that regulates endothelial cell function. In this study, we used a two-dimensional clinostat to investigate the expression of PIEZO1 and its regulatory mechanism on human umbilical vein endothelial cells (HUVECs) under simulated microgravity. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, we observed that PIEZO1 expression was significantly increased in response to simulated microgravity. Moreover, we found microgravity promoted endothelial cells migration by increasing expression of PIEZO1. Proteomics analysis highlighted the importance of C-X-C chemokine receptor type 4(CXCR4) as a main target molecule of PIEZO1 in HUVECs. CXCR4 protein level was increased with simulated microgravity and decreased with PIEZO1 knock down. The mechanistic study showed that PIEZO1 enhances CXCR4 expression via Ca2+ influx. In addition, CXCR4 could promote endothelial cell migration under simulated microgravity. Taken together, these results suggest that the upregulation of PIEZO1 in response to simulated microgravity regulates endothelial cell migration due to enhancing CXCR4 expression via Ca2+ influx.


Subject(s)
Cell Movement , Human Umbilical Vein Endothelial Cells , Ion Channels , Receptors, CXCR4 , Weightlessness Simulation , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Ion Channels/metabolism , Ion Channels/genetics , Cell Movement/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Calcium/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation
17.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000358

ABSTRACT

The Chinese mitten crab (Eriocheir sinensis), an economically important crustacean that is endemic to China, has recently experienced high-temperature stress. The high thermal tolerance of E. sinensis points to its promise in being highly productive in an aquacultural context. However, the mechanisms underlying its high thermal tolerance remain unknown. In this study, female E. sinensis that were heat exposed for 24 h at 38.5 °C and 33 °C were identified as high-temperature-stressed (HS) and normal-temperature-stressed (NS) groups, respectively. The hepatopancreas of E. sinensis from the HS and NS groups were used for transcriptome and proteomic analyses. A total of 2350 upregulated and 1081 downregulated differentially expressed genes (DEGs) were identified between the HS and NS groups. In addition, 126 differentially expressed proteins (DEPs) were upregulated and 35 were downregulated in the two groups. An integrated analysis showed that 2641 identified genes were correlated with their corresponding proteins, including 25 genes that were significantly differentially expressed between the two omics levels. Ten Gene Ontology terms were enriched in the DEGs and DEPs. A functional analysis revealed three common pathways that were significantly enriched in both DEGs and DEPs: fluid shear stress and atherosclerosis, leukocyte transendothelial migration, and thyroid hormone synthesis. Further analysis of the common pathways showed that MGST1, Act5C, HSP90AB1, and mys were overlapping genes at the transcriptome and proteome levels. These results demonstrate the differences between the HS and NS groups at the two omics levels and will be helpful in clarifying the mechanisms underlying the thermal tolerance of E. sinensis.


Subject(s)
Brachyura , Heat-Shock Response , Hepatopancreas , Proteome , Transcriptome , Animals , Female , Hepatopancreas/metabolism , Proteome/genetics , Proteome/metabolism , Brachyura/genetics , Brachyura/metabolism , Brachyura/physiology , Heat-Shock Response/genetics , Gene Expression Profiling , Proteomics/methods , Gene Ontology , Gene Expression Regulation
18.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000368

ABSTRACT

Selenium is an essential trace element in our diet, crucial for the composition of human selenoproteins, which include 25 genes such as glutathione peroxidases and thioredoxin reductases. The regulation of the selenoproteome primarily hinges on the bioavailability of selenium, either from dietary sources or cell culture media. This selenium-dependent control follows a specific hierarchy, with "housekeeping" selenoproteins maintaining constant expression while "stress-regulated" counterparts respond to selenium level fluctuations. This study investigates the variability in fetal bovine serum (FBS) selenium concentrations among commercial batches and its effects on the expression of specific stress-related cellular selenoproteins. Despite the limitations of our study, which exclusively used HEK293 cells and focused on a subset of selenoproteins, our findings highlight the substantial impact of serum selenium levels on selenoprotein expression, particularly for GPX1 and GPX4. The luciferase reporter assay emerged as a sensitive and precise method for evaluating selenium levels in cell culture environments. While not exhaustive, this analysis provides valuable insights into selenium-mediated selenoprotein regulation, emphasizing the importance of serum composition in cellular responses and offering guidance for researchers in the selenoprotein field.


Subject(s)
Selenium , Selenoproteins , Selenium/blood , Selenium/metabolism , Humans , Selenoproteins/genetics , Selenoproteins/metabolism , Cattle , Animals , HEK293 Cells , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase GPX1 , Serum/metabolism , Serum/chemistry , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Culture Media/chemistry , Gene Expression Regulation/drug effects
19.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000480

ABSTRACT

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Subject(s)
Circadian Rhythm , Dietary Proteins , Period Circadian Proteins , Animals , Mice , Circadian Rhythm/genetics , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Dietary Proteins/administration & dosage , Endoplasmic Reticulum Stress , Circadian Clocks/genetics , Male , Mice, Inbred C57BL , Gene Expression Regulation/drug effects , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Gene Expression Profiling , Cell Line , Transcriptome
20.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000475

ABSTRACT

Metallothioneins (MTs) are non-enzymatic metal-binding proteins widely found in animals, plants, and microorganisms and are regulated by metal-responsive transcription factor 1 (MTF1). MT and MTF1 play crucial roles in detoxification, antioxidation, and anti-apoptosis. Therefore, they are key factors allowing organisms to endure the toxicity of heavy metal pollution. Phascolosoma esculenta is a marine invertebrate that inhabits intertidal zones and has a high tolerance to heavy metal stress. In this study, we cloned and identified MT and MTF1 genes from P. esculenta (designated as PeMT and PeMTF1). PeMT and PeMTF1 were widely expressed in all tissues and highly expressed in the intestine. When exposed to 16.8, 33.6, and 84 mg/L of zinc ions, the expression levels of PeMT and PeMTF1 in the intestine increased first and then decreased, peaking at 12 and 6 h, respectively, indicating that both PeMT and PeMTF1 rapidly responded to Zn stress. The recombinant pGEX-6p-1-MT protein enhanced the Zn tolerance of Escherichia coli and showed a dose-dependent ABTS free radical scavenging ability. After RNA interference (RNAi) with PeMT and 24 h of Zn stress, the oxidative stress indices (MDA content, SOD activity, and GSH content) and the apoptosis indices (Caspase 3, Caspase 8, and Caspase 9 activities) were significantly increased, implying that PeMT plays an important role in Zn detoxification, antioxidation, and anti-apoptosis. Moreover, the expression level of PeMT in the intestine was significantly decreased after RNAi with PeMTF1 and 24 h of Zn stress, which preliminarily proved that PeMTF1 has a regulatory effect on PeMT. Our data suggest that PeMT and PeMTF1 play important roles in the resistance of P. esculenta to Zn stress and are the key factors allowing P. esculenta to endure the toxicity of Zn.


Subject(s)
Metallothionein , Transcription Factors , Zinc , Metallothionein/genetics , Metallothionein/metabolism , Animals , Zinc/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcription Factor MTF-1 , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Apoptosis/drug effects , Phylogeny , Amino Acid Sequence , Gene Expression Regulation/drug effects , Cloning, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...