Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.309
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2307107121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959040

ABSTRACT

Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.


Subject(s)
Daphnia , Genome , Selection, Genetic , Animals , Daphnia/genetics , Genome/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population/methods
2.
Nat Commun ; 15(1): 5573, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956036

ABSTRACT

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.


Subject(s)
DNA Transposable Elements , Molecular Sequence Annotation , DNA Transposable Elements/genetics , Molecular Sequence Annotation/methods , Animals , Software , Humans , Reproducibility of Results , Computational Biology/methods , Databases, Genetic , Algorithms , Genome/genetics
3.
Nat Commun ; 15(1): 5568, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956050

ABSTRACT

Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.


Subject(s)
Genome , Mammals , Animals , Genome/genetics , Mammals/genetics , Phylogeny , Evolution, Molecular , Aquatic Organisms/genetics , Australia , Circadian Clocks/genetics , Biological Evolution
4.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927042

ABSTRACT

Sheep and goat may become carriers of some zoonotic diseases. They are important livestock and experimental model animals for human beings. The fast and accurate identification of genetic materials originating from sheep and goat can prevent and inhibit the spread of some zoonotic diseases, monitor market product quality, and maintain the stability of animal husbandry and food industries. This study proposed a methodology for identifying sheep and goat common specific sites from a genome-wide perspective. A total of 150 specific sites were selected from three data sources, including the coding sequences of single copy genes from nine species (sheep, goat, cow, pig, dog, horse, human, mouse, and chicken), the dbSNPs for these species, and human 100-way alignment data. These 150 sites exhibited low intraspecific heterogeneity in the resequencing data of 1450 samples from five species (sheep, goat, cow, pig, and chicken) and high interspecific divergence in the human 100-way alignment data after quality control. The results were proven to be reliable at the data level. Using the process proposed in this study, specific sites of other species can be screened, and genome-level species identification can be performed using the screened sites.


Subject(s)
Goats , Animals , Goats/genetics , Sheep/genetics , Humans , Genetic Loci , Genome/genetics , Polymorphism, Single Nucleotide/genetics , Cattle/genetics , Swine/genetics , Species Specificity , Mice
5.
Genes (Basel) ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927701

ABSTRACT

Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.


Subject(s)
Embryo Transfer , Genome-Wide Association Study , Insemination, Artificial , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Embryo Transfer/methods , Embryo Transfer/veterinary , Insemination, Artificial/veterinary , Pregnancy , Genome-Wide Association Study/methods , Fertilization/genetics , Breeding/methods , Pregnancy Rate , Genome/genetics
6.
Genes (Basel) ; 15(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927719

ABSTRACT

Repeated sequences, especially transposable elements (TEs), are known to be abundant in some members of the important invertebrate class Gastropoda. TEs that do not have long terminal repeated sequences (non-LTR TEs) are frequently the most abundant type but have not been well characterised in any gastropod. Despite this, sequences in draft gastropod genomes are often described as non-LTR TEs, but without identification to family type. This study was conducted to characterise non-LTR TEs in neritimorph snails, using genomic skimming surveys of three species and the recently published draft genome of Theodoxus fluviatilis. Multiple families of non-LTR TEs from the I, Jockey, L1, R2 and RTE superfamilies were found, although there were notably few representatives of the first of these, which is nevertheless abundant in other Gastropoda. Phylogenetic analyses of amino acid sequences of the reverse transcriptase domain from the elements ORF2 regions found considerable interspersion of representatives of the four neritimorph taxa within non-LTR families and sub-families. In contrast, phylogenetic analyses of sequences from the elements' ORF1 region resolved the representatives from individual species as monophyletic. However, using either region, members of the two species of the Neritidae were closely related, suggesting their potential for investigation of phyletic evolution at the family level.


Subject(s)
DNA Transposable Elements , Gastropoda , Phylogeny , Animals , DNA Transposable Elements/genetics , Gastropoda/genetics , Evolution, Molecular , Terminal Repeat Sequences/genetics , Genome/genetics
7.
Genes (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927737

ABSTRACT

Studies on somatic mutations in cloned animals have revealed slight genetic variances between clones and their originals, but have yet to identify the precise effects of these differences within the organism. Somatic mutations contribute to aging and are implicated in tumor development and other age-related diseases. Thus, we compared whole genome sequencing data from an original dog with that of cloned dogs, identifying candidate somatic mutations that were disproportionately located within genes previously implicated in aging. The substitutional signature of cloning-specific somatic mutations mirrored the uniform distribution characteristic of the signature associated with human aging. Further analysis of genes revealed significant enrichment of traits associated with body size as well as the molecular mechanisms underlying neuronal function and tumorigenesis. Overall, the somatic mutations found in cloned dogs may indicate a conserved mechanism driving aging across species and a broad spectrum of pathway alterations.


Subject(s)
Aging , Carcinogenesis , Mutation , Animals , Dogs , Aging/genetics , Carcinogenesis/genetics , Cloning, Organism , Neurons/metabolism , Genome/genetics , Whole Genome Sequencing
8.
Mol Ecol ; 33(14): e17438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923007

ABSTRACT

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.


Subject(s)
Biological Mimicry , Phenotype , Pigmentation , Animals , Biological Mimicry/genetics , Pigmentation/genetics , Genomics , Ranidae/genetics , Ranidae/growth & development , Genome/genetics , Biological Evolution , Selection, Genetic , Anura/genetics , Anura/growth & development
9.
PLoS Comput Biol ; 20(6): e1012236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913731

ABSTRACT

Genome-scale metabolic models (GSMMs) offer a holistic view of biochemical reaction networks, enabling in-depth analyses of metabolism across species and tissues in multiple conditions. However, comparing GSMMs Against each other poses challenges as current dimensionality reduction algorithms or clustering methods lack mechanistic interpretability, and often rely on subjective assumptions. Here, we propose a new approach utilizing logisitic principal component analysis (LPCA) that efficiently clusters GSMMs while singling out mechanistic differences in terms of reactions and pathways that drive the categorization. We applied LPCA to multiple diverse datasets, including GSMMs of 222 Escherichia-strains, 343 budding yeasts (Saccharomycotina), 80 human tissues, and 2943 Firmicutes strains. Our findings demonstrate LPCA's effectiveness in preserving microbial phylogenetic relationships and discerning human tissue-specific metabolic profiles, exhibiting comparable performance to traditional methods like t-distributed stochastic neighborhood embedding (t-SNE) and Jaccard coefficients. Moreover, the subsystems and associated reactions identified by LPCA align with existing knowledge, underscoring its reliability in dissecting GSMMs and uncovering the underlying drivers of separation.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Principal Component Analysis , Metabolic Networks and Pathways/genetics , Humans , Algorithms , Computational Biology/methods , Phylogeny , Cluster Analysis , Genome/genetics
10.
Article in English | MEDLINE | ID: mdl-38862424

ABSTRACT

The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.


Subject(s)
Evolution, Molecular , Fishes , Genome , Polyploidy , Whole Genome Sequencing , Animals , Fishes/genetics , Whole Genome Sequencing/methods , Genome/genetics , Phylogeny
11.
Article in English | MEDLINE | ID: mdl-38862426

ABSTRACT

The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.


Subject(s)
Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans , Genomics/methods , Repetitive Sequences, Nucleic Acid/genetics , Genome/genetics
12.
BMC Genom Data ; 25(1): 52, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844863

ABSTRACT

OBJECTIVES: The Bengal tiger Panthera tigris tigris, is an emblematic animal for Bangladesh. Despite being the apex predator in the wild, their number is decreasing due to anthropogenic activities such as hunting, urbanization, expansion of agriculture and deforestation. By contrast, captive tigers are flourishing due to practical conservation efforts. Breeding within the small captive population can produce inbreeding depression and genetic bottlenecks, which may limit the success of conservation efforts. Despite past decades of research, a comprehensive database on genetic variation in the captive and wild Bengal tigers in Bangladesh still needs to be included. Therefore, this research aimed to investigate the White Bengal tiger genome to create a resource for future studies to understand variation underlying important functional traits. DATA DESCRIPTION: Blood samples from Chattogram Zoo were collected for three white Bengal tigers. Genomic DNA for all collected samples were extracted using a commercial DNA extraction kit. Whole genome sequencing was performed using a DNBseq platform. We generated 77 Gb of whole-genome sequencing (WGS) data for three white Bengal tigers (Average 11X coverage/sample). The data we generated will establish a paradigm for tiger research in Bangladesh by providing a genomic resource for future functional studies on the Bengal white tiger.


Subject(s)
Tigers , Whole Genome Sequencing , Tigers/genetics , Animals , Bangladesh , Genome/genetics , Genetic Variation/genetics
13.
BMC Genom Data ; 25(1): 53, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844844

ABSTRACT

OBJECTIVES: The new data provide an important genomic resource for the Critically Endangered Cuban crocodile (Crocodylus rhombifer). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, and readily hybridize with the widespread American crocodile (Crocodylus acutus) in areas of sympatry. The reported de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing Cuban crocodile conservation. DATA DESCRIPTION: The final 2.2 Gb draft genome for C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future macroevolutionary, conservation, and molecular studies of the Cuban crocodile.


Subject(s)
Alligators and Crocodiles , Genome , Molecular Sequence Annotation , Alligators and Crocodiles/genetics , Animals , Genome/genetics , Cuba , Genomics/methods
14.
PeerJ ; 12: e17482, 2024.
Article in English | MEDLINE | ID: mdl-38832043

ABSTRACT

Background: Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods: A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results: Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion: This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.


Subject(s)
Chiroptera , Genome , Selection, Genetic , Chiroptera/genetics , Animals , Genome/genetics , Synteny/genetics , Evolution, Molecular , Phylogeny , Genomics
15.
PLoS Biol ; 22(6): e3002661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829909

ABSTRACT

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.


Subject(s)
Chromosomes , Evolution, Molecular , Genome , Phylogeny , Animals , Chromosomes/genetics , Genome/genetics , Synteny , Genetic Linkage , Chordata/genetics
16.
Nat Commun ; 15(1): 5333, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909039

ABSTRACT

Balancing selection is an evolutionary process that maintains genetic polymorphisms at selected loci and strongly reduces the likelihood of allele fixation. When allelic polymorphisms that predate speciation events are maintained independently in the resulting lineages, a pattern of trans-species polymorphisms may occur. Trans-species polymorphisms have been identified for loci related to mating systems and the MHC, but they are generally rare. Trans-species polymorphisms in disease loci are believed to be a consequence of long-term host-parasite coevolution by balancing selection, the so-called Red Queen dynamics. Here we scan the genomes of three crustaceans with a divergence of over 15 million years and identify 11 genes containing identical-by-descent trans-species polymorphisms with the same polymorphisms in all three species. Four of these genes display molecular footprints of balancing selection and have a function related to immunity. Three of them are located in or close to loci involved in resistance to a virulent bacterial pathogen, Pasteuria, with which the Daphnia host is known to coevolve. This provides rare evidence of trans-species polymorphisms for loci known to be functionally relevant in interactions with a widespread and highly specific parasite. These findings support the theory that specific antagonistic coevolution is able to maintain genetic diversity over millions of years.


Subject(s)
Daphnia , Polymorphism, Genetic , Selection, Genetic , Animals , Daphnia/genetics , Daphnia/microbiology , Daphnia/immunology , Pasteuria/genetics , Pasteuria/pathogenicity , Disease Resistance/genetics , Crustacea/genetics , Crustacea/microbiology , Crustacea/immunology , Evolution, Molecular , Genome/genetics , Phylogeny , Alleles
17.
Nucleic Acids Res ; 52(W1): W39-W44, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38752499

ABSTRACT

As sequencing genomes has become increasingly popular, the need for annotation of the resulting assemblies is growing. Structural and functional annotation is still challenging as it includes finding the correct gene sequences, annotating other elements such as RNA and being able to submit those data to databases to share it with the community. Compared to de novo assembly where contiguous chromosomes are a sign of high quality, it is difficult to visualize and assess the quality of annotation. We developed the Companion web server to allow non-experts to annotate their genome using a reference-based method, enabling them to assess the output before submitting to public databases. In this update paper, we describe how we have included novel methods for gene finding and made the Companion server more efficient for annotation of genomes of up to 1 Gb in size. The reference set was increased to include genomes of interest for human and animal health from the fungi and arthropod kingdoms. We show that Companion outperforms existing comparable tools where closely related references are available.


Subject(s)
Arthropods , Genome, Fungal , Molecular Sequence Annotation , Software , Arthropods/genetics , Animals , Genomics/methods , Fungi/genetics , Fungi/classification , Genome/genetics , Databases, Genetic , Parasites/genetics , Internet , Humans
18.
Nucleic Acids Res ; 52(12): 7063-7080, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808662

ABSTRACT

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , DNA Replication , DNA-Binding Proteins , Neural Stem Cells , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chromatin/metabolism , Replication Origin , Histone Demethylases/metabolism , Histone Demethylases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Genome/genetics , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Mice, Knockout
19.
Methods Mol Biol ; 2802: 165-187, 2024.
Article in English | MEDLINE | ID: mdl-38819560

ABSTRACT

Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. A large proportion of such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies, differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate either a single target genome or all input genomes simultaneously. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Furthermore, we provide practical advice on genome annotation in general.


Subject(s)
Genomics , Molecular Sequence Annotation , Phylogeny , Molecular Sequence Annotation/methods , Genomics/methods , Computational Biology/methods , Genome/genetics , Sequence Alignment/methods , Software
20.
Methods Mol Biol ; 2802: 215-245, 2024.
Article in English | MEDLINE | ID: mdl-38819562

ABSTRACT

Genome rearrangements are mutations that change the gene content of a genome or the arrangement of the genes on a genome. Several years of research on genome rearrangements have established different algorithmic approaches for solving some fundamental problems in comparative genomics based on gene order information. This review summarizes the literature on genome rearrangement analysis along two lines of research. The first line considers rearrangement models that are particularly well suited for a theoretical analysis. These models use rearrangement operations that cut chromosomes into fragments and then join the fragments into new chromosomes. The second line works with rearrangement models that reflect several biologically motivated constraints, e.g., the constraint that gene clusters have to be preserved. In this chapter, the border between algorithmically "easy" and "hard" rearrangement problems is sketched and a brief review is given on the available software tools for genome rearrangement analysis.


Subject(s)
Algorithms , Gene Rearrangement , Genomics , Multigene Family , Software , Humans , Computational Biology/methods , Genome/genetics , Genomics/methods , Models, Genetic , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...