Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.111
Filter
1.
Astrobiology ; 24(8): 824-838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159439

ABSTRACT

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.


Subject(s)
Exobiology , Extraterrestrial Environment , Saudi Arabia , Exobiology/methods , Genome, Bacterial/genetics , Mars , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny
2.
PLoS Biol ; 22(8): e3002746, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39110680

ABSTRACT

Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.


Subject(s)
Genome, Bacterial , Salmonella , Salmonella/genetics , Salmonella/pathogenicity , Genome, Bacterial/genetics , Virulence/genetics , Humans , Genomics/methods , Multigene Family , Phylogeny , Plasmids/genetics , Salmonella Infections/microbiology , Prophages/genetics , Evolution, Molecular
3.
PeerJ ; 12: e17673, 2024.
Article in English | MEDLINE | ID: mdl-39131622

ABSTRACT

Whole genome sequencing (WGS) has become a vital tool in clinical microbiology, playing an important role in outbreak investigations, molecular surveillance, and identification of bacterial species, resistance mechanisms and virulence factors. However, the complexity of WGS data presents challenges in interpretation and reporting, requiring tailored strategies to enhance efficiency and impact. This study explores the diverse needs of key stakeholders in healthcare, including clinical management, laboratory work, public surveillance and epidemiology, infection prevention and control, and academic research, regarding WGS-based reporting of clinically relevant bacterial species. In order to determine preferences regarding WGS reports, human-centered design approach was employed, involving an online survey and a subsequent workshop with stakeholders. The survey gathered responses from 64 participants representing the above mentioned healthcare sectors across geographical regions. Key findings include the identification of barriers related to data accessibility, integration with patient records, and the complexity of interpreting WGS results. As the participants designed their ideal report using nine pre-defined sections of a typical WGS report, differences in needs regarding report structure and content across stakeholders became evident. The workshop discussions further highlighted the need to feature critical findings and quality metrics prominently in reports, as well as the demand for flexible report designs. Commonalities were observed across stakeholder-specific reporting templates, such as the uniform ranking of certain report sections, but preferences regarding the depth of content within these sections varied. Using these findings, we suggest stakeholder-specific structures which should be considered when designing customized reporting templates. In conclusion, this study underscores the importance of tailoring WGS-based reports of clinically relevant bacteria to meet the distinct needs of diverse healthcare stakeholders. The evolving landscape of digital reporting increases the opportunities with respect to WGS reporting and its utility in managing infectious diseases and public health surveillance.


Subject(s)
Whole Genome Sequencing , Humans , Genome, Bacterial/genetics , Surveys and Questionnaires
4.
Front Cell Infect Microbiol ; 14: 1425104, 2024.
Article in English | MEDLINE | ID: mdl-39108984

ABSTRACT

Introduction: Vibrio alginolyticus is a Gram-negative, rod-shaped bacterium belonging to the family of Vibrionaceae, a common pathogen in aquaculture animals, However, studies on its impact on Scylla serrata (mud crabs) are limited. In this study, we isolated V. alginolyticus SWS from dead mud crab during a disease outbreak in a Hong Kong aquaculture farm, which caused up to 70% mortality during summer. Methods: Experimental infection and histopathology were used to investigate the pathogenicity of V. alginolyticus SWS in S. serrata and validate Koch's postulates. Comprehensive whole-genome analysis and phylogenetic analysis antimicrobial susceptibility testing, and biochemical characterization were also performed. Results: Our findings showed that V. alginolyticus SWS caused high mortality (75%) in S. serrata with infected individuals exhibiting inactivity, loss of appetite, decolored and darkened hepatopancreas, gills, and opaque muscle in the claw. Histopathological analysis revealed tissue damage and degeneration in the hepatopancreas, gills, and claw muscle suggesting direct and indirect impacts of V. alginolyticus SWS infection. Conclusions: This study provides a comprehensive characterization of V. alginolyticus SWS as an emerging pathogen in S. serrata aquaculture. Our findings underscore the importance of ongoing surveillance, early detection, and the development of targeted disease management strategies to mitigate the economic impact of vibriosis outbreaks in mud crab aquaculture.


Subject(s)
Aquaculture , Brachyura , Phylogeny , Vibrio alginolyticus , Animals , Vibrio alginolyticus/genetics , Vibrio alginolyticus/pathogenicity , Vibrio alginolyticus/isolation & purification , Vibrio alginolyticus/classification , Brachyura/microbiology , Hong Kong/epidemiology , Vibrio Infections/microbiology , Vibrio Infections/veterinary , Gills/microbiology , Gills/pathology , Virulence , Whole Genome Sequencing , Genome, Bacterial/genetics , Hepatopancreas/microbiology , Hepatopancreas/pathology , Disease Outbreaks , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
5.
Environ Microbiol Rep ; 16(4): e13311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135302

ABSTRACT

A Gram-positive, aerobic, rod-shaped mesophilic bacterium was isolated from birch wood, referred to as the AB strain. Allergological tests suggest that this strain may cause allergic alveolitis in sawmill workers. Employing a polyphasic taxonomic approach, the AB strain's 16S rRNA gene sequence showed high similarity to Microbacterium barkeri and M. oryzae, with 97.25% and 96.91%, respectively, a finding supported by rpoB and gyrB sequence analysis. Further genome sequence comparison with the closely related M. barkeri type strain indicated a digital DNA-DNA hybridization value of 25.5% and an average nucleotide identity of 82.52%. The AB strain's cell wall peptidoglycan contains ornithine, and its polar lipids comprise diphosphatidylglycerol, phosphatidylglycerol, and unidentified glycolipids. Its major fatty acids include anteiso C15:0, anteiso C17:0, and iso C16:0, while MK-10 is its predominant respiratory quinone. Comprehensive analysis through 16S rRNA, whole-genome sequencing, phenotyping, chemotaxonomy, and MALDI-TOF MS profiling indicates that the AB strain represents a new species within the Microbacterium genus. It has been proposed to name this species Microbacterium betulae sp. nov., with ABT (PCM 3040T = CEST 30706T) designated as the type strain.


Subject(s)
Alveolitis, Extrinsic Allergic , Betula , DNA, Bacterial , Fatty Acids , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Wood , Wood/microbiology , Betula/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , Alveolitis, Extrinsic Allergic/microbiology , Microbacterium/genetics , Microbacterium/classification , Microbacterium/isolation & purification , Genome, Bacterial/genetics , Nucleic Acid Hybridization , Bacterial Typing Techniques , Sequence Analysis, DNA
6.
Diagn Microbiol Infect Dis ; 110(2): 116434, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111107

ABSTRACT

The case presents a 47-year-old man with sudden abdominal pain and fever, but the cause was uncertain. Through metagenomic next-generation sequencing (mNGS) and detecting Q fever antibodies in serum, along with the patient's clinical and epidemiological history, a precise diagnosis was made, enabling timely and proper treatment.


Subject(s)
Coxiella burnetii , High-Throughput Nucleotide Sequencing , Metagenomics , Q Fever , Humans , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Male , Q Fever/diagnosis , Q Fever/microbiology , Middle Aged , Metagenomics/methods , Genome, Bacterial/genetics , Antibodies, Bacterial/blood
7.
Diagn Microbiol Infect Dis ; 110(2): 116429, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116652

ABSTRACT

This report describes the characterization of Burkholderia cenocepacia isolates belonging to sequence type (ST)-250, detected in eight patients with cystic fibrosis (CF) in Switzerland. We retrospectively analyzed 18 isolates of B. cenocepacia ST-250 isolated between 2003 and 2015 by whole-genome sequencing and evaluated clinical and epidemiological data. Single nucleotide polymorphism analysis of the B.°cenocepacia ST-250 lineage showed that the isolates from all patients cluster tightly, suggesting that this cluster has a recent common ancestor. Epidemiological investigations showed that six out of eight patients acquired B.°cenocepacia ST-250 in the years 2001-2006, where participation in CF summer camps was common. Two patients were siblings. Genomic relatedness of the B. cenocepacia ST-250 isolates supported transmission by close contact, however, a common source or nosocomial routes cannot be excluded. With respect to the fatal outcome in six patients, our study shows the importance of infection control measurements in CF patients with B.°cenocepacia.


Subject(s)
Burkholderia Infections , Burkholderia cenocepacia , Cystic Fibrosis , Whole Genome Sequencing , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Switzerland/epidemiology , Burkholderia Infections/microbiology , Burkholderia Infections/epidemiology , Burkholderia Infections/transmission , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/classification , Male , Retrospective Studies , Female , Child , Adolescent , Genome, Bacterial/genetics , Polymorphism, Single Nucleotide , Child, Preschool , Adult , Young Adult
8.
Microbiologyopen ; 13(4): e1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166362

ABSTRACT

The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.


Subject(s)
DNA, Bacterial , Nanopore Sequencing , Streptococcus , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , DNA, Bacterial/genetics , Nanopore Sequencing/methods , Animals , Genome, Bacterial/genetics , Molecular Weight , Sequence Analysis, DNA/methods , Fishes/microbiology , Fish Diseases/microbiology , Streptococcal Infections/microbiology , Resource-Limited Settings
9.
PLoS One ; 19(8): e0305581, 2024.
Article in English | MEDLINE | ID: mdl-39159178

ABSTRACT

Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried ß-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Genetic Variation , Phylogeny , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter coli/drug effects , Campylobacter coli/pathogenicity , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/pathogenicity , Ethiopia/epidemiology , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Dairy Products/microbiology , Genome, Bacterial/genetics , Whole Genome Sequencing , Polymorphism, Single Nucleotide , Food Microbiology , Anti-Bacterial Agents/pharmacology , Humans , Multilocus Sequence Typing , Virulence/genetics , Drug Resistance, Bacterial/genetics , Animals
10.
ACS Synth Biol ; 13(8): 2515-2532, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39109796

ABSTRACT

Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.


Subject(s)
Genome, Bacterial , Plasmids , Replicon , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/genetics , Replicon/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Symbiosis/genetics , Genetic Engineering/methods , Nitrogen Fixation/genetics , Replication Origin/genetics , Bacterial Proteins/genetics , DNA Replication/genetics
11.
Nat Commun ; 15(1): 6963, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138238

ABSTRACT

Cholera is a life-threatening gastrointestinal infection caused by a toxigenic bacterium, Vibrio cholerae. After a lull of almost 30 years, a first case of cholera was detected in Lebanon in October 2022. The outbreak lasted three months, with 8007 suspected cases (671 laboratory-confirmed) and 23 deaths. In this study, we use phenotypic methods and microbial genomics to study 34 clinical and environmental Vibrio cholerae isolates collected throughout this outbreak. All isolates are identified as V. cholerae O1, serotype Ogawa strains from wave 3 of the seventh pandemic El Tor (7PET) lineage. Phylogenomic analysis unexpectedly reveals the presence of two different strains of the seventh pandemic El Tor (7PET) lineage. The dominant strain has a narrow antibiotic resistance profile and is phylogenetically related to South Asian V. cholerae isolates and derived African isolates from the AFR15 sublineage. The second strain is geographically restricted and extensively drug-resistant. It belongs to the AFR13 sublineage and clusters with V. cholerae isolates collected in Yemen. In conclusion, the 2022-2023 Lebanese cholera outbreak is caused by the simultaneous introduction of two different 7PET strains. Genomic surveillance with cross-border collaboration is therefore crucial for the identification of new introductions and routes of circulation of cholera, improving our understanding of cholera epidemiology.


Subject(s)
Cholera , Disease Outbreaks , Phylogeny , Lebanon/epidemiology , Humans , Cholera/epidemiology , Cholera/microbiology , Genome, Bacterial/genetics , Genomics/methods , Vibrio cholerae/genetics , Vibrio cholerae/isolation & purification , Vibrio cholerae/classification , Male , Anti-Bacterial Agents/pharmacology , Female , Vibrio cholerae O1/genetics , Vibrio cholerae O1/isolation & purification , Vibrio cholerae O1/classification , Adolescent , Adult , Young Adult , Middle Aged , Child , Molecular Epidemiology
12.
Nat Commun ; 15(1): 6291, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060226

ABSTRACT

Malawi experienced its deadliest Vibrio cholerae (Vc) outbreak following devastating cyclones, with >58,000 cases and >1700 deaths reported between March 2022 and May 2023. Here, we use population genomics to investigate the attributes and origin of the Malawi 2022-2023 Vc outbreak isolates. Our results demonstrate the predominance of ST69 clone, also known as the seventh cholera pandemic El Tor (7PET) lineage, expressing O1 Ogawa (~ 80%) serotype followed by Inaba (~ 16%) and sporadic non-O1/non-7PET serogroups (~ 4%). Phylogenetic reconstruction revealed that the Malawi outbreak strains correspond to a recent importation from Asia into Africa (sublineage AFR15). These isolates harboured known antimicrobial resistance and virulence elements, notably the ICEGEN/ICEVchHai1/ICEVchind5 SXT/R391-like integrative conjugative elements and a CTXφ prophage with the ctxB7 genotype compared to historical Malawian Vc isolates. These data suggest that the devastating cyclones coupled with the recent importation of 7PET serogroup O1 strains, may explain the magnitude of the 2022-2023 cholera outbreak in Malawi.


Subject(s)
Cholera , Disease Outbreaks , Phylogeny , Vibrio cholerae , Malawi/epidemiology , Cholera/epidemiology , Cholera/microbiology , Humans , Vibrio cholerae/genetics , Vibrio cholerae/classification , Genomics , Genome, Bacterial/genetics , Prophages/genetics , Genotype , Serogroup
13.
Biomed Res Int ; 2024: 5516117, 2024.
Article in English | MEDLINE | ID: mdl-39071244

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen associated with a wide range of infections in humans and animals. Thus, the emergence of MRSA clones poses an important threat to human and animal health. This study is aimed at elucidating the genomics insights of a strong biofilm-producing and multidrug-resistant (MDR) S. aureus MTR_BAU_H1 strain through whole-genome sequencing (WGS). The S. aureus MTR_BAU_H1 strain was isolated from food handlers' hand swabs in Bangladesh and phenotypically assessed for antimicrobial susceptibility and biofilm production assays. The isolate was further undergone to high throughput WGS and analysed using different bioinformatics tools to elucidate the genetic diversity, molecular epidemiology, sequence type (ST), antimicrobial resistance, and virulence gene distribution. Phenotypic analyses revealed that the S. aureus MTR_BAU_H1 strain is a strong biofilm-former and carries both antimicrobial resistance (e.g., methicillin resistance; mecA, beta-lactam resistance; blaZ and tetracycline resistance; tetC) and virulence (e.g., sea, tsst, and PVL) genes. The genome of the S. aureus MTR_BAU_H1 belonged to ST1930 that possessed three plasmid replicons (e.g., rep16, rep7c, and rep19), seven prophages, and two clustered regularly interspaced short palindromic repeat (CRISPR) arrays of varying sizes. Phylogenetic analysis showed a close evolutionary relationship between the MTR_BAU_H1 genome and other MRSA clones of diverse hosts and demographics. The MTR_BAU_H1 genome harbours 42 antimicrobial resistance genes (ARGs), 128 virulence genes, and 273 SEED subsystems coding for the metabolism of amino acids, carbohydrates, proteins, cofactors, vitamins, minerals, and lipids. This is the first-ever WGS-based study of a strong biofilm-producing and MDR S. aureus strain isolated from human hand swabs in Bangladesh that unveils new information on the resistomes (ARGs and correlated mechanisms) and virulence potentials that might be linked to staphylococcal pathogenesis in both humans and animals.


Subject(s)
Biofilms , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Biofilms/growth & development , Biofilms/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Whole Genome Sequencing , Genomics , Genome, Bacterial/genetics , Food Handling , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Virulence/genetics , Virulence Factors/genetics , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics
14.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
15.
Front Cell Infect Microbiol ; 14: 1335096, 2024.
Article in English | MEDLINE | ID: mdl-38975326

ABSTRACT

Objective: Pseudomonas aeruginosa, a difficult-to-manage nosocomial pathogen, poses a serious threat to clinical outcomes in intensive care (ICU) patients due to its high antimicrobial resistance (AMR). To promote effective management, it is essential to investigate the genomic and phenotypic differences in AMR expression of the isolates. Methods: A prospective observational study was conducted from July 2022 to April 2023 at Liepaja Regional Hospital in Latvia. The study included all adult patients who were admitted to the ICU and had a documented infection with P. aeruginosa, as confirmed by standard laboratory microbiological testing and short-read sequencing. Since ResFinder is the only sequencing-based database offering antibacterial susceptibility testing (AST) data for each antibiotic, we conducted a comparison of the resistance profile with the results of phenotypic testing, evaluating if ResFinder met the US Food and Drug Administration (FDA) requirements for approval as a new AMR diagnostic test. Next, to improve precision, AST data from ResFinder was compared with two other databases - AMRFinderPlus and RGI. Additionally, data was gathered from environmental samples to inform the implementation of appropriate infection control measures in real time. Results: Our cohort consisted of 33 samples from 29 ICU patients and 34 environmental samples. The presence of P. aeruginosa infection was found to be associated with unfavourable clinical outcomes. A third of the patient samples were identified as multi-drug resistant isolates. Apart from resistance against colistin, significant discrepancies were observed when phenotypic data were compared to genotypic data. For example, the aminoglycoside resistance prediction of ResFinder yielded a major errors value of 3.03% for amikacin, which was marginally above the FDA threshold. Among the three positive environmental samples, one sample exhibited multiple AMR genes similar to the patient samples in its cluster. Conclusion: Our findings underscore the importance of utilizing a combination of diagnostic methods for the identification of resistance mechanisms, clusters, and environmental reservoirs in ICUs.


Subject(s)
Anti-Bacterial Agents , Intensive Care Units , Microbial Sensitivity Tests , Phenotype , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Humans , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Prospective Studies , Female , Male , Middle Aged , Cross Infection/microbiology , Aged , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genomics/methods , Latvia , Adult , Colistin/pharmacology , Genome, Bacterial/genetics
16.
Nat Commun ; 15(1): 5734, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977664

ABSTRACT

Metagenomic sequencing has provided great advantages in the characterisation of microbiomes, but currently available analysis tools lack the ability to combine subspecies-level taxonomic resolution and accurate abundance estimation with functional profiling of assembled genomes. To define the microbiome and its associations with human health, improved tools are needed to enable comprehensive understanding of the microbial composition and elucidation of the phylogenetic and functional relationships between the microbes. Here, we present MAGinator, a freely available tool, tailored for profiling of shotgun metagenomics datasets. MAGinator provides de novo identification of subspecies-level microbes and accurate abundance estimates of metagenome-assembled genomes (MAGs). MAGinator utilises the information from both gene- and contig-based methods yielding insight into both taxonomic profiles and the origin of genes and genetic content, used for inference of functional content of each sample by host organism. Additionally, MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs, providing a framework to identify clade-level differences.


Subject(s)
Metagenome , Metagenomics , Microbiota , Phylogeny , Metagenomics/methods , Metagenome/genetics , Humans , Microbiota/genetics , Software , Bacteria/genetics , Bacteria/classification , Genome, Bacterial/genetics
17.
Nat Commun ; 15(1): 6123, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033143

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of salmonellosis, and the emergence of multidrug-resistant pathovariants has become a growing concern. Here, we investigate a distinct rough colony variant exhibiting a strong biofilm-forming ability isolated in China. Whole-genome sequencing on 2,212 Chinese isolates and 1,739 publicly available genomes reveals the population structure and evolutionary history of the rough colony variants. Characterized by macro, red, dry, and rough (mrdar) colonies, these variants demonstrate enhanced biofilm formation at 28 °C and 37 °C compared to typical rdar colonies. The mrdar variants exhibit extensive multidrug resistance, with significantly higher resistance to at least five classes of antimicrobial agents compared to non-mrdar variants. This resistance is primarily conferred by an IncHI2 plasmid harboring 19 antimicrobial resistance genes. Phylogenomic analysis divides the global collections into six lineages. The majority of mrdar variants belong to sublineage L6.5, which originated from Chinese smooth colony strains and possibly emerged circa 1977. Among the mrdar variants, upregulation of the csgDEFG operons is observed, probably due to a distinct point mutation (-44G > T) in the csgD gene promoter. Pangenome and genome-wide association analyses identify 87 specific accessory genes and 72 distinct single nucleotide polymorphisms associated with the mrdar morphotype.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Phylogeny , Salmonella typhimurium , Whole Genome Sequencing , Salmonella typhimurium/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Biofilms/drug effects , China , Genome, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Humans , Salmonella Infections/microbiology
18.
Nat Commun ; 15(1): 6132, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033187

ABSTRACT

Brucella melitensis is a major livestock bacterial pathogen and zoonosis, causing disease and infection-related abortions in small ruminants and humans. A considerable burden to animal-based economies today, the presence of Brucella in Neolithic pastoral communities has been hypothesised but we lack direct genomic evidence thus far. We report a 3.45X B. melitensis genome preserved in an ~8000 year old sheep specimen from Mentese Höyük, Northwest Türkiye, demonstrating that the pathogen had evolved and was circulating in Neolithic livestock. The genome is basal with respect to all known B. melitensis and allows the calibration of the B. melitensis speciation time from the primarily cattle-infecting B. abortus to approximately 9800 years Before Present (BP), coinciding with a period of consolidation and dispersal of livestock economies. We use the basal genome to timestamp evolutionary events in B. melitensis, including pseudogenization events linked to erythritol response, the supposed determinant of the pathogen's placental tropism in goats and sheep. Our data suggest that the development of herd management and multi-species livestock economies in the 11th-9th millennium BP drove speciation and host adaptation of this zoonotic pathogen.


Subject(s)
Brucella melitensis , Brucellosis , Genome, Bacterial , Zoonoses , Brucella melitensis/genetics , Brucella melitensis/isolation & purification , Animals , Sheep/microbiology , Genome, Bacterial/genetics , Brucellosis/microbiology , Brucellosis/veterinary , Brucellosis/history , Humans , Zoonoses/microbiology , Phylogeny , Cattle , Bacterial Zoonoses/microbiology , Goats/microbiology , Evolution, Molecular , Livestock/microbiology , History, Ancient , Sheep Diseases/microbiology , Female
19.
Nat Commun ; 15(1): 5699, 2024 07 07.
Article in English | MEDLINE | ID: mdl-38972886

ABSTRACT

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identifies three dominant lineages, each with unique gene sets potentially enhancing bacterial fitness in the environment. We find that recombination drives lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage reveal increased expression of lineage-specific genes under environmental conditions in two out of three lineages. This underscores the potential importance of environmental persistence for these dominant lineages. The study also highlights the influence of environmental factors such as terrain slope, altitude, and river direction on the geographical dispersal of B. pseudomallei. Collectively, our findings suggest that environmental persistence may play a role in facilitating the spread of B. pseudomallei, and as a prerequisite for exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.


Subject(s)
Burkholderia pseudomallei , Genetic Variation , Melioidosis , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/classification , Melioidosis/microbiology , Melioidosis/epidemiology , Thailand/epidemiology , Humans , Phylogeny , Gene Flow , Genome, Bacterial/genetics
20.
ACS Synth Biol ; 13(7): 2060-2072, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38968167

ABSTRACT

Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Genome, Bacterial/genetics , Homologous Recombination , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL