Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.559
Filter
1.
Physiol Plant ; 176(5): e14502, 2024.
Article in English | MEDLINE | ID: mdl-39238133

ABSTRACT

Existing research has underscored the vital interplay between host organisms and their associated microbiomes, which affects health and function. In both plants and animals, host factors critically shape microbial communities and influence growth, health, and immunity. Post-harvest plants, such as those used in kimchi, a traditional Korean dish, offer a unique avenue for exploring host-microbe dynamics during fermentation. Despite the emphasis on lactic acid bacteria (LAB) in fermentation studies, the roles of host factors remain unclear. This study aimed to investigate the influence of these factors on plant transcriptomes during kimchi fermentation. We individually inoculated nine LAB strains into germ-free kimchi to generate LAB-mono-associated gnotobiotic kimchi and performed RNA-sequencing analysis for the host vegetables during fermentation. The transcriptomes of post-harvest vegetables in kimchi change over time, and microbes affect the transcriptome profiles of vegetables. Differentially expressed gene analyses revealed that microbes affected the temporal expression profiles of several genes in the plant transcriptomes in unique directions depending on the introduced LAB strains. Cluster analysis with other publicly available transcriptomes of post-harvest vegetables and fruits further revealed that the plant transcriptome is more profoundly influenced by the environment harboring the host than by host phylogeny. Our results bridge the gap in understanding the bidirectional relationship between host vegetables and microbes during food fermentation, illuminating the complex interplay between vegetable transcriptomes, fermentative microbes, and the fermentation process in food production. The different transcriptomic responses elicited by specific LAB strains suggest the possibility of microbial manipulation to achieve the desired fermentation outcomes.


Subject(s)
Fermentation , Germ-Free Life , Vegetables , Vegetables/genetics , Vegetables/microbiology , Transcriptome/genetics , Fermented Foods/microbiology , Gene Expression Regulation, Plant , Lactobacillales/genetics , Lactobacillales/physiology , Lactobacillales/metabolism
2.
Gut Microbes ; 16(1): 2392874, 2024.
Article in English | MEDLINE | ID: mdl-39163515

ABSTRACT

Alterations in intestinal permeability and the gut microbiome caused by alcohol abuse are associated with alcoholic liver disease and with worsening of inflammatory bowel diseases (IBD) symptoms. To resolve the direct effects of chronic ethanol consumption on the colon and its microbiome in the absence of acute or chronic alcohol-induced liver disease, we developed a mouse model of chronic binge drinking that uncovers how alcohol may enhance susceptibility to colitis via the microbiota. Employing daily ethanol gavage, we recapitulate key features of binge ethanol consumption. We found that binge ethanol drinking worsens intestinal infection, colonic injury and inflammation, and this effect persists beyond the drinking period. Using gnotobiotics, we showed that alcohol-driven susceptibility to colitis is microbiota-dependent and transferable to ethanol-naïve mice by microbiome transplantation. Allobaculum spp. expanded in binge drinking mice, and administration of Allobaculum fili was sufficient to enhance colitis in non-drinking mice. Our study provides a model to study binge drinking-microbiota interactions and their effects on host disease and reinforces the pathogenic function of Allobaculum spp. as colitogenic bacteria. Our findings illustrate how chronic binge drinking-induced alterations of the microbiome may affect susceptibility to IBD onset or flares.


Subject(s)
Binge Drinking , Colitis , Colon , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Binge Drinking/complications , Gastrointestinal Microbiome/drug effects , Mice , Colitis/microbiology , Colitis/chemically induced , Colon/microbiology , Colon/pathology , Disease Models, Animal , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Ethanol/adverse effects , Disease Susceptibility , Male , Germ-Free Life , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology
3.
Gut Microbes ; 16(1): 2392872, 2024.
Article in English | MEDLINE | ID: mdl-39189608

ABSTRACT

We sought to better understand how intestinal microbiota confer protection against Clostridioides difficile (C. difficile) infection (CDI). We utilized gnotobiotic altered Schaedler flora (ASF) mice, which lack the abnormalities of germfree (GF) mice as well as the complexity and heterogeneity of antibiotic-treated mice. Like GF mice, ASF mice were highly prone to rapid lethal CDI, without antibiotics, while very low infectious doses resulted in chronic CDI. Administering such chronic CDI mice an undefined preparation of Clostridia lowered C. difficile levels by several logs. Importantly, such resolution of CDI was associated with colonization of Lachnospiraceae. Fractionation of the Clostridia population to enrich for Lachnospiraceae led to the appreciation that its CDI-impeding property strongly associated with a specific Lachnospiraceae strain, namely uncultured bacteria and archaea (UBA) 3401. UBA3401 was recalcitrant to being propagated as a pure culture but could be maintained in ASF mice, wherein it comprised up to about 50% of the intestinal microbiota, which was sufficient to generate a high-quality genomic sequence of this bacterium. Sequence analysis and ex vivo study of UBA3401 indicated that it had the ability to secrete substance(s) that directly impeded C. difficile growth. Moreover, in vivo administration of UBA3401/ASF feces provided strong protection to C. difficile challenge. Thus, UBA3401 may contribute to and/or provide a means to study microbiota-mediated CDI resistance.


Subject(s)
Clostridiales , Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Germ-Free Life , Animals , Mice , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Clostridioides difficile/physiology , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Clostridium Infections/prevention & control , Gastrointestinal Microbiome/drug effects , Clostridiales/genetics , Clostridiales/growth & development , Mice, Inbred C57BL , Disease Models, Animal , Feces/microbiology , Female , Anti-Bacterial Agents/pharmacology
4.
Gut Microbes ; 16(1): 2387875, 2024.
Article in English | MEDLINE | ID: mdl-39133869

ABSTRACT

The intestinal microbiome during infancy and childhood has distinct metabolic functions and microbial composition compared to adults. We recently published a gnotobiotic mouse model of the pre-weaning microbiome (PedsCom), which retains a pre-weaning configuration during the transition from a milk-based diet to solid foods, leads to a stunted immune system, and increases susceptibility to enteric infection. Here, we compared the phylogenetic and metabolic relationships of the PedsCom consortium to two adult-derived gnotobiotic communities, Altered Schaedler Flora and Oligo-Mouse Microbiota 12 (Oligo-MM12). We find that PedsCom contains several unique functions relative to these adult-derived mouse consortia, including differences in carbohydrate and lipid metabolism genes. Notably, amino acid degradation metabolic modules are more prevalent among PedsCom isolates, which is in line with the ready availability of these nutrients in milk. Indeed, metabolomic analysis revealed significantly lower levels of total free amino acids and lower levels of specific amino acids abundant in milk (e.g. glutamine and glutamic acid) in the intestinal contents of adult PedsCom colonized mice compared to Oligo-MM12 controls. Metabolomic analysis of pre-weaning intestinal contents also showed lower levels of amino acids that are replete in milk compared to germ-free controls. Thus, enhanced amino acid metabolism is a prominent feature of the pre-weaning microbiome that may facilitate design of early-life microbiome interventions.


Subject(s)
Amino Acids , Bacteria , Gastrointestinal Microbiome , Germ-Free Life , Milk , Weaning , Animals , Amino Acids/metabolism , Gastrointestinal Microbiome/physiology , Mice , Milk/microbiology , Milk/metabolism , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Female , Mice, Inbred C57BL
5.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39028257

ABSTRACT

Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhoea and is responsible for a spectrum of diseases characterized by high levels of recurrence and morbidity. In some cases, complications can lead to death. Currently, several types of animal models have been developed to study various aspects of C. difficile infection (CDI), such as colonization, virulence, transmission and recurrence. These models have also been used to test the role of environmental conditions, such as diet, age and microbiome that modulate infection outcome, and to evaluate several therapeutic strategies. Different rodent models have been used successfully, such as the hamster model and the gnotobiotic and conventional mouse models. These models can be applied to study either the initial CDI infectious process or recurrences. The applications of existing rodent models and their advantages and disadvantages are discussed here.


Subject(s)
Clostridioides difficile , Clostridium Infections , Disease Models, Animal , Animals , Clostridium Infections/microbiology , Clostridioides difficile/pathogenicity , Mice , Cricetinae , Humans , Rodentia/microbiology , Germ-Free Life
6.
Gut Microbes ; 16(1): 2382324, 2024.
Article in English | MEDLINE | ID: mdl-39069899

ABSTRACT

The human gut microbiota is a complex community comprising hundreds of species, with a few present in high abundance and the vast majority in low abundance. The biological functions and effects of these low-abundant species on their hosts are not yet fully understood. In this study, we assembled a bacterial consortium (SC-4) consisting of B. paravirosa, C. comes, M. indica, and A. butyriciproducens, which are low-abundant, short-chain fatty acid (SCFA)-producing bacteria isolated from healthy human gut, and tested its effect on host health using germ-free and human microbiota-associated colitis mouse models. The selection also favored these four bacteria being reduced in abundance in either Ulcerative Colitis (UC) or Crohn's disease (CD) metagenome samples. Our findings demonstrate that SC-4 can colonize germ-free (GF) mice, increasing mucin thickness by activating MUC-1 and MUC-2 genes, thereby protecting GF mice from Dextran Sodium Sulfate (DSS)-induced colitis. Moreover, SC-4 aided in the recovery of human microbiota-associated mice from DSS-induced colitis, and intriguingly, its administration enhanced the alpha diversity of the gut microbiome, shifting the community composition closer to control levels. The results showed enhanced phenotypes across all measures when the mice were supplemented with inulin as a dietary fiber source alongside SC-4 administration. We also showed a functional redundancy existing in the gut microbiome, resulting in the low abundant SCFA producers acting as a form of insurance, which in turn accelerates recovery from the dysbiotic state upon the administration of SC-4. SC-4 colonization also upregulated iNOS gene expression, further supporting its ability to produce an increasing number of goblet cells. Collectively, our results provide evidence that low-abundant SCFA-producing species in the gut may offer a novel therapeutic approach to IBD.


Subject(s)
Bacteria , Colitis , Dextran Sulfate , Dysbiosis , Fatty Acids, Volatile , Gastrointestinal Microbiome , Animals , Fatty Acids, Volatile/metabolism , Humans , Dysbiosis/microbiology , Mice , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Colitis/microbiology , Colitis/chemically induced , Disease Models, Animal , Mice, Inbred C57BL , Microbial Consortia , Male , Female , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Germ-Free Life
7.
Nature ; 632(8023): 174-181, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987594

ABSTRACT

Changes in the gut microbiome have pivotal roles in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogenic haematopoietic cell transplantation (allo-HCT)1-6. However, effective methods for safely resolving gut dysbiosis have not yet been established. An expansion of the pathogen Enterococcus faecalis in the intestine, associated with dysbiosis, has been shown to be a risk factor for aGVHD7-10. Here we analyse the intestinal microbiome of patients with allo-HCT, and find that E. faecalis escapes elimination and proliferates in the intestine by forming biofilms, rather than by acquiring drug-resistance genes. We isolated cytolysin-positive highly pathogenic E. faecalis from faecal samples and identified an anti-E. faecalis enzyme derived from E. faecalis-specific bacteriophages by analysing bacterial whole-genome sequencing data. The antibacterial enzyme had lytic activity against the biofilm of E. faecalis in vitro and in vivo. Furthermore, in aGVHD-induced gnotobiotic mice that were colonized with E. faecalis or with patient faecal samples characterized by the domination of Enterococcus, levels of intestinal cytolysin-positive E. faecalis were decreased and survival was significantly increased in the group that was treated with the E. faecalis-specific enzyme, compared with controls. Thus, administration of a phage-derived antibacterial enzyme that is specific to biofilm-forming pathogenic E. faecalis-which is difficult to eliminate with existing antibiotics-might provide an approach to protect against aGVHD.


Subject(s)
Bacteriophages , Enterococcus faecalis , Gastrointestinal Microbiome , Graft vs Host Disease , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Young Adult , Bacteriophages/enzymology , Bacteriophages/genetics , Biofilms/drug effects , Biofilms/growth & development , Dysbiosis/complications , Dysbiosis/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Enterococcus faecalis/growth & development , Enterococcus faecalis/metabolism , Enterococcus faecalis/virology , Feces/microbiology , Germ-Free Life , Graft vs Host Disease/complications , Graft vs Host Disease/microbiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , In Vitro Techniques , Intestines/drug effects , Intestines/microbiology , Perforin/metabolism , Risk Factors , Transplantation, Homologous/adverse effects , Whole Genome Sequencing , Drug Resistance, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology
8.
Nature ; 632(8027): 1137-1144, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085612

ABSTRACT

Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer.


Subject(s)
Carcinogens , Gastrointestinal Microbiome , Germ-Free Life , Urinary Bladder Neoplasms , Gastrointestinal Microbiome/drug effects , Humans , Animals , Carcinogens/metabolism , Carcinogens/toxicity , Mice , Male , Female , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/microbiology , Nitrosamines/metabolism , Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Carcinogenesis/pathology , Carcinogenesis/metabolism , Biotransformation , Mice, Inbred C57BL
9.
Curr Microbiol ; 81(9): 267, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003673

ABSTRACT

In this study, we evaluated the impact of human gut microbiota on the immune pathways in the respiratory tract using a gnotobiotic (Gn) piglet model. We humanized piglets with rural and urban infant fecal microbiota (RIFM and UIFM, respectively) and then infected them with a H1N1 swine influenza virus. We analyzed the microbial diversity and structure of the intestinal and respiratory tracts of the piglets before and after the influenza virus infection and measured the viral load and immune responses. We found that the viral load in the upper respiratory tract of UIFM transplanted piglets was higher than their rural cohorts (RIFM), while virus-specific antibody responses were comparable. The relative cytokine gene expression in the tracheobronchial (respiratory tract) and mesenteric (gastrointestinal) lymph nodes, lungs, blood, and spleen of RIFM and UIFM piglets revealed a trend in reciprocal regulation of proinflammatory, innate, and adaptive immune-associated cytokines as well as the frequency of T-helper/memory cells, cytotoxic T cells, and myeloid immune cell subsets. We also observed different phylum-level shifts of the fecal microbiota in response to influenza virus infection between the two piglet groups, suggesting the potential impact of the gut microbiota on the immune responses to influenza virus infection and lung microbiota. In conclusion, Gn piglets humanized with diverse infant fecal microbiota had differential immune regulation, with UIFM favoring the activation of proinflammatory immune mediators following an influenza virus infection compared to their rural RIFM cohorts. Furthermore, Gn piglets can be a useful model in investigating the impact of diverse human microbiota of the gastrointestinal tract, probably also the respiratory tract, on respiratory health and testing specific probiotic- or prebiotic-based therapeutics.


Subject(s)
Cytokines , Disease Models, Animal , Feces , Gastrointestinal Microbiome , Germ-Free Life , Immunity, Mucosal , Influenza A Virus, H1N1 Subtype , Animals , Swine , Feces/microbiology , Feces/virology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Cytokines/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Viral Load , Infant , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology
10.
Cell Host Microbe ; 32(7): 1103-1113.e6, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38838675

ABSTRACT

Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion. C. albicans depleted simple sugars in the ceca of gnotobiotic mice but required oxygen to grow on these resources in vitro, pointing to anaerobiosis as a potential factor limiting growth in the gut. Clostridia species limit oxygen availability in the large intestine by producing butyrate, which activates peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling to maintain epithelial hypoxia. Streptomycin treatment depleted Clostridia-derived butyrate to increase epithelial oxygenation, but the PPAR-γ agonist 5-aminosalicylic acid (5-ASA) functionally replaced Clostridia species to restore epithelial hypoxia and colonization resistance against C. albicans. Additionally, probiotic Escherichia coli required oxygen respiration to prevent a post-antibiotic bloom of C. albicans, further supporting the role of oxygen in colonization resistance. We conclude that limited access to oxygen maintains colonization resistance against C. albicans.


Subject(s)
Candida albicans , Oxygen , Candida albicans/drug effects , Animals , Mice , Oxygen/metabolism , PPAR gamma/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Candidiasis/microbiology , Anaerobiosis , Hypoxia/metabolism , Mice, Inbred C57BL , Streptomycin/pharmacology , Humans , Cecum/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Germ-Free Life
11.
Cell Host Microbe ; 32(7): 1163-1176.e6, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38906158

ABSTRACT

Depletion of beneficial microbes by modern lifestyle factors correlates with the rising prevalence of food allergies. Re-introduction of allergy-protective bacteria may be an effective treatment strategy. We characterized the fecal microbiota of healthy and food-allergic infants and found that the anaerobe Anaerostipes caccae (A. caccae) was representative of the protective capacity of the healthy microbiota. We isolated a strain of A. caccae from the feces of a healthy infant and identified lactulose as a prebiotic to optimize butyrate production by A. caccae in vitro. Administration of a synbiotic composed of our isolated A. caccae strain and lactulose increased luminal butyrate in gnotobiotic mice colonized with feces from an allergic infant and in antibiotic-treated specific pathogen-free (SPF) mice, and prevented or treated an anaphylactic response to allergen challenge. The synbiotic's efficacy in two models and microbial contexts suggests that it may be a promising approach for the treatment of food allergy.


Subject(s)
Feces , Food Hypersensitivity , Gastrointestinal Microbiome , Lactulose , Synbiotics , Animals , Synbiotics/administration & dosage , Food Hypersensitivity/prevention & control , Mice , Humans , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Infant , Butyrates/metabolism , Prebiotics/administration & dosage , Female , Disease Models, Animal , Specific Pathogen-Free Organisms , Germ-Free Life , Male
12.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892368

ABSTRACT

Intestinal epithelium renewal strictly depends on fine regulation between cell proliferation, differentiation, and apoptosis. While murine intestinal microbiota has been shown to modify some epithelial cell kinetics parameters, less is known about the role of the human intestinal microbiota. Here, we investigated the rate of intestinal cell proliferation in C3H/HeN germ-free mice associated with human flora (HFA, n = 8), and in germ-free (n = 15) and holoxenic mice (n = 16). One hour before sacrifice, all mice were intraperitoneally inoculated with 5-bromodeoxyuridine (BrdU), and the number of BrdU-positive cells/total cells (labelling index, LI), both in the jejunum and the colon, was evaluated by immunohistochemistry. Samples were also observed by scanning electron microscopy (SEM). Moreover, the microbiota composition in the large bowel of the HFA mice was compared to that of of human donor's fecal sample. No differences in LI were found in the small bowels of the HFA, holoxenic, and germ-free mice. Conversely, the LI in the large bowel of the HFA mice was significantly higher than that in the germ-free and holoxenic counterparts (p = 0.017 and p = 0.048, respectively). In the holoxenic and HFA mice, the SEM analysis disclosed different types of bacteria in close contact with the intestinal epithelium. Finally, the colonic microbiota composition of the HFA mice widely overlapped with that of the human donor in terms of dominant populations, although Bifidobacteria and Lactobacilli disappeared. Despite the small sample size analyzed in this study, these preliminary findings suggest that human intestinal microbiota may promote a high proliferation rate of colonic mucosa. In light of the well-known role of uncontrolled proliferation in colorectal carcinogenesis, these results may deserve further investigation in a larger population study.


Subject(s)
Cell Proliferation , Colon , Gastrointestinal Microbiome , Intestinal Mucosa , Animals , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice , Colon/microbiology , Colon/metabolism , Male , Germ-Free Life , Female , Mice, Inbred C3H , Feces/microbiology
13.
Article in English | MEDLINE | ID: mdl-38901159

ABSTRACT

Lipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM12) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.1 %. We compared two columns with hybrid surface technology, two with ethylene bridged hybrid technology and one with core-shell particles. Best performance was attained for standards and intestinal lipidome, using either ammonium formate or acetate in ESI(+) or ammonium acetate in ESI(-) for all column technologies. Notably, a concentration of 5 mM ammonium salt showed optimal results for both modes, while the addition of acids had a negligible effect on lipid ionization efficiency. The HST BEH C18 column improved peak width and tailing factor parameters compared to other technologies. We achieved the highest lipid count in colon and ileum content, including ceramides, phosphatidylethanolamines and phosphatidylcholines, when using 5 mM ammonium acetate in ESI(-). Conversely, in ESI(+) 5 mM ammonium formate demonstrated superior coverage for diacylglycerols and triacylglycerols.


Subject(s)
Germ-Free Life , Lipidomics , Lipids , Animals , Mice , Chromatography, High Pressure Liquid/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Mass Spectrometry/methods , Gastrointestinal Microbiome , Intestines/chemistry
14.
Nat Microbiol ; 9(8): 1964-1978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38918470

ABSTRACT

Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.


Subject(s)
Clostridium , Dietary Fiber , Escherichia coli , Feces , Gastrointestinal Microbiome , Indoles , Tryptophan , Tryptophan/metabolism , Animals , Humans , Gastrointestinal Microbiome/physiology , Dietary Fiber/metabolism , Feces/microbiology , Mice , Indoles/metabolism , Escherichia coli/metabolism , Clostridium/metabolism , Germ-Free Life , Propionates/metabolism , Microbial Interactions , Fecal Microbiota Transplantation
15.
J Gastroenterol ; 59(9): 812-824, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38874761

ABSTRACT

BACKGROUND: The imbalance of commensal bacteria is called dysbiosis in intestinal microflora. Secreted IgA in the intestinal lumen plays an important role in the regulation of microbiota. Although dysbiosis of gut bacteria is reported in IBD patients, it remains unclear what makes dysbiosis of their microflora. The intervention method for remedy of dysbiosis in IBD patients is not well established. In this study, we focused on the quality of human endogenous IgA and investigated whether mouse monoclonal IgA which binds to selectively colitogenic bacteria can modulate human gut microbiota with IBD patients. METHODS: IgA-bound and -unbound bacteria were sorted by MACS and cell sorter. Sorted bacteria were analyzed by 16S rRNA sequencing to investigate what kinds of bacteria endogenous IgA or mouse IgA recognized in human gut microbiota. To evaluate the effect of mouse IgA, gnotobiotic mice with IBD patient microbiota were orally administrated with mouse IgA and analyzed gut microbiota. RESULTS: We show that human endogenous IgA has abnormal binding activity to gut bacteria in IBD patients. Mouse IgA can bind to human microbiota and bind to selectively colitogenic bacteria. The rW27, especially, has a growth inhibitory activity to human colitogenic bacteria. Furthermore, oral administration of mouse IgA reduced an inflammation biomarker, fecal lipocalin 2, in mice colonized with IBD patient-derived microbiota, and improved dysbiosis of IBD patient sample. CONCLUSION: Oral treatment of mouse IgA can treat gut dysbiosis in IBD patients by modulating gut microbiota.


Subject(s)
Dysbiosis , Feces , Gastrointestinal Microbiome , Immunoglobulin A , Inflammatory Bowel Diseases , Lipocalin-2 , Humans , Animals , Dysbiosis/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/immunology , Mice , Feces/microbiology , Male , RNA, Ribosomal, 16S/genetics , Female , Germ-Free Life , Adult , Middle Aged
16.
Gut Microbes ; 16(1): 2363015, 2024.
Article in English | MEDLINE | ID: mdl-38845453

ABSTRACT

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Subject(s)
Ganglia, Spinal , Gastrointestinal Microbiome , Neuromuscular Junction , Animals , Neuromuscular Junction/microbiology , Mice , Ganglia, Spinal/metabolism , Ganglia, Spinal/microbiology , Germ-Free Life , Peripheral Nerves/microbiology , Peripheral Nerves/growth & development , Muscle, Skeletal/microbiology , Mice, Inbred C57BL , Neuregulin-1/metabolism , Neuregulin-1/genetics , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Schwann Cells/microbiology , Schwann Cells/metabolism
17.
Gut Microbes ; 16(1): 2361660, 2024.
Article in English | MEDLINE | ID: mdl-38935764

ABSTRACT

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Subject(s)
Cation Transport Proteins , Duodenum , Gastrointestinal Microbiome , Hepcidins , Iron, Dietary , Liver , Animals , Mice , Gastrointestinal Microbiome/physiology , Iron, Dietary/metabolism , Iron, Dietary/administration & dosage , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Liver/metabolism , Liver/microbiology , Duodenum/metabolism , Duodenum/microbiology , Hepcidins/metabolism , Ferritins/metabolism , Germ-Free Life , Host Microbial Interactions , Lung/microbiology , Lung/metabolism , Iron/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Mice, Inbred C57BL , Hemoglobins/metabolism , Male
18.
Cell Host Microbe ; 32(6): 820-836, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870899

ABSTRACT

Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Host Microbial Interactions , Gastrointestinal Tract/microbiology , Bacteria/genetics , Bacteria/classification , Host-Pathogen Interactions , Germ-Free Life , Microbial Interactions
19.
Methods Mol Biol ; 2820: 127-137, 2024.
Article in English | MEDLINE | ID: mdl-38941020

ABSTRACT

Intestinal fungi are a fundamental component of the gut microbiome and play important roles in mammalian host biology. At the same time, the contribution of gut fungi to host health and disease remains understudied due to their low abundance. In that respect, gnotobiotic animals with defined microbial populations of reduced complexity represent a well-suited model system that highlights the effects of low abundant gut fungi on host physiology and other members of the microbial community. In this chapter, a label-free quantitative metaproteomic approach for the characterization of simplified microbial communities in gnotobiotic mice is presented. The model allows for exploring various research questions on the role of gut fungi in disease pathogenesis, microbial ecosystem maturation, or host-microbiome crosstalk.


Subject(s)
Fungi , Gastrointestinal Microbiome , Germ-Free Life , Proteomics , Animals , Mice , Proteomics/methods , Fungi/metabolism
20.
FASEB J ; 38(11): e23648, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822661

ABSTRACT

Previous studies on germ-free (GF) animals have described altered anxiety-like and social behaviors together with dysregulations in brain serotonin (5-HT) metabolism. Alterations in circulating 5-HT levels and gut 5-HT metabolism have also been reported in GF mice. In this study, we conducted an integrative analysis of various behaviors as well as markers of 5-HT metabolism in the brain and along the GI tract of GF male mice compared with conventional (CV) ones. We found a strong decrease in locomotor activity, accompanied by some signs of increased anxiety-like behavior in GF mice compared with CV mice. Brain gene expression analysis showed no differences in HTR1A and TPH2 genes. In the gut, we found decreased TPH1 expression in the colon of GF mice, while it was increased in the cecum. HTR1A expression was dramatically decreased in the colon, while HTR4 expression was increased both in the cecum and colon of GF mice compared with CV mice. Finally, SLC6A4 expression was increased in the ileum and colon of GF mice compared with CV mice. Our results add to the evidence that the microbiota is involved in regulation of behavior, although heterogeneity among studies suggests a strong impact of genetic and environmental factors on this microbiota-mediated regulation. While no impact of GF status on brain 5-HT was observed, substantial differences in gut 5-HT metabolism were noted, with tissue-dependent results indicating a varying role of microbiota along the GI tract.


Subject(s)
Behavior, Animal , Germ-Free Life , Serotonin , Animals , Serotonin/metabolism , Mice , Male , Gastrointestinal Microbiome/physiology , Brain/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Anxiety/metabolism , Anxiety/microbiology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Colon/metabolism , Colon/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL