Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Biol ; 31(13): 2929-2938.e5, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33957077

ABSTRACT

Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230-370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.


Subject(s)
Genome/genetics , Genomics , Giraffes/classification , Giraffes/genetics , Phylogeny , Animals , Gene Flow , Male , Species Specificity
3.
Zoo Biol ; 40(3): 171-181, 2021 May.
Article in English | MEDLINE | ID: mdl-33666286

ABSTRACT

Upon a drastic decline of the giraffe population in the wild, conservation efforts and therefore the role of zoos have become more important than ever. With their unique opportunities, zoos provide excellent conditions to study animal behavior, expanding the knowledge about the giraffe's behavior repertoire and their ability to adapt. This study therefore examined the nocturnal behavior of 63 giraffe living in 13 different EAZA zoos across Germany and the Netherlands. Giraffe were observed and videos recorded via infrared sensitive cameras during the winter seasons 2015-2018. The observation period spanned nightly from 17:00 to 7:00. Thus, 198 nights, with a total of 2772 h were recorded and analyzed. Linear mixed models were then used to assess potential biological and environmental factors influencing behavior during the dark phase. Results show that individual variables such as age, subspecies and motherhood determined nocturnal activity and sleep behavior most. Among the variables studied, husbandry conditions and environmental factors complying with EAZA standards had no influence on the giraffe's nocturnal behavior. By combining nocturnal activity analyses and an assessment of potential influencing factors, our findings present a holistic approach to a better understanding of captive giraffe behavior and allow for management implications.


Subject(s)
Animal Husbandry/methods , Giraffes/physiology , Housing, Animal , Animals , Animals, Zoo , Behavior, Animal , Circadian Rhythm , Female , Giraffes/classification , Male , Sleep , Species Specificity
4.
PLoS One ; 15(2): e0217956, 2020.
Article in English | MEDLINE | ID: mdl-32053589

ABSTRACT

Molecular data are now commonly used in taxonomy for delimiting cryptic species. In the case of giraffes, which were treated as a single species (Giraffa camelopardalis) during half of a century, several molecular studies have suggested a splitting into four to seven species, but the criteria applied for taxonomic delimitation were not fully described. In this study, we have analysed all multi-locus DNA sequences available for giraffes using multispecies coalescent (MSC: *BEAST, BPP and STACEY), population genetic (STRUCTURE, allelic networks, haplotype network and bootstrapping, haplowebs and conspecificity matrix) and phylogenetic (MrBayes, PhyML, SuperTRI) methods to identify the number of species. Our results show that depending on the method chosen, different taxonomic hypotheses, recognizing from two to six species, can be considered for the genus Giraffa. Our results confirm that MSC methods can lead to taxonomic over-splitting, as they delimit geographic structure rather than species. The 3-species hypothesis, which recognizes G. camelopardalis sensu strico A, G. giraffa, and G. tippelskirchi, is highly supported by phylogenetic analyses and also corroborated by most population genetic and MSC analyses. The three species show high levels of nucleotide divergence in both nuclear (0.35-0.51%) and mitochondrial sequences (3-4%), and they are characterised by 7 to 12 exclusive synapomorphies (ES) detected in nine of the 21 nuclear introns analysed for this study. By contrast, other putative species, such as G. peralta, G. reticulata, G. thornicrofti or G. tippelskirchi sensu stricto, do not exhibit any ES in the nuclear genes. A robust mito-nuclear conflict was found for the position and monophyly of G. giraffa and G. tippelskirchi, which is interpreted as the result of a mitochondrial introgression from Masai to southeastern giraffe during the Pleistocene and nuclear gene flow mediated by male dispersal between southern populations (subspecies G. g. giraffa and G. g. angolensis).


Subject(s)
Genetics, Population/methods , Giraffes/classification , Multilocus Sequence Typing , Animal Distribution , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Datasets as Topic , Female , Gene Flow , Genetic Variation , Giraffes/genetics , Haplotypes , Male , Phylogeny
5.
J Hum Evol ; 140: 102383, 2020 03.
Article in English | MEDLINE | ID: mdl-28992952

ABSTRACT

We update here our recent revision of the Kanapoi ruminants and describe recently collected material. We now regard the occurrence of reduncins as doubtful, we revise the identification of a large raphicerin as being more probably Gazella, and we add Gazella cf. janenschi and the Cephalophini to the faunal list. New material of Tragelaphus kyaloi suggests that this species held its head unlike other tragelaphins, and was not an exclusive dedicated browser, but Kanapoi pre-dates the Pliocene change of Sivatherium, Aepyceros, Alcelaphini, and even Tragelaphini toward more grazing diets. Kanapoi shares several ruminant taxa with sites in Ethiopia and Tanzania, attesting to latitudinal exchanges.


Subject(s)
Diet/veterinary , Fossils/anatomy & histology , Ruminants/classification , Animals , Biota , Female , Giraffes/anatomy & histology , Giraffes/classification , Kenya , Male , Ruminants/anatomy & histology
6.
PLoS One ; 14(2): e0211797, 2019.
Article in English | MEDLINE | ID: mdl-30753231

ABSTRACT

We are describing and figuring for the first time skulls of Schansitherium tafeli, which are abundant in the Gansu area of China from the Late Miocene. They were animals about the size of Samotherium with shorter necks that had two pairs of ossicones that merge at the base, which is unlike Samotherium. The anterior ossicones consist of anterior lineations, which may represent growth lines. They were likely mixed feeders similar to Samotherium. Schansitherium is tentatively placed in a very close position to Samotherium. Samotherium and Schansitherium represent a pair of morphologically very similar species that likely coexisted similarly to pairs of modern species, where the main difference is in the ossicones. Pairs of ruminants in Africa, for example, exist today that differ mostly in their horn shape but otherwise are similar in size, shape, and diet. The absence of Schansitherium from Europe is interesting, however, as Samotherium is found in both locations. While is it challenging to interpret neck length and ossicone shape in terms of function in combat, we offer our hypothesis as to how the two species differed in their fighting techniques.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Giraffes , Phylogeny , Animals , China , Giraffes/anatomy & histology , Giraffes/classification , Giraffes/physiology
8.
Curr Biol ; 26(18): 2543-2549, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27618261

ABSTRACT

Traditionally, one giraffe species and up to eleven subspecies have been recognized [1]; however, nine subspecies are commonly accepted [2]. Even after a century of research, the distinctness of each giraffe subspecies remains unclear, and the genetic variation across their distribution range has been incompletely explored. Recent genetic studies on mtDNA have shown reciprocal monophyly of the matrilines among seven of the nine assumed subspecies [3, 4]. Moreover, until now, genetic analyses have not been applied to biparentally inherited sequence data and did not include data from all nine giraffe subspecies. We sampled natural giraffe populations from across their range in Africa, and for the first time individuals from the nominate subspecies, the Nubian giraffe, Giraffa camelopardalis camelopardalis Linnaeus 1758 [5], were included in a genetic analysis. Coalescence-based multi-locus and population genetic analyses identify at least four separate and monophyletic clades, which should be recognized as four distinct giraffe species under the genetic isolation criterion. Analyses of 190 individuals from maternal and biparental markers support these findings and further suggest subsuming Rothschild's giraffe into the Nubian giraffe, as well as Thornicroft's giraffe into the Masai giraffe [6]. A giraffe survey genome produced valuable data from microsatellites, mobile genetic elements, and accurate divergence time estimates. Our findings provide the most inclusive analysis of giraffe relationships to date and show that their genetic complexity has been underestimated, highlighting the need for greater conservation efforts for the world's tallest mammal.


Subject(s)
Genetic Speciation , Giraffes/classification , Giraffes/genetics , Africa , Animals , DNA, Mitochondrial/genetics , Genetic Variation , Multilocus Sequence Typing , Phylogeny
9.
PLoS One ; 11(3): e0151310, 2016.
Article in English | MEDLINE | ID: mdl-27028515

ABSTRACT

The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.


Subject(s)
Biological Evolution , Giraffes/anatomy & histology , Giraffes/classification , Talus/anatomy & histology , Animals , Giraffes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...