Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.936
Filter
2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892469

ABSTRACT

Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression.


Subject(s)
Glucuronidase , Heparitin Sulfate , Mast Cells , Mast Cells/metabolism , Glucuronidase/metabolism , Glucuronidase/genetics , Animals , Heparitin Sulfate/metabolism , Mice , Cell Line, Tumor
3.
Commun Biol ; 7(1): 720, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862813

ABSTRACT

Overexpression of the longevity gene Klotho prolongs lifespan, while its knockout shortens lifespan and impairs cognition via perturbation of myelination and synapse formation. However, comprehensive analysis of Klotho knockout effects on mammalian brain transcriptomics is lacking. Here, we report that Klotho knockout alters the levels of aging- and cognition related mRNAs, long non-coding RNAs, microRNAs and tRNA fragments. These include altered neuronal and glial regulators in murine models of aging and Alzheimer's disease and in human Alzheimer's disease post-mortem brains. We further demonstrate interaction of the knockout-elevated tRNA fragments with the spliceosome, possibly affecting RNA processing. Last, we present cell type-specific short RNA-seq datasets from FACS-sorted neurons and microglia of live human brain tissue demonstrating in-depth cell-type association of Klotho knockout-perturbed microRNAs. Together, our findings reveal multiple RNA transcripts in both neurons and glia from murine and human brain that are perturbed in Klotho deficiency and are aging- and neurodegeneration-related.


Subject(s)
Aging , Alzheimer Disease , Brain , Glucuronidase , Klotho Proteins , Longevity , Mice, Knockout , MicroRNAs , RNA, Transfer , Klotho Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Mice , Glucuronidase/genetics , Glucuronidase/metabolism , Humans , Longevity/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Male , Neurons/metabolism , Mice, Inbred C57BL
4.
Biol Direct ; 19(1): 45, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863009

ABSTRACT

BACKGROUND: Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS: The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1ß) and heparanase (HPSE) on glioma growth in vivo. RESULTS: Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1ß, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1ß from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1ß facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1ß facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION: Hypoxia-induced activation of HIF-1α/IL-1ß axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.


Subject(s)
Glioma , Glucuronidase , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-1beta , Mice, Nude , Microglia , NF-kappa B , Up-Regulation , Glioma/metabolism , Glioma/genetics , Glioma/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Microglia/metabolism , Animals , NF-kappa B/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Glucuronidase/metabolism , Glucuronidase/genetics , Cell Line, Tumor , Disease Progression , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation , Cell Movement , Hypoxia/metabolism , Hypoxia/physiopathology , Hypoxia/genetics
5.
Funct Plant Biol ; 512024 Jun.
Article in English | MEDLINE | ID: mdl-38870342

ABSTRACT

Genetic transformation is helpful in enhancing crops, utilising promoters that can be constitutive, inducible, or tissue-specific. However, the use of constitutive promoters may hinder plant growth due to energy consumption during cellular processes. To optimise transgene effects, tissue-specific promoters like root-specific ones prove valuable in addressing root-related issues and enhancing productivity. Yet, identified root-specific promoters in crop are limited. To address this gap, the expression pattern of the root-specific SlREO promoter was examined across various crops. Sequencing confirmed its identity and high homology (99%) with the NCBI database, distinct from other plants tested. Using the PLACE database, six motifs associated with root expression were identified, along with several other important elements. The 2.4kb SlREO promoter was linked to a ß-glucuronidase (GUS) reporter gene alongside the CaMV35S promoter in pRI 201-AN-GUS vectors to study its expression. Histochemistry revealed strong root-specific expression in tomato (Solanum lycopersicum ) root tissues and limited expression in stems. However, the SlREO promoter did not consistently maintain its root-specific expression in other plants. Conversely, the CaMV35S promoter exhibited constitutive expression across all tissues in various plants. This study underscores the potential of the SlREO promoter as a root-specific regulatory element, offering avenues for improving crops, particularly against environmental stresses.


Subject(s)
Cloning, Molecular , Gene Expression Regulation, Plant , Plant Roots , Plants, Genetically Modified , Promoter Regions, Genetic , Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Base Sequence
6.
Cell Host Microbe ; 32(6): 783-785, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870895

ABSTRACT

Previous studies have explored the role of the gut microbiota in regulating endobiotic homeostasis, but the precise mechanisms remain unclear. In this issue of Cell Host & Microbe, Simpson et al. identified two predominant subtypes of gut microbial ß-Glucuronidase (gmGUS) that can reactivate hormones and neurotransmitters to regulate endobiotic homeostasis.


Subject(s)
Gastrointestinal Microbiome , Glucuronidase , Homeostasis , Glucuronidase/metabolism , Glucuronidase/genetics , Gastrointestinal Microbiome/physiology , Humans , Animals , Gastrointestinal Tract/microbiology , Bacteria/enzymology , Bacteria/metabolism , Bacteria/genetics
7.
Minerva Med ; 115(3): 320-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727708

ABSTRACT

Phosphate is a key component of mineralized tissues and is also part of many organic compounds. Phosphorus homeostasis depends especially upon intestinal absorption, and renal excretion, which are regulated by various hormones, such as PTH, 1,25-dihydroxyvitamin D, and fibroblast growth factor 23. In this review we provide an update of several genetic disorders that affect phosphate transporters through cell membranes or the phosphate-regulating hormones, and, consequently, result in hypophosphatemia.


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Hypophosphatemia , Parathyroid Hormone , Humans , Hypophosphatemia/genetics , Hypophosphatemia/etiology , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Parathyroid Hormone/metabolism , Phosphates/metabolism , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Klotho Proteins , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Intestinal Absorption/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Phosphorus/metabolism
8.
Biochem Pharmacol ; 225: 116328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815628

ABSTRACT

Early stages of diabetes are characterized by elevations of insulin and glucose concentrations. Both factors stimulate reactive oxygen species (ROS) production, leading to impairments in podocyte function and disruption of the glomerular filtration barrier. Podocytes were recently shown to be an important source of αKlotho (αKL) expression. Low blood Klotho concentrations are also associated with an increase in albuminuria, especially in patients with diabetes. We investigated whether ADAM10, which is known to cleave αKL, is activated in glomeruli and podocytes under diabetic conditions and the potential mechanisms by which ADAM10 mediates ROS production and disturbances of the glomerular filtration barrier. In cultured human podocytes, high glucose increased ADAM10 expression, shedding, and activity, NADPH oxidase activity, ROS production, and albumin permeability. These effects of glucose were inhibited when cells were pretreated with an ADAM10 inhibitor or transfected with short-hairpin ADAM10 (shADAM10) or after the addition soluble Klotho. We also observed increases in ADAM10 activity, NOX4 expression, NADPH oxidase activity, and ROS production in αKL-depleted podocytes. This was accompanied by an increase in albumin permeability in shKL-expressing podocytes. The protein expression and activity of ADAM10 also increased in isolated glomeruli and urine samples from diabetic rats. Altogether, these results reveal a new mechanism by which hyperglycemia in diabetes increases albumin permeability through ADAM10 activation and an increase in oxidative stress via NOX4 enzyme activation. Moreover, αKlotho downregulates ADAM10 activity and supports redox balance, consequently protecting the slit diaphragm of podocyteσ under hyperglycemic conditions.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Diabetes Mellitus, Experimental , Glucuronidase , Klotho Proteins , Membrane Proteins , Podocytes , Reactive Oxygen Species , Podocytes/metabolism , Podocytes/drug effects , Klotho Proteins/metabolism , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Reactive Oxygen Species/metabolism , Humans , Animals , Glucuronidase/metabolism , Glucuronidase/genetics , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Rats , Male , Diabetes Mellitus, Experimental/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidases/metabolism , Cells, Cultured , Glucose/metabolism , Rats, Sprague-Dawley
9.
Hum Cell ; 37(4): 1008-1023, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753278

ABSTRACT

Reproductive aging is associated with altered stress response and many other menopausal symptoms. Little is known about the adrenal expression of the anti-aging protein Klotho or how it is modulated by estrogen in ovariectomized stressed rats. Fifty-six Wistar female rats were assigned into seven equal groups. Sham-operated (Sham), sham stressed (Sham/STS), ovariectomized (OVR), ovariectomized stressed (OVR/STS), ovariectomized stressed rosiglitazone-treated (OVR/STS/R), ovariectomized stressed estrogen-treated (OVR/STS/E), and ovariectomized stressed estrogen/GW9662 co-treated (OVR/STS/E/GW) groups. All stressed rats were subjected daily to a one-hour restraint stress test for 19 days. At the end of the experiment, blood was collected for serum corticosterone (CORT) analysis. Adrenal tissues were obtained and prepared for polymerase chain reaction (PCR) assay, hematoxylin and eosin (H&E), immunohistochemistry-based identification of Klotho and PPAR-γ, and Oil Red O (ORO) staining. The rise in serum CORT was negligible in the OVR/STS group, in contrast to the Sham/STS group. The limited CORT response in the former group was restored by estrogen and rosiglitazone and blocked by estrogen/GW9226 co-administration. ORO-staining revealed a more evident reduction in the adrenal fat in the OVR/STS group, which was reversed by estrogen and counteracted by GW. Also, there was a comparable expression pattern of Klotho and PPAR-γ in the adrenals. The adrenal Klotho decreased in the OVR/STS group, but was reversed by estrogen treatment. GW9226/estrogen co-treatment interfered with the regulatory effect of estrogen on Klotho. The study suggested modulation of the adrenal Kotho expression by estrogen, in the ovariectomized rats subjected to a restraint stress test. This estrogen-provided adrenal protection might be mediated by PPAR-γ activation.


Subject(s)
Adrenal Cortex , Estrogens , Glucuronidase , Klotho Proteins , Ovariectomy , PPAR gamma , Rats, Wistar , Animals , Female , Glucuronidase/metabolism , Glucuronidase/genetics , Adrenal Cortex/metabolism , Adrenal Cortex/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Rats , Restraint, Physical , Gene Expression/drug effects , Gene Expression/genetics , Corticosterone/blood , Stress, Psychological/metabolism , Stress, Physiological , Rosiglitazone/pharmacology , Disease Models, Animal , Aging/metabolism , Models, Animal
10.
Sci Rep ; 14(1): 10740, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729987

ABSTRACT

Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.


Subject(s)
Aldosterone , Glucuronidase , Klotho Proteins , Mice, Knockout , Potassium , Klotho Proteins/metabolism , Animals , Humans , Mice , Potassium/metabolism , Aldosterone/metabolism , Glucuronidase/metabolism , Glucuronidase/genetics , Male , Nephrons/metabolism , Potassium, Dietary/metabolism , Potassium, Dietary/administration & dosage , Female , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Mice, Inbred C57BL
11.
FASEB J ; 38(10): e23670, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747803

ABSTRACT

HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.


Subject(s)
Glucuronidase , Inflammation , Neoplasms , Humans , Animals , Inflammation/metabolism , Inflammation/pathology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Glucuronidase/metabolism , Glucuronidase/genetics , Mice , Endoplasmic Reticulum Stress
12.
Pregnancy Hypertens ; 36: 101115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608394

ABSTRACT

INTRODUCTION: α-Klotho protein has three isoforms: a transmembrane (mKL), a shed- soluble isoform, and a circulating soluble isoform (sKL). mKL is expressed in the kidney and placenta, while sKL is detectable in blood and urine. It is known that α-Klotho levels fluctuate during pregnancy mainly in women with complications such as preeclampsia (PE) and intra-uterine growth restriction (IUGR). METHODS: Forty-nine participants were divided into two groups: healthy and complicated pregnancy (PE, IUGR or both). Tissue samples (2 cm3) from the maternal side, Blood and urine samples were collected during pregnancy and postpartum. Samples were subjected to biochemical (WB), histological (H&E and IHC) staining as well as genetic analysis (qPCR). RESULTS: Blood αKL levels were preserved in both healthy and complicated pregnancies. Significantly lower blood αKL concentrations were found in PE postpartum (PP) compared to levels during pregnancy, and were significantly lower compared with postpartum of a healthy pregnancy. αKL activity was reduced in complicated pregnancies vs. healthy pregnancies. Placen tal mKL levels (ELISA) and expression (WB) were lowered in complicated pregnancies compared with the healthy pregnancies group. Additionally, we found a significant decline in the expression of mKL mRNA in PE/IUGR placentas compared with the healthy group. DISCUSSION: Several studies have focused on the involvement of αKL in normal placentation during pregnancy. Our results suggest lower function of sKL in complicated pregnancy compared with a control, and present differences in placental mKL levels as well as tissue and gene expression between healthy and complicated pregnancy. In light of our results, we conclude that complicated pregnancy is associated with in decline in mKL.


Subject(s)
Biomarkers , Fetal Growth Retardation , Klotho Proteins , Placenta , Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/blood , Fetal Growth Retardation/blood , Placenta/metabolism , Adult , Biomarkers/blood , Case-Control Studies , Glucuronidase/blood , Glucuronidase/genetics
13.
Atherosclerosis ; 392: 117519, 2024 May.
Article in English | MEDLINE | ID: mdl-38581737

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is the primary underlying cause of myocardial infarction and stroke, which are the major causes of death globally. Heparanase (Hpse) is a pro-inflammatory extracellular matrix degrading enzyme that has been implicated in atherogenesis. However, to date the precise roles of Hpse in atherosclerosis and its mechanisms of action are not well defined. This study aims to provide new insights into the contribution of Hpse in different stages of atherosclerosis in vivo. METHODS: We generated Hpse gene-deficient mice on the atherosclerosis-prone apolipoprotein E gene knockout (ApoE-/-) background to investigate the impact of Hpse gene deficiency on the initiation and progression of atherosclerosis after 6 and 14 weeks high-fat diet feeding, respectively. Atherosclerotic lesion development, blood serum profiles, lesion composition and aortic immune cell populations were evaluated. RESULTS: Hpse-deficient mice exhibited significantly reduced atherosclerotic lesion burden in the aortic sinus and aorta at both time-points, independent of changes in plasma cholesterol levels. A significant reduction in the necrotic core size and an increase in smooth muscle cell content were also observed in advanced atherosclerotic plaques of Hpse-deficient mice. Additionally, Hpse deficiency reduced circulating and aortic levels of VCAM-1 at the initiation and progression stages of disease and circulating MCP-1 levels in the initiation but not progression stage. Moreover, the aortic levels of total leukocytes and dendritic cells in Hpse-deficient ApoE-/- mice were significantly decreased compared to control ApoE-/-mice at both disease stages. CONCLUSIONS: This study identifies Hpse as a key pro-inflammatory enzyme driving the initiation and progression of atherosclerosis and highlighting the potential of Hpse inhibitors as novel anti-inflammatory treatments for cardiovascular disease.


Subject(s)
Aorta , Atherosclerosis , Disease Models, Animal , Disease Progression , Glucuronidase , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Glucuronidase/metabolism , Aorta/pathology , Aorta/metabolism , Aorta/enzymology , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/enzymology , Aortic Diseases/metabolism , Diet, High-Fat , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Mice, Inbred C57BL , Male , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Mice, Knockout , Sinus of Valsalva/pathology , Necrosis
14.
Methods Mol Biol ; 2787: 245-253, 2024.
Article in English | MEDLINE | ID: mdl-38656494

ABSTRACT

To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.


Subject(s)
Cannabis , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Promoter Regions, Genetic , Cannabis/genetics , Cannabis/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Genes, Reporter , Gene Expression/genetics , Glucuronidase/genetics , Glucuronidase/metabolism
15.
Cancer Gene Ther ; 31(6): 904-916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467765

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous ß-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.


Subject(s)
Cholangiocarcinoma , Drug Resistance, Neoplasm , Glucuronidase , eIF-2 Kinase , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mice , Animals , Glucuronidase/metabolism , Glucuronidase/genetics , Eukaryotic Initiation Factor-2/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Male , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Mice, Nude , Female , Xenograft Model Antitumor Assays , Cell Proliferation , Signal Transduction
16.
Cell Death Dis ; 15(3): 232, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519456

ABSTRACT

Unlike the intense research effort devoted to exploring the significance of heparanase in cancer, very little attention was given to Hpa2, a close homolog of heparanase. Here, we explored the role of Hpa2 in breast cancer. Unexpectedly, we found that patients endowed with high levels of Hpa2 exhibited a higher incidence of tumor metastasis and survived less than patients with low levels of Hpa2. Immunohistochemical examination revealed that in normal breast tissue, Hpa2 localizes primarily in the cell nucleus. In striking contrast, in breast carcinoma, Hpa2 expression is not only decreased but also loses its nuclear localization and appears diffuse in the cell cytoplasm. Importantly, breast cancer patients in which nuclear localization of Hpa2 is retained exhibited reduced lymph-node metastasis, suggesting that nuclear localization of Hpa2 plays a protective role in breast cancer progression. To examine this possibility, we engineered a gene construct that directs Hpa2 to the cell nucleus (Hpa2-Nuc). Notably, overexpression of Hpa2 in breast carcinoma cells resulted in bigger tumors, whereas targeting Hpa2 to the cell nucleus attenuated tumor growth and tumor metastasis. RNAseq analysis was performed to reveal differentially expressed genes (DEG) in Hpa2-Nuc tumors vs. control. The analysis revealed, among others, decreased expression of genes associated with the hallmark of Kras, beta-catenin, and TNF-alpha (via NFkB) signaling. Our results imply that nuclear localization of Hpa2 prominently regulates gene transcription, resulting in attenuation of breast tumorigenesis. Thus, nuclear Hpa2 may be used as a predictive parameter in personalized medicine for breast cancer patients.


Subject(s)
Breast Neoplasms , Glucuronidase , Humans , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Breast Neoplasms/genetics , Signal Transduction , Cell Nucleus/metabolism
17.
Eur J Med Genet ; 68: 104933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442846

ABSTRACT

OBJECTIVE: This study aimed to explore the clinical and genetic features of Chinese patients with mucopolysaccharidosis type VII (MPS VII), thereby improving early detection, disease management, and patient outcomes. METHODS: A retrospective review of medical records for five patients presenting with coarse facial features, rib protrusion, chest deformities, and scoliosis was conducted. Exome sequencing was employed to identify causative genetic mutations. RESULTS: The study comprised five patients (four males, one female) with disease onset at six months of age (range: 0-1.5 years). Common symptoms included coarse facial features, skeletal abnormalities, delayed motor and language development, and intellectual disability. Approximately 80% of the patients exhibited multiple skeletal dysplasias, enlarged adenoids or tonsils, and snoring; 60% had hernias; 40% reported hearing loss and hepatosplenomegaly. Less frequent manifestations were short stature, valvular heart disease, non-immune hydrops fetalis, and corneal opacity. All patients demonstrated elevated urine glycosaminoglycans levels and absent ß-glucuronidase activity in leukocytes. Exome sequencing identified compound heterozygous mutations in the GUSB gene in all four tested patients, uncovering seven mutations in total, three of which were novel (c.189G > A, c.869C > T, and c.1745 T > C). Furthermore, prenatal diagnosis through chorionic villus sampling in subsequent pregnancies of one patient's mother revealed both fetuses had normal ß-glucuronidase activity and no disease-causing mutations in the GUSB gene. CONCLUSION: The study's patients all presented with classic symptoms of MPS VII due to ß-glucuronidase deficiency, with three new pathogenic mutations identified in the GUSB gene. Genetic counseling and prenatal testing were highlighted as crucial for disease prevention.


Subject(s)
Mucopolysaccharidosis VII , Male , Pregnancy , Humans , Female , Infant, Newborn , Infant , Mucopolysaccharidosis VII/genetics , Mucopolysaccharidosis VII/diagnosis , Mucopolysaccharidosis VII/pathology , Glucuronidase/genetics , Facies , Mutation
18.
Nat Commun ; 15(1): 1564, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378682

ABSTRACT

Although FOXP3+ regulatory T cells (Treg) depend on IL-2 produced by other cells for their survival and function, the levels of IL-2 in inflamed tissue are low, making it unclear how Treg access this critical resource. Here, we show that Treg use heparanase (HPSE) to access IL-2 sequestered by heparan sulfate (HS) within the extracellular matrix (ECM) of inflamed central nervous system tissue. HPSE expression distinguishes human and murine Treg from conventional T cells and is regulated by the availability of IL-2. HPSE-/- Treg have impaired stability and function in vivo, including in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Conversely, endowing monoclonal antibody-directed chimeric antigen receptor (mAbCAR) Treg with HPSE enhances their ability to access HS-sequestered IL-2 and their ability to suppress neuroinflammation in vivo. Together, these data identify a role for HPSE and the ECM in immune tolerance, providing new avenues for improving Treg-based therapy of autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , T-Lymphocytes, Regulatory , Mice , Animals , Humans , Interleukin-2/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism , Extracellular Matrix/metabolism , Heparitin Sulfate/metabolism
19.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339199

ABSTRACT

Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDH::GUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a ß-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.


Subject(s)
Arabidopsis , Gossypium , Gossypium/genetics , Gossypium/metabolism , Promoter Regions, Genetic , Plants/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Glucuronidase/genetics , Glucuronidase/metabolism
20.
Biotechnol Lett ; 46(2): 223-233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38310624

ABSTRACT

Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a ß-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.


Subject(s)
Bilirubin , Corynebacterium glutamicum , Glucuronidase/genetics , Glucuronidase/metabolism , Corynebacterium glutamicum/metabolism , Staphylococcus , China
SELECTION OF CITATIONS
SEARCH DETAIL
...