Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.819
Filter
1.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013634

ABSTRACT

INTRODUCTION: In this systematic review, we investigated the diagnostic accuracy of surrogate measures of insulin secretion based on fasting samples and the oral glucose tolerance test (OGTT). The first phase of insulin secretion was calculated using two gold standard methods; the hyperglycemic clamp (HGC) test and intravenous glucose tolerance test (IVGTT). RESEARCH DESIGN AND METHODS: We conducted searches in the PubMed, Cochrane Central, and Web of Science databases, the last of which was conducted at the end of June 2021. Studies were included that measured first-phase insulin secretion in adults using both a gold-standard reference method (either HGC or IVGTT) and one or more surrogate measures from either fasting samples, OGTT or a meal-tolerance test. QUADAS-2, a revised tool for the quality assessment of diagnostic accuracy studies, was used for quality assessment. Random-effects meta-analyses were performed to examine the correlation between first-phase measured with gold standard and surrogate methods. RESULTS: A total of 33 articles, encompassing 5362 individuals with normal glucose tolerance, pre-diabetes or type 2 diabetes, were included in our systematic review. Homeostatic model assessment (HOMA)-beta and Insulinogenic Index 30 (IGI(30)) were the surrogate measures validated in the largest number of studies (17 and 13, respectively). HOMA-beta's pooled correlation to the reference methods was 0.48 (95% CI 0.40 to 0.56) The pooled correlation of IGI to the reference methods was 0.61 (95% CI 0.54 to 0.68). The surrogate measures with the highest correlation to the reference methods were Kadowaki (0.67 (95% CI 0.61 to 0.73)) and Stumvoll's first-phase secretion (0.65 (95% CI 0.58 to 0.71)), both calculated from an OGTT. CONCLUSIONS: Surrogate measures from the first 30 min of an OGTT capture the first phase of insulin secretion and are a good choice for epidemiological studies. HOMA-beta has a moderate correlation to the reference methods but is not a measure of the first phase specifically. PROSPERO REGISTRATION NUMBER: The meta-analysis was registered at PROSPERO (Id: CRD42020169064) before inclusion started.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucose Clamp Technique , Glucose Tolerance Test , Insulin Secretion , Insulin , Humans , Glucose Tolerance Test/methods , Insulin/blood , Insulin/metabolism , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Biomarkers/analysis , Biomarkers/blood , Insulin Resistance , Prediabetic State/diagnosis , Prediabetic State/blood
2.
Front Endocrinol (Lausanne) ; 15: 1272886, 2024.
Article in English | MEDLINE | ID: mdl-38989003

ABSTRACT

Background: Obesity is associated with impaired glucose metabolism and hepatic insulin resistance. The aim was to investigate the associations of hepatic glucose uptake (HGU) and endogenous glucose production (EGP) to sedentary behavior (SB), physical activity (PA), cardiorespiratory fitness, dietary factors, and metabolic risk markers. Methods: Forty-four adults with metabolic syndrome (mean age 58 [SD 7] years, BMI ranging from 25-40kg/; 25 females) were included. HGU was measured by positron emission tomography during the hyperinsulinemic-euglycemic clamp. EGP was calculated by subtracting the glucose infusion rate during clamp from the glucose rate of disappearance. SB and PA were measured with hip-worn accelerometers (26 [SD3] days). Fitness was assessed by maximal bicycle ergometry with respiratory gas measurements and dietary intake of nutrients by 4-day food diaries. Results: HGU was not associated with fitness or any of the SB or PA measures. When adjusted for sex, age, and body fat-%, HGU was associated with whole-body insulin sensitivity (ß=0.58), water-insoluble dietary fiber (ß=0.29), energy percent (E%) of carbohydrates (ß=-0.32), saccharose (ß=-0.32), mono- and polyunsaturated fatty acids (ß=0.35, ß=0.41, respectively). EGP was associated with whole-body insulin sensitivity (ß=-0.53), and low-density lipoprotein cholesterol [ß=-0.31], and when further adjusted for accelerometry wear time, EGP was associated with standing [ß=-0.43]. (p-value for all< 0.05). Conclusions: Standing more, consuming a diet rich in fiber and unsaturated fatty acids, and a lower intake of carbohydrates, especially sugar, associate beneficially with hepatic insulin sensitivity. Habitual SB, PA, or fitness may not be the primary modulators of HGU and EGP. However, these associations need to be confirmed with intervention studies.


Subject(s)
Dietary Fiber , Fatty Acids, Unsaturated , Insulin Resistance , Liver , Metabolic Syndrome , Sedentary Behavior , Humans , Female , Male , Middle Aged , Metabolic Syndrome/metabolism , Dietary Fiber/administration & dosage , Liver/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/administration & dosage , Standing Position , Exercise , Aged , Adult , Glucose Clamp Technique , Cardiorespiratory Fitness/physiology
3.
Nutr Diabetes ; 14(1): 50, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987291

ABSTRACT

BACKGROUND/OBJECTIVE: To identify predictors of incident type 2 diabetes using a mixed meal tolerance test (MMTT). METHODS: Adult Indigenous Americans without diabetes (n = 501) from a longitudinal cohort underwent at baseline a 4-h MMTT, measures of body composition, an oral glucose tolerance test, an intravenous glucose tolerance test for acute insulin response (AIR), and a hyperinsulinemic-euglycemic clamp for insulin action (M). Plasma glucose responses from the MMTT were quantified by the total and incremental area under the curve (AUC/iAUC). RESULTS: At follow-up (median time 9.6 [inter-quartile range: 5.6-13.5] years), 169 participants were diagnosed with diabetes. Unadjusted Cox proportional hazards models, glucose AUC180-min (HR: 1.98, 95% CI: 1.67, 2.34, p < 0.0001), AUC240-min (HR: 1.93, 95% CI: 1.62, 2.31, p < 0.0001), and iAUC180-min (HR: 1.43, 95% CI: 1.20, 1.71, p < 0.0001) were associated with an increased risk of diabetes. After adjustment for covariates (age, sex, body fat percentage, M, AIR, Indigenous American heritage) in three subsequent models, AUC180-min (HR: 1.44, 95% CI: 1.10, 1.88, p = 0.007) and AUC240-min (HR: 1.41, 95% CI: 1.09, 1.84, p < 0.01) remained associated with increased risk of diabetes. CONCLUSIONS: Glucose responses to a mixed meal predicted the development of type 2 diabetes. This indicates that a mixed nutritional challenge provides important information on disease risk. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov identifier : NCT00340132, NCT00339482.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucose Tolerance Test , Meals , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/ethnology , Male , Female , Adult , Middle Aged , Blood Glucose/analysis , Longitudinal Studies , Indians, North American , Glucose Clamp Technique , Proportional Hazards Models , Insulin/blood
4.
Am J Physiol Endocrinol Metab ; 327(2): E183-E193, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38895980

ABSTRACT

Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipid concentrations in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to or exacerbating insulin resistance. We therefore investigated the impact of acute hyperinsulinemia on the skeletal muscle lipid profile to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. In a cross-sectional comparison, endurance athletes (n = 12), sedentary lean adults (n = 12), and individuals with obesity (n = 13) and T2D (n = 7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. Although there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D during acute hyperinsulinemia (P = 0.087). Moreover, C18 1,2-DAG species increased during the clamp with T2D only, which negatively correlated with insulin sensitivity (P < 0.050). Basal muscle C18:0 total ceramides were elevated with T2D (P = 0.029), but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared with only 46% with T2D (albeit not statistically significant, main effect of group, P = 0.624). Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.NEW & NOTEWORTHY Postprandial hyperinsulinemia is a risk factor for type 2 diabetes and may increase muscle lipids. However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to insulin resistance. We observed that acute hyperinsulinemia elevates muscle 1,2-DAGs in insulin-resistant phenotypes, whereas ceramides were unaltered. Insulin-mediated acylcarnitine reductions are also hindered with high-fat feeding. The postprandial period may exacerbate insulin resistance in metabolically unhealthy phenotypes.


Subject(s)
Diabetes Mellitus, Type 2 , Diglycerides , Hyperinsulinism , Insulin Resistance , Muscle, Skeletal , Phenotype , Hyperinsulinism/metabolism , Humans , Diglycerides/metabolism , Male , Muscle, Skeletal/metabolism , Adult , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Female , Cross-Sectional Studies , Middle Aged , Glucose Clamp Technique , Obesity/metabolism , Obesity/complications , Athletes , Young Adult , Acute Disease , Animals , Ceramides/metabolism , Mice , Carnitine/analogs & derivatives
5.
Nutrients ; 16(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931177

ABSTRACT

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Subject(s)
Biomarkers , Insulin Resistance , Metabolic Syndrome , Proteome , Humans , Metabolic Syndrome/metabolism , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Biomarkers/blood , Glucose Clamp Technique , Obesity/metabolism , Adipose Tissue/metabolism , Insulin/blood , Insulin/metabolism , Intra-Abdominal Fat/metabolism
6.
Nutr Diabetes ; 14(1): 40, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844453

ABSTRACT

BACKGROUND: High-protein diets are often enriched with branched-chain amino acids (BCAAs) known to enhance protein synthesis and provide numerous physiological benefits, but recent studies reveal their association with obesity and diabetes. In support of this, protein or BCAA supplementation is shown to disrupt glucose metabolism while restriction improves it. However, it is not clear if these are primary, direct effects of BCAAs or secondary to other physiological changes during chronic manipulation of dietary BCAAs. METHODS: Three-month-old C57Bl/6 mice were acutely treated with either vehicle/BCAAs or BT2, a BCAA-lowering compound, and detailed in vivo metabolic phenotyping, including frequent sampling and pancreatic clamps, were conducted. RESULTS: Using a catheter-guided frequent sampling method in mice, here we show that a single infusion of BCAAs was sufficient to acutely elevate blood glucose and plasma insulin. While pre-treatment with BCAAs did not affect glucose tolerance, a constant infusion of BCAAs during hyperinsulinemic-euglycemic clamps impaired whole-body insulin sensitivity. Similarly, a single injection of BT2 was sufficient to prevent BCAA rise during fasting and markedly improve glucose tolerance in high-fat-fed mice, suggesting that abnormal glycemic control in obesity may be causally linked to high circulating BCAAs. We further show that chemogenetic over-activation of AgRP neurons in the hypothalamus, as present in obesity, significantly impairs glucose tolerance that is completely normalized by acute BCAA reduction. Interestingly, most of these effects were demonstrated only in male, but not in female mice. CONCLUSION: These findings suggest that BCAAs per se can acutely impair glucose homeostasis and insulin sensitivity, thus offering an explanation for how they may disrupt glucose metabolism in the long-term as observed in obesity and diabetes. Our findings also reveal that AgRP neuronal regulation of blood glucose is mediated through BCAAs, further elucidating a novel mechanism by which brain controls glucose homeostasis.


Subject(s)
Agouti-Related Protein , Amino Acids, Branched-Chain , Blood Glucose , Insulin Resistance , Mice, Inbred C57BL , Neurons , Animals , Insulin Resistance/physiology , Agouti-Related Protein/metabolism , Neurons/metabolism , Neurons/drug effects , Male , Mice , Blood Glucose/metabolism , Female , Amino Acids, Branched-Chain/metabolism , Insulin/blood , Insulin/metabolism , Glucose Clamp Technique , Diet, High-Fat , Obesity/metabolism
7.
Diabetes Obes Metab ; 26(8): 3213-3222, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38774963

ABSTRACT

AIM: Experimental hypoglycaemia blunts the counterregulatory hormone and symptom responses to a subsequent episode of hypoglycaemia. In this study, we aimed to assess the associations between antecedent exposure and continuous glucose monitoring (CGM)-recorded hypoglycaemia during a 1-week period and the counterregulatory responses to subsequent experimental hypoglycaemia in people with type 1 diabetes. MATERIALS AND METHODS: Forty-two people with type 1 diabetes (20 females, mean ± SD glycated haemoglobin 7.8% ± 1.0%, diabetes duration median (interquartile range) 22.0 (10.5-34.9) years, 29 CGM users, and 19 with impaired awareness of hypoglycaemia) wore an open intermittently scanned CGM for 1 week to detect hypoglycaemic exposure before a standardized hyperinsulinaemic-hypoglycaemic [2.8 ± 0.1 mmol/L (50.2 ± 2.3 mg/dl)] glucose clamp. Symptom responses and counterregulatory hormones were measured during the clamp. The study is part of the HypoRESOLVE project. RESULTS: CGM-recorded hypoglycaemia in the week before the clamp was negatively associated with adrenaline response [ß -0.09, 95% CI (-0.16, -0.02) nmol/L, p = .014], after adjusting for CGM use, awareness of hypoglycaemia, glycated haemoglobin and total daily insulin dose. This was driven by level 2 hypoglycaemia [<3.0 mmol/L (54 mg/dl)] [ß -0.21, 95% CI (-0.41, -0.01) nmol/L, p = .034]. CGM-recorded hypoglycaemia was negatively associated with total, autonomic, and neuroglycopenic symptom responses, but these associations were lost after adjusting for potential confounders. CONCLUSIONS: Recent exposure to CGM-detected hypoglycaemia was independently associated with an attenuated adrenaline response to experimental hypoglycaemia in people with type 1 diabetes.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 1 , Glucose Clamp Technique , Hypoglycemia , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/physiopathology , Female , Hypoglycemia/chemically induced , Hypoglycemia/blood , Hypoglycemia/etiology , Male , Adult , Blood Glucose/analysis , Blood Glucose/metabolism , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Epinephrine/blood , Insulin/administration & dosage , Insulin/adverse effects , Middle Aged , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Glycemic Control , Continuous Glucose Monitoring
8.
J Alzheimers Dis ; 99(3): 1033-1046, 2024.
Article in English | MEDLINE | ID: mdl-38728183

ABSTRACT

Background: Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-ß peptides (Aß) play a key role in AD pathophysiology. Therefore, human studies on Aß metabolism and T2D are warranted. Objective: The objective of this study was to examine whether acute hyperglycemia affects plasma Aß1-40 and Aß1-42 concentrations in individuals with T2D and matched controls. Methods: Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aß1-40, Aß1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aß1-40 and Aß1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration. Results: At baseline, Aß1-40 and Aß1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aß decreased in the control group, compared to the placebo clamp (Aß1-40: p = 0.034, Aß1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aß or IDE was noted in the T2D group. Conclusions: Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aß40 and Aß42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.


Subject(s)
Amyloid beta-Peptides , Diabetes Mellitus, Type 2 , Glucose Clamp Technique , Hyperglycemia , Peptide Fragments , Humans , Amyloid beta-Peptides/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Aged , Male , Hyperglycemia/blood , Female , Peptide Fragments/blood , Blood Glucose/metabolism , Insulysin/metabolism
9.
Obesity (Silver Spring) ; 32(7): 1329-1338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38764181

ABSTRACT

OBJECTIVE: Obesity is associated with alterations in eating behavior and neurocognitive function. In this study, we investigate the effect of obesity on brain energy utilization, including brain glucose transport and metabolism. METHODS: A total of 11 lean participants and 7 young healthy participants with obesity (mean age, 27 years) underwent magnetic resonance spectroscopy scanning coupled with a hyperglycemic clamp (target, ~180 mg/dL) using [1-13C] glucose to measure brain glucose uptake and metabolism, as well as peripheral markers of insulin resistance. RESULTS: Individuals with obesity demonstrated an ~20% lower ratio of brain glucose uptake to cerebral glucose metabolic rate (Tmax/CMRglucose) than lean participants (2.12 ± 0.51 vs. 2.67 ± 0.51; p = 0.04). The cerebral tricarboxylic acid cycle flux (VTCA) was similar between the two groups (p = 0.64). There was a negative correlation between total nonesterified fatty acids and Tmax/CMRglucose (r = -0.477; p = 0.045). CONCLUSIONS: We conclude that CMRglucose is unlikely to differ between groups due to similar VTCA, and, therefore, the glucose transport Tmax is lower in individuals with obesity. These human findings suggest that obesity is associated with reduced cerebral glucose transport capacity even at a young age and in the absence of other cardiometabolic comorbidities, which may have implications for long-term brain function and health.


Subject(s)
Brain , Glucose , Insulin Resistance , Obesity , Humans , Adult , Obesity/metabolism , Male , Female , Glucose/metabolism , Brain/metabolism , Brain/diagnostic imaging , Young Adult , Blood Glucose/metabolism , Magnetic Resonance Spectroscopy , Citric Acid Cycle , Biological Transport , Glucose Clamp Technique , Energy Metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Magnetic Resonance Imaging
10.
Diabetes ; 73(8): 1361-1371, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38776413

ABSTRACT

Genetic determinants of interindividual differences in energy expenditure (EE) are largely unknown. Sphingolipids, such as ceramides, have been implicated in the regulation of human EE via mitochondrial uncoupling. In this study, we investigated whether genetic variants within enzymes involved in sphingolipid synthesis and degradation affect EE and insulin-related traits in a cohort of American Indians informative for 24-h EE and glucose disposal rates during a hyperinsulinemic-euglycemic clamp. Association analysis of 10,084 genetic variants within 28 genes involved in sphingolipid pathways identified a missense variant (rs267738, A>C, E115A) in exon 4 of CERS2 that was associated with higher sleeping EE (116 kcal/day) and increased rates of endogenous glucose production during basal (5%) and insulin-stimulated (43%) conditions, both indicators of hepatic insulin resistance. The rs267738 variant did not affect ceramide synthesis in HepG2 cells but resulted in a 30% decrease in basal mitochondrial respiration. In conclusion, we provide evidence that the CERS2 rs267738 missense variant may influence hepatic glucose production and postabsorptive sleeping metabolic rate.


Subject(s)
Energy Metabolism , Indians, North American , Insulin Resistance , Liver , Membrane Proteins , Mutation, Missense , Sphingosine N-Acyltransferase , Humans , Insulin Resistance/genetics , Energy Metabolism/genetics , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Female , Adult , Liver/metabolism , Indians, North American/genetics , Sleep/genetics , Sleep/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Hep G2 Cells , Glucose Clamp Technique , Middle Aged
11.
Front Endocrinol (Lausanne) ; 15: 1343641, 2024.
Article in English | MEDLINE | ID: mdl-38715798

ABSTRACT

Background: Overweight and obesity, high blood pressure, hyperglycemia, hyperlipidemia, and insulin resistance (IR) are strongly associated with non-communicable diseases (NCDs), including type 2 diabetes, cardiovascular disease, stroke, and cancer. Different surrogate indices of IR are derived and validated with the euglycemic-hyperinsulinemic clamp (EHC) test. Thus, using a computational approach to predict IR with Matsuda index as reference, this study aimed to determine the optimal cutoff value and diagnosis accuracy for surrogate indices in non-diabetic young adult men. Methods: A cross-sectional descriptive study was carried out with 93 young men (ages 18-31). Serum levels of glucose and insulin were analyzed in the fasting state and during an oral glucose tolerance test (OGTT). Additionally, clinical, biochemical, hormonal, and anthropometric characteristics and body composition (DEXA) were determined. The computational approach to evaluate the IR diagnostic accuracy and cutoff value using difference parameters was examined, as well as other statistical tools to make the output robust. Results: The highest sensitivity and specificity at the optimal cutoff value, respectively, were established for the Homeostasis model assessment of insulin resistance index (HOMA-IR) (0.91; 0.98; 3.40), the Quantitative insulin sensitivity check index (QUICKI) (0.98; 0.96; 0.33), the triglyceride-glucose (TyG)-waist circumference index (TyG-WC) (1.00; 1.00; 427.77), the TyG-body mass index (TyG-BMI) (1.00; 1.00; 132.44), TyG-waist-to-height ratio (TyG-WHtR) (0.98; 1.00; 2.48), waist-to-height ratio (WHtR) (1.00; 1.00; 0.53), waist circumference (WC) (1.00; 1.00; 92.63), body mass index (BMI) (1.00; 1.00; 28.69), total body fat percentage (TFM) (%) (1.00; 1.00; 31.07), android fat (AF) (%) (1.00; 0.98; 40.33), lipid accumulation product (LAP) (0.84; 1.00; 45.49), leptin (0.91; 1.00; 16.08), leptin/adiponectin ratio (LAR) (0.84; 1.00; 1.17), and fasting insulin (0.91; 0.98; 16.01). Conclusions: The computational approach was used to determine the diagnosis accuracy and the optimal cutoff value for IR to be used in preventive healthcare.


Subject(s)
Blood Glucose , Glucose Tolerance Test , Insulin Resistance , Humans , Male , Cross-Sectional Studies , Adult , Young Adult , Adolescent , Glucose Tolerance Test/methods , Blood Glucose/analysis , Insulin/blood , Biomarkers/blood , Body Mass Index , Body Composition , Glucose Clamp Technique
12.
Diabetes ; 73(7): 1072-1083, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608261

ABSTRACT

Insulin resistance is a risk factor for type 2 diabetes, and exercise can improve insulin sensitivity. However, following exercise, high circulating fatty acid (FA) levels might counteract this. We hypothesized that such inhibition would be reduced by forcibly increasing carbohydrate oxidation through pharmacological activation of the pyruvate dehydrogenase complex (PDC). Insulin-stimulated glucose uptake was examined with a crossover design in healthy young men (n = 8) in a previously exercised and a rested leg during a hyperinsulinemic-euglycemic clamp 5 h after one-legged exercise with 1) infusion of saline, 2) infusion of intralipid imitating circulating FA levels during recovery from whole-body exercise, and 3) infusion of intralipid + oral PDC activator, dichloroacetate (DCA). Intralipid infusion reduced insulin-stimulated glucose uptake by 19% in the previously exercised leg, which was not observed in the contralateral rested leg. Interestingly, this effect of intralipid in the exercised leg was abolished by DCA, which increased muscle PDC activity (130%) and flux (acetylcarnitine 130%) and decreased inhibitory phosphorylation of PDC on Ser293 (∼40%) and Ser300 (∼80%). Novel insight is provided into the regulatory interaction between glucose and lipid metabolism during exercise recovery. Coupling exercise and PDC flux activation upregulated the capacity for both glucose transport (exercise) and oxidation (DCA), which seems necessary to fully stimulate insulin-stimulated glucose uptake during recovery.


Subject(s)
Exercise , Insulin , Muscle, Skeletal , Pyruvate Dehydrogenase Complex , Humans , Male , Exercise/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Insulin/metabolism , Insulin/blood , Pyruvate Dehydrogenase Complex/metabolism , Adult , Young Adult , Glucose Clamp Technique , Cross-Over Studies , Dichloroacetic Acid/pharmacology , Insulin Resistance/physiology , Fatty Acids/metabolism , Glucose/metabolism , Soybean Oil/pharmacology , Post-Exercise Recovery , Emulsions , Phospholipids
13.
Diabetes Obes Metab ; 26(6): 2476-2486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558527

ABSTRACT

AIM: To determine the effect of endogenous glucagon-like peptide 1 (GLP-1) on prandial counterregulatory response to hypoglycaemia after gastric bypass (GB). MATERIALS AND METHODS: Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion, were compared during a hyperinsulinaemic-hypoglycaemic (~3.2 mmol/L) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) infusion in non-diabetic patients who had previously undergone GB compared to matched participants who had previously undergone sleeve gastrectomy (SG) and non-surgical controls. RESULTS: Exendin-(9-39) infusion raised prandial endogenous glucose production (EGP) response to insulin-induced hypoglycaemia in the GB group but had no consistent effect on EGP response among the SG group or non-surgical controls (p < 0.05 for interaction). The rates of systemic appearance of ingested glucose or prandial glucose utilization did not differ among the three groups or between studies with and without exendin-(9-39) infusion. Blockade of GLP-1R had no effect on insulin secretion or insulin action but enhanced prandial glucagon in all three groups. CONCLUSIONS: These results indicate that impaired post-meal glucose counterregulatory response to hypoglycaemia after GB is partly mediated by endogenous GLP-1, highlighting a novel pathogenic mechanism of GLP-1 in developing hypoglycaemia in this population.


Subject(s)
Blood Glucose , Gastric Bypass , Glucagon-Like Peptide 1 , Hypoglycemia , Adult , Female , Humans , Male , Middle Aged , Blood Glucose/metabolism , Gastrectomy/adverse effects , Gastric Bypass/adverse effects , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucose Clamp Technique , Hypoglycemia/prevention & control , Hypoglycemia/metabolism , Insulin/metabolism , Peptide Fragments/administration & dosage , Postprandial Period
14.
Diabetologia ; 67(7): 1386-1398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662135

ABSTRACT

AIMS/HYPOTHESIS: Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS: Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS: Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION: Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.


Subject(s)
Blood Glucose , Exercise , Glucose Clamp Technique , Insulin Resistance , Insulin , Meals , Muscle, Skeletal , Humans , Male , Exercise/physiology , Muscle, Skeletal/metabolism , Insulin Resistance/physiology , Adult , Blood Glucose/metabolism , Insulin/metabolism , Insulin/blood , Young Adult , Meals/physiology
15.
Cardiovasc Diabetol ; 23(1): 144, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671460

ABSTRACT

BACKGROUND: Evidence has shown that women with type 2 diabetes (T2DM) have a higher excess risk for cardiovascular disease (CVD) than men with T2DM. Subjects with either T2DM or prediabetes exhibit myocardial insulin resistance, but it is still unsettled whether sex-related differences in myocardial insulin resistance occur in diabetic and prediabetic subjects. METHODS: We aimed to evaluate sex-related differences in myocardial glucose metabolic rate (MRGlu), assessed using dynamic PET with 18F-FDG combined with euglycemic-hyperinsulinemic clamp, in subjects with normal glucose tolerance (NGT; n = 20), prediabetes (n = 11), and T2DM (n = 26). RESULTS: Women with prediabetes or T2DM exhibited greater relative differences in myocardial MRGlu than men with prediabetes or T2DM when compared with their NGT counterparts. As compared with women with NGT, those with prediabetes exhibited an age-adjusted 35% lower myocardial MRGlu value (P = 0.04) and women with T2DM a 74% lower value (P = 0.006), respectively. Conversely, as compared with men with NGT, men with T2DM exhibited a 40% lower myocardial MRGlu value (P = 0.004), while no significant difference was observed between men with NGT and prediabetes. The statistical test for interaction between sex and glucose tolerance on myocardial MRGlu (P < 0.0001) was significant suggesting a sex-specific association. CONCLUSIONS: Our data suggest that deterioration of glucose homeostasis in women is associated with a greater impairment in myocardial glucose metabolism as compared with men. The sex-specific myocardial insulin resistance could be an important factor responsible for the greater effect of T2DM on the excess risk of cardiovascular disease in women than in men.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucose Clamp Technique , Insulin Resistance , Myocardium , Prediabetic State , Humans , Male , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/epidemiology , Female , Prediabetic State/metabolism , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Middle Aged , Sex Factors , Myocardium/metabolism , Blood Glucose/metabolism , Adult , Aged , Biomarkers/blood , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Radiopharmaceuticals , Insulin/blood , Case-Control Studies , Energy Metabolism
16.
Front Endocrinol (Lausanne) ; 15: 1352829, 2024.
Article in English | MEDLINE | ID: mdl-38686202

ABSTRACT

Background: Hypoglycemia is common in individuals with type 1 diabetes, especially during exercise. We investigated the accuracy of two different continuous glucose monitoring systems during exercise-related hypoglycemia in an experimental setting. Materials and methods: Fifteen individuals with type 1 diabetes participated in two separate euglycemic-hypoglycemic clamp days (Clamp-exercise and Clamp-rest) including five phases: 1) baseline euglycemia, 2) plasma glucose (PG) decline ± exercise, 3) 15-minute hypoglycemia ± exercise, 4) 45-minute hypoglycemia, and 5) recovery euglycemia. Interstitial PG levels were measured every five minutes, using Dexcom G6 (DG6) and FreeStyle Libre 1 (FSL1). Yellow Springs Instruments 2900 was used as PG reference method, enabling mean absolute relative difference (MARD) assessment for each phase and Clarke error grid analysis for each day. Results: Exercise had a negative effect on FSL1 accuracy in phase 2 and 3 compared to rest (ΔMARD = +5.3 percentage points [(95% CI): 1.6, 9.1] and +13.5 percentage points [6.4, 20.5], respectively). In contrast, exercise had a positive effect on DG6 accuracy during phase 2 and 4 compared to rest (ΔMARD = -6.2 percentage points [-11.2, -1.2] and -8.4 percentage points [-12.4, -4.3], respectively). Clarke error grid analysis showed a decrease in clinically acceptable treatment decisions during Clamp-exercise for FSL1 while a contrary increase was observed for DG6. Conclusion: Physical exercise had clinically relevant impact on the accuracy of the investigated continuous glucose monitoring systems and their ability to accurately detect hypoglycemia.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 1 , Exercise , Glucose Clamp Technique , Hypoglycemia , Humans , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Hypoglycemia/blood , Hypoglycemia/diagnosis , Hypoglycemia/etiology , Male , Female , Adult , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Young Adult , Middle Aged , Continuous Glucose Monitoring
17.
Clin Pharmacol Drug Dev ; 13(7): 828-836, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38515279

ABSTRACT

The aim of the study was to compare the pharmacokinetics (PK) and pharmacodynamics (PD) of T-glu (GP40321, test drug), and reference insulin glulisine in a hyperinsulinemic-euglycemic clamp procedure. During this study, 34 healthy male volunteers underwent the hyperinsulinemic-euglycemic clamp procedure following subcutaneous 0.3 U/kg injection of T-glu or reference insulin glulisine in a randomized, double-blind, crossover study. Plasma glucose levels were monitored every 5 minutes for 8 hours. Glucose infusion rate adjustment was based on the blood glucose measurements. Evaluation of PD was performed using the glucose infusion rate values, while PK was calculated using insulin concentrations measured via enzyme-linked immunosorbent assay. The study results showed that the 90% CI for the geometric mean ratios of primary PK and PD of T-glu and reference insulin glulisine were within 80%-125% comparability limits, and that the safety profiles were comparable. PK, PD, and safety similarity of T-glu and reference insulin glulisine was demonstrated.


Subject(s)
Blood Glucose , Cross-Over Studies , Glucose Clamp Technique , Insulin , Humans , Male , Glucose Clamp Technique/methods , Double-Blind Method , Adult , Blood Glucose/drug effects , Blood Glucose/metabolism , Young Adult , Insulin/pharmacokinetics , Insulin/blood , Insulin/administration & dosage , Insulin/analogs & derivatives , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/administration & dosage , Biosimilar Pharmaceuticals/pharmacology , Biosimilar Pharmaceuticals/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Healthy Volunteers
18.
Am J Physiol Endocrinol Metab ; 326(5): E673-E680, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38446636

ABSTRACT

Residual beta cells are present in most patients with longstanding type 1 diabetes but it is unknown whether these beta cells react normally to different stimuli. Moreover a defect in proinsulin conversion and abnormal alpha cell response are also part of the islet dysfunction. A three-phase [euglycemia, hyperglycemia, and hyperglycemia + glucagon-like peptide 1 (GLP-1)] clamp was performed in patients with longstanding type 1 diabetes. Intravenous arginine boluses were administered at the end of each phase. On another day, a mixed meal stimulation test with a subsequent intravenous arginine bolus was performed. C-peptide was detectable in a subgroup of subjects at baseline (2/15) or only after stimulation (3/15). When detectable, C-peptide increased 2.9-fold [95% CI: 1.2-7.1] during the hyperglycemia phase and 14.1-fold [95% CI: 3.1-65.2] during the hyperglycemia + GLP-1 phase, and 22.3-fold [95% CI: 5.6-89.1] during hyperglycemia + GLP-1 + arginine phase when compared with baseline. The same subset of patients with a C-peptide response were identified during the mixed meal stimulation test as during the clamp. There was an inhibition of glucagon secretion (0.72-fold, [95% CI: 0.63-0.84]) during the glucose clamp irrespective of the presence of detectable beta cell function. Proinsulin was only present in a subset of subjects with detectable C-peptide (3/15) and proinsulin mimicked the C-peptide response to the different stimuli when detectable. Residual beta cells in longstanding type 1 diabetes respond adequately to different stimuli and could be of clinical benefit.NEW & NOTEWORTHY If beta cell function is detectable, the beta cells react relatively normal to the different stimuli except for the first phase response to intravenous glucose. An oral mixed meal followed by an intravenous arginine bolus can identify residual beta cell function/mass as well as the more commonly used glucose potentiated arginine-induced insulin secretion during a hyperglycemic clamp.


Subject(s)
Arginine , C-Peptide , Diabetes Mellitus, Type 1 , Food, Formulated , Glucagon-Like Peptide 1 , Glucose , Islets of Langerhans , Adult , Female , Humans , Male , Middle Aged , Arginine/administration & dosage , Arginine/pharmacology , Blood Glucose/metabolism , C-Peptide/blood , C-Peptide/metabolism , Diabetes Mellitus, Type 1/metabolism , Glucagon/metabolism , Glucagon-Like Peptide 1/administration & dosage , Glucagon-Like Peptide 1/metabolism , Glucose/administration & dosage , Glucose/metabolism , Glucose Clamp Technique , Hyperglycemia/metabolism , Insulin/metabolism , Insulin/administration & dosage , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects
19.
Diabetes ; 73(6): 903-908, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38502790

ABSTRACT

Diabetes and obesity are risk factors for kidney disease. Whereas renal glucose production increases in diabetes, recent data suggest that gluconeogenic and oxidative capacity decline in kidney disease. Thus, metabolic dysregulation caused by diet-induced insulin resistance may sensitize the kidney for a loss in function. Here, we examined how diet-induced insulin resistance disrupts mitochondrial metabolic fluxes in the renal cortex in vivo. C57BL/6J mice were rendered insulin resistant through high-fat (HF) feeding; anaplerotic, cataplerotic, and oxidative metabolic fluxes in the cortex were quantified through 13C-isotope tracing during a hyperinsulinemic-euglycemic clamp. As expected, HF-fed mice exhibited increased body weight, gluconeogenesis, and systemic insulin resistance compared with chow-fed mice. Relative to the citric acid cycle, HF feeding increased metabolic flux through pyruvate carboxylation (anaplerosis) and phosphoenolpyruvate carboxykinase (cataplerosis) and decreased flux through the pyruvate dehydrogenase complex in the cortex. Furthermore, the relative flux from nonpyruvate sources of acetyl-CoA profoundly increased in the cortex of HF-fed mice, correlating with a marker of oxidative stress. The data demonstrate that HF feeding spares pyruvate from dehydrogenation at the expense of increasing cataplerosis, which may underpin renal gluconeogenesis during insulin resistance; the results also support the hypothesis that dysregulated oxidative metabolism in the kidney contributes to metabolic disease.


Subject(s)
Diet, High-Fat , Gluconeogenesis , Insulin Resistance , Kidney Cortex , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Kidney Cortex/metabolism , Insulin Resistance/physiology , Mice , Gluconeogenesis/physiology , Male , Glucose Clamp Technique , Acetyl Coenzyme A/metabolism , Citric Acid Cycle , Mitochondria/metabolism
20.
Diabetologia ; 67(6): 1095-1106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427076

ABSTRACT

AIMS/HYPOTHESIS: As a result of early loss of the glucagon response, adrenaline is the primary counter-regulatory hormone in type 1 diabetes. Diminished adrenaline responses to hypoglycaemia due to counter-regulatory failure are common in type 1 diabetes, and are probably induced by exposure to recurrent hypoglycaemia, however, the metabolic effects of adrenaline have received less research attention, and also there is conflicting evidence regarding adrenaline sensitivity in type 1 diabetes. Thus, we aimed to investigate the metabolic response to adrenaline and explore whether it is modified by prior exposure to hypoglycaemia. METHODS: Eighteen participants with type 1 diabetes and nine healthy participants underwent a three-step ascending adrenaline infusion during a hyperinsulinaemic-euglycaemic clamp. Continuous glucose monitoring data obtained during the week before the study day were used to assess the extent of hypoglycaemia exposure. RESULTS: While glucose responses during the clamp were similar between people with type 1 diabetes and healthy participants, plasma concentrations of NEFAs and glycerol only increased in the group with type 1 diabetes (p<0.001). Metabolomics revealed an increase in the most common NEFAs (p<0.01). Other metabolic responses were generally similar between participants with type 1 diabetes and healthy participants. Exposure to hypoglycaemia was negatively associated with the NEFA response; however, this was not statistically significant. CONCLUSIONS/INTERPRETATION: In conclusion, individuals with type 1 diabetes respond with increased lipolysis to adrenaline compared with healthy participants by mobilising the abundant NEFAs in plasma, whereas other metabolic responses were similar. This may suggest that the metabolic sensitivity to adrenaline is altered in a pathway-specific manner in type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT05095259.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Epinephrine , Glucose Clamp Technique , Hypoglycemia , Adult , Female , Humans , Male , Young Adult , Blood Glucose/metabolism , Blood Glucose/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Epinephrine/blood , Epinephrine/administration & dosage , Fatty Acids, Nonesterified/blood , Glucagon/blood , Glycerol/blood , Glycerol/administration & dosage , Hypoglycemia/blood , Insulin/administration & dosage , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL