Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.840
Filter
1.
Cancer Res ; 84(14): 2297-2312, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005053

ABSTRACT

Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.


Subject(s)
Metaplasia , Pancreatic Neoplasms , Animals , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Metaplasia/metabolism , Metaplasia/pathology , Glycolysis , Carcinogenesis/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Oxidative Phosphorylation , Glutathione/metabolism , Cellular Reprogramming , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Male , Mitochondria/metabolism , Mitochondria/pathology , Metabolic Reprogramming
2.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007566

ABSTRACT

Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R2=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.


Subject(s)
Glutathione , Oxidation-Reduction , o-Phthalaldehyde , o-Phthalaldehyde/chemistry , Glutathione/analysis , Glutathione/chemistry , Glutathione/metabolism , Humans , Animals , Glutathione Disulfide/analysis , Glutathione Disulfide/metabolism , Glutathione Disulfide/chemistry , Phosphines/chemistry
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000092

ABSTRACT

Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1ß, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.


Subject(s)
Alzheimer Disease , Cytokines , Glutathione , Leukocytes , Lipid Peroxidation , Mice, Transgenic , Oxidative Stress , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Mice , Leukocytes/metabolism , Female , Cytokines/metabolism , Glutathione/metabolism , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Disease Models, Animal , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics
4.
Neoplasma ; 71(3): 243-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958714

ABSTRACT

Allicin (AL) is one of garlic-derived organosulfides and has a variety of pharmacological effects. Studies have reported that AL has notable inhibitory effects on liver cancer, gastric cancer, breast cancer, and other cancers. However, there are no relevant reports about its role in human nasopharyngeal carcinoma. Ferroptosis is an iron-dependent form of non-apoptotic regulated cell death. Increasing evidence indicates that induction of ferroptosis can inhibit the proliferation, migration, invasion, and survival of various cancer cells, which act as a tumor suppressor in cancer. In this study, we confirmed that AL can inhibit cell proliferation, migration, invasion, and survival in human nasopharyngeal carcinoma cells. Our finding shows that AL can induce the ferroptosis axis by decreasing the level of GSH and GPX4 and promoting the induction of toxic LPO and ROS. AL-mediated cytotoxicity in human nasopharyngeal carcinoma cells is dependent on ferroptosis. Therefore, AL has good anti-cancer properties and is expected to be a potential drug for the treatment of nasopharyngeal carcinoma.


Subject(s)
Cell Proliferation , Disulfides , Ferroptosis , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Reactive Oxygen Species , Sulfinic Acids , Humans , Ferroptosis/drug effects , Disulfides/pharmacology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Cell Proliferation/drug effects , Sulfinic Acids/pharmacology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cell Movement/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Glutathione/metabolism , Cell Survival/drug effects
5.
Sci Rep ; 14(1): 15107, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956066

ABSTRACT

Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Ferroptosis , Flavonoids , Reactive Oxygen Species , Ferroptosis/drug effects , Animals , Flavonoids/pharmacology , Rats , Male , Reactive Oxygen Species/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Humans , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Cell Line, Tumor , Iron/metabolism , alpha-Synuclein/metabolism , Rats, Sprague-Dawley , Glutathione/metabolism , Lipid Peroxidation/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , NF-E2-Related Factor 2/metabolism
6.
Sci Rep ; 14(1): 15153, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956206

ABSTRACT

Durian (Durio zibethinus L.) fruit pulp is a rich source of γ-glutamylcysteine (γ-EC), a direct precursor to the antioxidant glutathione (GSH). This study elucidated the in vitro neuroprotective potential of unripe durian fruit pulp extract (UDE) against H2O2-induced neurotoxicity in SH-SY5Y cells and neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Treatments with γ-EC, GSH standards, or UDE exhibited no cytotoxicity in SH-SY5Y and BV-2 cells, except at high concentrations. A 4-h pretreatment with 100 µM γ-EC or UDE containing 100 µM γ-EC significantly increased SH-SY5Y cell viability post H2O2 induction. Moreover, a similar pretreatment reduced LPS-stimulated production of proinflammatory cytokines in BV-2 cells. The neuroprotective effect of UDE is primarily attributed to γ-EC provision and the promotion of GSH synthesis, which in turn elevates intracellular GSH levels and reduces proinflammatory cytokines. This study identifies γ-EC in UDE as a potential neuroprotective biomarker boosting intracellular GSH levels, providing insights into UDE's therapeutic potential.


Subject(s)
Fruit , Glutathione , Neuroprotective Agents , Oxidative Stress , Plant Extracts , Glutathione/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Neuroprotective Agents/pharmacology , Humans , Fruit/chemistry , Animals , Inflammation/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Neuroprotection/drug effects , Mice , Cell Survival/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Cell Line, Tumor , Cell Line , Cytokines/metabolism , Dipeptides/pharmacology
7.
Nat Commun ; 15(1): 5796, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987243

ABSTRACT

Metabolite extraction is the critical first-step in metabolomics experiments, where it is generally regarded to inactivate and remove proteins. Here, arising from efforts to improve extraction conditions for polar metabolomics, we discover a proteomic landscape of over 1000 proteins within metabolite extracts. This is a ubiquitous feature across several common extraction and sample types. By combining post-resuspension stable isotope addition and enzyme inhibitors, we demonstrate in-extract metabolite interconversions due to residual transaminase activity. We extend these findings with untargeted metabolomics where we observe extensive protein-mediated metabolite changes, including in-extract formation of glutamate dipeptide and depletion of total glutathione. Finally, we present a simple extraction workflow that integrates 3 kDa filtration for protein removal as a superior method for polar metabolomics. In this work, we uncover a previously unrecognized, protein-mediated source of observer effects in metabolomics experiments with broad-reaching implications across all research fields using metabolomics and molecular metabolism.


Subject(s)
Metabolomics , Proteome , Proteomics , Proteome/metabolism , Metabolomics/methods , Proteomics/methods , Humans , Animals , Glutathione/metabolism , Metabolome , Transaminases/metabolism
8.
Commun Biol ; 7(1): 843, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987326

ABSTRACT

Bcr-Abl transformation leads to chronic myeloid leukemia (CML). The acquirement of T315I mutation causes tyrosine kinase inhibitors (TKI) resistance. This study develops a compound, JMF4073, inhibiting thymidylate (TMP) and cytidylate (CMP) kinases, aiming for a new therapy against TKI-resistant CML. In vitro and in vivo treatment of JMF4073 eliminates WT-Bcr-Abl-32D CML cells. However, T315I-Bcr-Abl-32D cells are less vulnerable to JMF4073. Evidence is presented that ATF4-mediated upregulation of GSH causes T315I-Bcr-Abl-32D cells to be less sensitive to JMF4073. Reducing GSH biosynthesis generates replication stress in T315I-Bcr-Abl-32D cells that require dTTP/dCTP synthesis for survival, thus enabling JMF4073 susceptibility. It further shows that the levels of ATF4 and GSH in several human CML blast-crisis cell lines are inversely correlated with JMF4073 sensitivity, and the combinatory treatment of JMF4073 with GSH reducing agent leads to synthetic lethality in these CML blast-crisis lines. Altogether, the investigation indicates an alternative option in CML therapy.


Subject(s)
Glutathione , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Glutathione/metabolism , Humans , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors
9.
J Nanobiotechnology ; 22(1): 412, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997713

ABSTRACT

The senescence of nucleus pulposus (NP) cells (NPCs), which is induced by the anomalous accumulation of reactive oxygen species (ROS), is a major cause of intervertebral disc degeneration (IVDD). In this research, glutathione-doped carbon dots (GSH-CDs), which are novel carbon dot antioxidant nanozymes, were successfully constructed to remove large amounts of ROS for the maintenance of NP tissue at the physical redox level. After significantly scavenging endogenous ROS via exerting antioxidant activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity, GSH-CDs with good biocompatibility have been demonstrated to effectively improve mitochondrial dysfunction and rescue NPCs from senescence, catabolism, and inflammatory factors in vivo and in vitro. In vivo imaging data and histomorphological indicators, such as the disc height index (DHI) and Pfirrmann grade, demonstrated prominent improvements in the progression of IVDD after the topical application of GSH-CDs. In summary, this study investigated the GSH-CDs nanozyme, which possesses excellent potential to inhibit the senescence of NPCs with mitochondrial lesions induced by the excessive accumulation of ROS and improve the progression of IVDD, providing potential therapeutic options for clinical treatment.


Subject(s)
Carbon , Glutathione , Intervertebral Disc Degeneration , Nucleus Pulposus , Oxidative Stress , Reactive Oxygen Species , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Animals , Oxidative Stress/drug effects , Carbon/chemistry , Carbon/pharmacology , Glutathione/metabolism , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Antioxidants/pharmacology , Male , Cellular Senescence/drug effects , Cells, Cultured , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Cellular Microenvironment/drug effects , Catalase/metabolism , Catalase/pharmacology , Superoxide Dismutase/metabolism
10.
Nutrients ; 16(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38999752

ABSTRACT

Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.


Subject(s)
Cysteine , Dietary Supplements , Glutathione , Up-Regulation , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/blood , Vitamin D Deficiency/genetics , Vitamin D/blood , Vitamin D/administration & dosage , Vitamin D/analogs & derivatives , Glutathione/metabolism , Glutathione/blood , Animals , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism
11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000305

ABSTRACT

Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.


Subject(s)
Antioxidants , Hemoglobins , Iron , Phosphates , Thiosulfates , Thiosulfates/pharmacology , Thiosulfates/chemistry , Hemoglobins/metabolism , Hemoglobins/chemistry , Iron/metabolism , Iron/chemistry , Phosphates/chemistry , Phosphates/metabolism , Ligands , Antioxidants/pharmacology , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Oxidation-Reduction/drug effects , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , Nitrogen Oxides/metabolism , Glutathione/metabolism , Animals
12.
Planta ; 260(2): 51, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995415

ABSTRACT

MAIN CONCLUSION: Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.


Subject(s)
Glutathione , Malus , Seeds , Malus/genetics , Malus/metabolism , Seeds/metabolism , Seeds/genetics , Glutathione/metabolism , Reactive Nitrogen Species/metabolism , Glutathione Reductase/metabolism , Glutathione Reductase/genetics , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidation-Reduction , Nitric Oxide/metabolism , Gene Expression Regulation, Plant
13.
Hepatol Commun ; 8(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967587

ABSTRACT

BACKGROUND: Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/ß-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS: α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of ß-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS: We found that the presence of ß-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated ß-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS: Loss of ß-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.


Subject(s)
1-Naphthylisothiocyanate , Cholestasis, Intrahepatic , Glutathione , Mice, Knockout , Oxidative Stress , beta Catenin , Animals , beta Catenin/metabolism , Mice , Glutathione/metabolism , Cholestasis, Intrahepatic/metabolism , Liver/metabolism , Liver/pathology , Bile Acids and Salts/metabolism , Humans , Male , Disease Models, Animal
14.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953332

ABSTRACT

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Subject(s)
Cadmium , Ocimum basilicum , Phytochelatins , Plant Roots , Phytochelatins/chemistry , Phytochelatins/metabolism , Plant Roots/chemistry , Cadmium/analysis , Ocimum basilicum/chemistry , Mass Spectrometry/methods , Glutathione/analysis , Glutathione/metabolism , Glutathione/chemistry
15.
Mikrochim Acta ; 191(7): 433, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38951214

ABSTRACT

A cancer-targeted glutathione (GSH)-gated theranostic probe (CGT probe) for intracellular miRNA imaging and combined treatment of self-sufficient starvation therapy (ST) and chemodynamic therapy (CDT) was developed. The CGT probe is constructed using MnO2 nanosheet (MS) as carrier material to adsorb the elaborately designed functional DNAs. It can be internalized by cancer cells via specific recognition between the AS1411 aptamer and nucleolin. After CGT probe entering the cancer cells, the overexpressed GSH, as gate-control, can degrade MS to Mn2+ which can be used for CDT by Fenton-like reaction. Simultaneously, Mn2+-mediated CDT can further cascade with the enzyme-like activities (catalase-like activity and glucose oxidase-like activity) of CGT probe, achieving self-sufficient ST/CDT synergistic therapy. Meanwhile, the anchored DNAs are released, achieving in situ signal amplification via disubstituted-catalytic hairpin assembly (DCHA) and FRET (fluorescence resonance energy transfer) imaging of miR-21. The in vitro and in vivo experiments demonstrated that accurate and sensitive miRNA detection can be achieved using the CGT probe. Overall, the ingenious CGT probe opens a new avenue for the development of early clinical diagnosis and cancer therapy.


Subject(s)
Fluorescence Resonance Energy Transfer , Glutathione , Manganese Compounds , MicroRNAs , Oxides , Humans , Glutathione/chemistry , Glutathione/metabolism , Animals , Manganese Compounds/chemistry , Oxides/chemistry , Aptamers, Nucleotide/chemistry , Mice , Mice, Nude , Theranostic Nanomedicine/methods , Nucleolin , Neoplasms/diagnostic imaging , Nanostructures/chemistry , Oligodeoxyribonucleotides/chemistry , Mice, Inbred BALB C , Fluorescent Dyes/chemistry
16.
Transpl Int ; 37: 11336, 2024.
Article in English | MEDLINE | ID: mdl-38962471

ABSTRACT

Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.


Subject(s)
Intestine, Small , Mesenchymal Stem Cells , Organ Preservation , Rats, Inbred Lew , Animals , Intestine, Small/transplantation , Rats , Organ Preservation/methods , Male , Organ Preservation Solutions , Graft Survival , Culture Media, Conditioned , Zonula Occludens-1 Protein/metabolism , Claudin-3/metabolism , Rats, Transgenic , Glutathione , Raffinose , Allopurinol , Insulin , Adenosine
17.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969429

ABSTRACT

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Subject(s)
Biotin , Glutathione , Photoacoustic Techniques , Photochemotherapy , Glutathione/chemistry , Glutathione/metabolism , Animals , Humans , Mice , Biotin/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Optical Imaging , Female , Photothermal Therapy , Mice, Nude , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/therapeutic use
18.
BMC Cancer ; 24(1): 816, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977966

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is a rare but highly aggressive thyroid cancer with poor prognosis. Killing cancer cells by inducing DNA damage or blockage of DNA repair is a promising strategy for chemotherapy. It is reported that aldehyde-reactive alkoxyamines can capture the AP sites, one of the most common DNA lesions, and inhibit apurinic/apyrimidinic endonuclease 1(APE1)-mediated base excision repair (BER), leading to cell death. Whether this strategy can be employed for ATC treatment is rarely investigated. The aim of this study is to exploit GSH-responsive AP site capture reagent (AP probe-net), which responses to the elevated glutathione (GSH) levels in the tumor micro-environment (TME), releasing reactive alkoxyamine to trap AP sites and block the APE1-mediated BER for targeted anti-tumor activity against ATC. In vitro experiments, including MTT andγ-H2AX assays, demonstrate their selective cytotoxicity towards ATC cells over normal thyroid cells. Flow cytometry analysis suggests that AP probe-net arrests the cell cycle in the G2/M phase and induces apoptosis. Western blotting (WB) results show that the expression of apoptotic protein increased with the increased concentration of AP probe-net. Further in vivo experiments reveal that the AP probe-net has a good therapeutic effect on subcutaneous tumors of the ATC cells. In conclusion, taking advantage of the elevated GSH in TME, our study affords a new strategy for targeted chemotherapy of ATC with high selectivity and reduced adverse effects.


Subject(s)
Apoptosis , Glutathione , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Humans , Glutathione/metabolism , Animals , Mice , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Xenograft Model Antitumor Assays , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Damage/drug effects , Cell Proliferation/drug effects , Tumor Microenvironment/drug effects
19.
Ecotoxicol Environ Saf ; 281: 116628, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905936

ABSTRACT

Microplastics (MPs) and okadaic acid (OA) are known to coexist in marine organisms, potentially impacting humans through food chain. However, the combined toxicity of OA and MPs remains unknown. In this study, mice were orally administered OA at 200 µg/kg bw and MPs at 2 mg/kg bw. The co-exposure group showed a significant increase in malondialdehyde (MDA) content and significant decreases in superoxide dismutase (SOD) activity and glutathione (GSH) level compared to the control, MPs and OA groups (p < 0.05). Additionally, the co-exposure group exhibited significantly higher levels of IL-1ß and IL-18 compared to other groups (p < 0.05). These results demonstrated that co-exposure to MPs and OA induces oxidative stress and exacerbates inflammation. Histological and cellular ultrastructure analyses suggested that this combined exposure may enhance gut damage and compromise barrier integrity. Consequently, the concentration of OA in the small intestine of the co-exposure group was significantly higher than that in the OA group. Furthermore, MPs were observed in the lamina propria of the gut in the co-exposure group. Transcriptomic analysis revealed that the co-exposure led to increased expression of certain genes related to the NF-κB/NLRP3 pathway compared to the OA and MPs groups. Overall, this combined exposure may disrupt the intestinal barrier, and promote inflammation through the NF-κB/NLRP3 pathway. These findings provide precious information for the understanding of health risks associated with MPs and phycotoxins.


Subject(s)
Intestine, Small , Microplastics , Okadaic Acid , Oxidative Stress , Polystyrenes , Animals , Microplastics/toxicity , Mice , Okadaic Acid/toxicity , Intestine, Small/drug effects , Intestine, Small/pathology , Intestine, Small/ultrastructure , Polystyrenes/toxicity , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Glutathione/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
20.
J Oleo Sci ; 73(7): 991-999, 2024.
Article in English | MEDLINE | ID: mdl-38945927

ABSTRACT

In this study, we evaluated the cancer cell killing activity of koji mold-derived extracts using several solvents. The koji mold lipid extract (KML) exhibited potent cytotoxicity against a human leukemia cell line. Fractionation of the KML via silica gel chromatography revealed the presence of active components in fraction (Fr.) 6. Cytotoxic effects of Fr. 6 were inhibited by the ferroptosis inhibitors, ferrostatin-1 and SRS11-92, and the iron chelator, deferoxamine. Interestingly, ferroptosis inhibitors failed to prevent the KML-induced cell death. Fr. 6 decreased the expression of glutathione peroxidase 4 (GPx4) and increased the level of peroxidized plasma membrane lipids. Furthermore, Fr. 6 decreased the intracellular glutathione levels. Overall, our results suggest that Fr. 6 included in KML induces ferroptosis in HL-60 cells.


Subject(s)
Ferroptosis , Glutathione , Lipid Peroxidation , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase , Humans , HL-60 Cells , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis/drug effects , Lipid Peroxidation/drug effects , Glutathione/metabolism , Oxidation-Reduction/drug effects , Deferoxamine/pharmacology , Cyclohexylamines/pharmacology , Lipids , Phenylenediamines/pharmacology , Membrane Lipids/metabolism , Iron Chelating Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...