Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Dent ; 146: 105039, 2024 07.
Article in English | MEDLINE | ID: mdl-38714243

ABSTRACT

OBJECTIVE: The aim of this work was to evaluate the antibiofilm and anticaries properties of the association of arginine (Arg) with calcium glycerophosphate (CaGP) and fluoride (F). METHODS: An active attachment, polymicrobial biofilm model obtained from saliva and bovine teeth discs were used. After the initial biofilm growth period, the enamel discs were transferred to culture medium. The treatment solutions were added to the culture media to achieve the desired final concentration. The following groups were used: negative control (Control); F (110 ppm F); CaGP (0.05 %); Arg (0.8 %) and their associations (F + CaGP; Arg + F; Arg + CaGP; Arg +F + CaGP). The following analyses were carried out: bacterial viability (total bacteria, aciduric bacteria and mutans streptococci), pH assessment of the spent culture medium, dry weight quantification, evaluation of surface hardness loss (%SH) and subsurface mineral content. Normality and homoscedasticity were tested (Shapiro-Wilk and Levene's test) and the following tests were applied: two-way ANOVA (acidogenicity), Kruskall-Wallis (microbial viability) and one way ANOVA (dry weight, %SH, mineral content). RESULTS: The association Arg + F + CaGP resulted in the lowest surface hardness loss in tooth enamel (-10.9 ± 2.3 %; p < 0.05). Arg +F + CaGP exhibited highest values of subsurface mineral content (10.1 ± 2.9 gHAP/cm3) in comparison to Control and F (p < 0.05). In comparison to Control and F, Arg +F + CaGP promoted the highest reduction in aciduric bacteria and mutans streptococci (5.7 ± 0.4; 4.4 ± 0.5 logCFU/mL, p < 0.05). CONCLUSIONS: The Arg-F-Ca association demonstrated to be the most effective combination in protecting the loss of surface hardness and subsurface mineral content, in addition to controlling important virulence factors of the cariogenic biofilm. CLINICAL SIGNIFICANCE: Our findings provide evidence that the Arg-F-Ca association showed an additive effect, particularly concerning protection against enamel demineralization. The combination of these compounds may be a strategy for patients at high risk of caries.


Subject(s)
Arginine , Biofilms , Cariostatic Agents , Dental Caries , Dental Enamel , Fluorides , Glycerophosphates , Microbial Viability , Saliva , Streptococcus mutans , Arginine/pharmacology , Biofilms/drug effects , Cattle , Animals , Dental Enamel/drug effects , Dental Enamel/microbiology , Streptococcus mutans/drug effects , Fluorides/pharmacology , Glycerophosphates/pharmacology , Cariostatic Agents/pharmacology , Saliva/microbiology , Hydrogen-Ion Concentration , Dental Caries/prevention & control , Dental Caries/microbiology , Microbial Viability/drug effects , Hardness , Humans , Tooth Demineralization/prevention & control , Tooth Demineralization/microbiology , Surface Properties
2.
Odontology ; 112(4): 1186-1196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38498244

ABSTRACT

To evaluate the effect of 1100 ppm F toothpastes supplemented with micrometric or nanosized ß-CaGP (ß-CaGPm/ß-CaGPn) on artificial enamel remineralization, using a pH cycling model. Enamel blocks with artificial caries were randomly allocated into ten groups (n = 10), according to the toothpastes: without fluoride/ß-CaGPm/ß-CaGPn (negative control); 1100 ppm F (1100F); 1100F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. The blocks were treated 2×/day with slurries of toothpastes. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); integrated mineral loss (ΔIMR); fluoride (F), calcium (Ca), and phosphorus (P) concentrations in the enamel; polydispersity index (PdI); and zeta potential (Zp) were determined. The data were analyzed by ANOVA (p < 0.001). For Zp/PdI, no significance was observed when comparing the means (p > 0.001). The treatment with 1100F-0.25%ß-CaGPn led to %SHR ∼57 higher when compared to the 1100F group (p < 0.001). The lowest ΔKHN was observed for the 1100F-0.25%ß-CaGPn group (p < 0.001). The ΔIMR was lower (∼201%) for the 1100F-0.25%ß-CaGPn when compared to 1100F (p < 0.001). The association of ß-CaGPm and ß-CaGPn to 1100F did not influence its F concentration (p > 0.001). The highest increase in Ca and P was observed for 1100F-0.25%ß-CaGPn (p < 0.001). The addition of 0.25%ß-CaGPn to 1100F toothpaste was able to promote an additional remineralizing effect of artificial caries lesions.


Subject(s)
Glycerophosphates , Tooth Remineralization , Toothpastes , Glycerophosphates/pharmacology , In Vitro Techniques , Toothpastes/pharmacology , Toothpastes/chemistry , Tooth Remineralization/methods , Nanoparticles , Biomineralization , Fluorides/pharmacology , Dental Enamel/drug effects , Hydrogen-Ion Concentration
3.
J Dent ; 138: 104719, 2023 11.
Article in English | MEDLINE | ID: mdl-37741503

ABSTRACT

OBJECTIVES: This in situ study aimed to assess the remineralizing effect of a fluoride toothpaste supplemented with ß-calcium glycerophosphate in both micro (ß-CaGPm) and nano-sized forms (ß-CaGPn). METHODS: This blind and cross-over study was performed in 4 phases, each spanning 3 days. Twelve volunteers utilized palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned to the following treatment groups: Placebo (no F-ß-CaGPm-ß-CaGPn); 1100 ppm F alone (1100F); 1100F plus 0.5% micrometric ß-CaGP (1100F-0.5%ß-CaGPm); and 1100F plus 0.25%nano-sized ß-CaGP (1100F-0.25%ß-CaGPn). Participants were instructed to brush their natural teeth with the palatal appliances in the mouth for 1 min (3 times/day), ensuring that the enamel blocks were exposed to the natural toothpaste slurries. Following each phase, evaluations were conducted to determine the percentage of surface hardness recovery (%SHR), integrated recovery of subsurface hardness (ΔIHR), profile subsurface lesion through polarized light microscopy (PLM), as well as fluoride (F), calcium (Ca), and phosphorus (P) concentrations within the enamel. Data were analyzed by ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: Treatment with 1100F-0.25%ß-CaGPn resulted in %SHR ∼69 % and ∼40 % higher when compared to 1100F and 1100F-0.5%ß-CaGPm (p < 0.001). The reduction in lesion body (ΔIHR; PLM) was ∼40 % higher with 1100F-0.25%ß-CaGPn (p < 0.001) compared to 1100F. The addition of ß-CaGPm and ß-CaGPn did not influence enamel F concentration (p > 0.001). Treatment with 1100F-0.25%ß-CaGPn led to an increase in the concentration of Ca and P in the enamel (p < 0.001). CONCLUSION: The addition of 0.25%ß-CaGPn into 1100F formulation increased the bioavailability of calcium and phosphate, promoting a higher remineralizing effect. CLINICAL SIGNIFICANCE: Toothpaste containing 1100F-0.25%ß-CaGPn showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric ß-CaGP could be a strategy for patients at caries activity.


Subject(s)
Fluorides , Toothpastes , Animals , Cattle , Humans , Calcium/pharmacology , Cariostatic Agents/pharmacology , Cross-Over Studies , Dental Enamel , Fluorides/pharmacology , Glycerophosphates/pharmacology , Hardness , Tooth Remineralization/methods , Toothpastes/pharmacology , Toothpastes/therapeutic use
4.
J Dent ; 115: 103844, 2021 12.
Article in English | MEDLINE | ID: mdl-34637893

ABSTRACT

OBJECTIVES: This study evaluated the influence of calcium glycerophosphate (CaGP), combined with or without fluoride (F), on the pH and concentrations of F, Ca, and P of dual-species biofilms of Streptococcus mutans and Candida albicans, with or without exposure to sucrose. METHODS: The biofilms (n = 9) received three treatments (72, 78, and 96 h after the start of their formation) at three CaGP concentrations (0.125, 0.25, or 0.5%), with or without F at 500 ppm (as NaF). Solutions containing 500 and 1100 ppm F and artificial saliva were also tested as controls. Biofilm pH was measured, and the concentrations of F, Ca, P, and CaGP were determined (solid and fluid phases). In a parallel experiment, after the third treatment, the treated biofilms were exposed to a sucrose solution, and the pH of the medium, F, Ca, P, and CaGP was determined. Data were subjected to two-way ANOVA, followed by Fisher's LSD test (p < 0.05). RESULTS: Treatment with CaGP and 500 ppm F led to the highest pH values and F and Ca concentrations in the biofilm biomass, both with and without sucrose exposure. CaGP without F led to higher Ca and P concentrations in the biofilm fluid. CONCLUSIONS: CaGP increased F, Ca, and P concentrations in the biofilm, and its presence promoted an increase in the pH of the medium, even after exposure to sucrose. CLINICAL SIGNIFICANCE: The present results elucidate the mechanism by which CaGP and F act on biofilms, further interfering with dental caries dynamics.


Subject(s)
Dental Caries , Streptococcus mutans , Biofilms , Candida albicans , Fluorides/pharmacology , Glycerophosphates/chemistry , Glycerophosphates/pharmacology , Hydrogen-Ion Concentration
5.
Clin Oral Investig ; 21(3): 831-837, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27229727

ABSTRACT

OBJECTIVES: The present study evaluated fluoride (F) and calcium (Ca) concentrations in the biofilm fluid formed in situ under cariogenic challenge after using F dentifrices supplemented or not with sodium trimetaphosphate (TMP) or calcium glycerophosphate (CaGP). METHODS: Volunteers (n = 12) were randomly divided into 5 groups according to the toothpastes used: placebo (without F, CaGP or TMP), 1100 ppm F (1100F) and low-fluoride dentifrice (LFD, 550 ppm F) with no supplementation (550F) or supplemented with 1 % TMP (550F-TMP) or 0.25 % CaGP (550F-CaGP). In each phase, volunteers wore palatal appliances containing 4 bovine enamel blocks. Cariogenic challenge was performed with 30 % sucrose solution, 6 times/day. On the morning of the eigth day, biofilm samples were collected 12 h and 1 h after brushing and cariogenic challenge. F and Ca analyses in the biofilm fluid were performed with the inverted electrode after buffering with TISAB III and using the Arsenazo III method, respectively. Data were submitted to two-way ANOVA (repeated measures) and Student-Newman-Keuls test (p < 0.05). RESULTS: A dose-response relationship was verified between F concentrations in the dentifrices and in the biofilm fluid. Significant differences were observed among placebo, 550F, and 1100F only 1 h after brushing, without statistical differences among 550F, 550F-TMP, and 550F-CaGP. No defined trend was observed among the groups regarding Ca concentrations, with the highest values seen for placebo and 550F-CaGP. CONCLUSION: The anticaries effect of LFDs supplemented with CaGP or TMP cannot be related to an increased availability of F and Ca in the biofilm fluid. CLINICAL SIGNIFICANCE: The better performance of LFDs containing CaGP or TMP shown in previous studies should be attributed to their ability to interact with tooth enamel and with the biofilm, rather to their effect on the biofilm fluid.


Subject(s)
Biofilms/drug effects , Calcium/analysis , Dentifrices/pharmacology , Fluorides/analysis , Glycerophosphates/pharmacology , Polyphosphates/pharmacology , Adult , Cross-Over Studies , Dentifrices/chemistry , Dose-Response Relationship, Drug , Double-Blind Method , Female , Glycerophosphates/chemistry , Humans , Male , Polyphosphates/chemistry , Toothbrushing
6.
J. appl. oral sci ; J. appl. oral sci;20(6): 628-635, Nov.-Dec. 2012. ilus
Article in English | LILACS | ID: lil-660633

ABSTRACT

Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.


Subject(s)
Humans , Adipose Tissue/cytology , /pharmacology , Cell Differentiation/drug effects , Glycerophosphates/pharmacology , Osteogenesis , Stem Cells/drug effects , Analysis of Variance , Alkaline Phosphatase/physiology , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Blotting, Western , /metabolism , /metabolism , /metabolism , Cells, Cultured , Glycerophosphates/metabolism , Osteoblasts/metabolism , Polymerase Chain Reaction , RNA, Messenger/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Time Factors
7.
J Appl Oral Sci ; 20(4): 410-3, 2012.
Article in English | MEDLINE | ID: mdl-23032201

ABSTRACT

OBJECTIVE: This in vitro study evaluated the effect of calcium glycerophosphate (CaGP) supplemented to soft drinks on bovine enamel erosion. MATERIAL AND METHODS: Four pH-cycles were performed, alternating demineralization by the beverage and remineralization in artificial saliva. RESULTS: Mean wear (± SD, µm) was 7.91 ± 1.13, 7.39 ± 1.01, 7.50 ± 0.91 and 5.21 ± 1.08 for Coca-Cola® without CaGP or containing CaGP at 0.1, 1.0 or 2.0 mM, respectively, while no wear was detected for CaGP at 5.0 and 10.0 mM. Corresponding figures for Sprite Zero® without CaGP or containing CaGP at 0.1, 1.0, 2.0, 5.0 or 10.0 mM were 8.04 ± 1.30, 7.84 ± 0.71, 7.47 ± 0.80, 4.96 ± 0.81, 3.99 ± 0.10 and 1.87 ± 0.12, respectively. CONCLUSION: Supplementation of both beverages with CaGP seems to be an alternative to reduce their erosive potential.


Subject(s)
Carbonated Beverages/adverse effects , Dental Enamel/drug effects , Glycerophosphates/pharmacology , Tooth Erosion/prevention & control , Animals , Cattle , Dental Enamel/chemistry , Hardness , Materials Testing , Random Allocation , Saliva, Artificial , Surface Properties , Tooth Erosion/chemically induced , Tooth Wear/prevention & control
8.
J. appl. oral sci ; J. appl. oral sci;20(4): 410-413, July-Aug. 2012. tab
Article in English | LILACS | ID: lil-650629

ABSTRACT

OBJECTIVE: This in vitro study evaluated the effect of calcium glycerophosphate (CaGP) supplemented to soft drinks on bovine enamel erosion. MATERIAL AND METHODS: Four pH-cycles were performed, alternating demineralization by the beverage and remineralization in artificial saliva. RESULTS: Mean wear (±SD, µm) was 7.91±1.13, 7.39±1.01, 7.50±0.91 and 5.21±1.08 for Coca-Cola® without CaGP or containing CaGP at 0.1, 1.0 or 2.0 mM, respectively, while no wear was detected for CaGP at 5.0 and 10.0 mM. Corresponding figures for Sprite Zero® without CaGP or containing CaGP at 0.1, 1.0, 2.0, 5.0 or 10.0 mM were 8.04±1.30, 7.84±0.71, 7.47±0.80, 4.96±0.81, 3.99±0.10 and 1.87±0.12, respectively. CONCLUSION: Supplementation of both beverages with CaGP seems to be an alternative to reduce their erosive potential.


Subject(s)
Animals , Cattle , Carbonated Beverages/adverse effects , Dental Enamel/drug effects , Glycerophosphates/pharmacology , Tooth Erosion/prevention & control , Dental Enamel/chemistry , Hardness , Materials Testing , Random Allocation , Saliva, Artificial , Surface Properties , Tooth Erosion/chemically induced , Tooth Wear/prevention & control
9.
Tissue Cell ; 44(5): 325-31, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22677409

ABSTRACT

Ascorbic acid (AA) and ß-glycerophosphate (ßG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and ßG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting. In addition, the main ultrastructural aspects were also investigated. No mineralized matrix formation occurred on gingival fibroblasts induced with AA+ßG. On these cells, no expression of OPN and OSAD was observed when compared with pulp cells, pulp cells induced with AA+ßG as well as osteogenic cells. Ultrastructure analysis additionally showed that gingival fibroblasts exhibited typical fibroblast morphology with no nodule formation. The present findings showed that AA and ßG could not promote a mineralized cell differentiation of human gingival fibroblasts and confirm that human dental pulp cells, as the osteogenic cells, are capable to form a mineralized extracellular.


Subject(s)
Ascorbic Acid/pharmacology , Fibroblasts/drug effects , Gingiva/metabolism , Glycerophosphates/pharmacology , Animals , Animals, Newborn , Cell Differentiation , Cells, Cultured , Dental Pulp/chemistry , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Matrix Proteins/metabolism , Fibroblasts/metabolism , Gingiva/chemistry , Gingiva/cytology , Humans , Osteopontin/metabolism , Proteoglycans/metabolism , Rats , Rats, Wistar
10.
J Appl Oral Sci ; 20(6): 628-35, 2012.
Article in English | MEDLINE | ID: mdl-23329244

ABSTRACT

UNLABELLED: Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and ß-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. RESULTS: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.


Subject(s)
Adipose Tissue/cytology , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/drug effects , Glycerophosphates/pharmacology , Osteogenesis , Stem Cells/drug effects , Alkaline Phosphatase/physiology , Analysis of Variance , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Blotting, Western , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 7/metabolism , Cells, Cultured , Glycerophosphates/metabolism , Humans , Osteoblasts/metabolism , Polymerase Chain Reaction , RNA, Messenger/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Time Factors
11.
Dev Growth Differ ; 53(1): 88-96, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21261614

ABSTRACT

MC3T3-E1 cells grown in the presence of ascorbic acid and ß-glycerophosphate (AA/ß-GP) express alkaline phosphatase and produce an extensive collagenous extracellular matrix. Differentiated MC3T3-E1 cells are more sensitive to hydrogen peroxide-induced oxidative stress than undifferentiated cells. In this study, we compared the profile of antioxidant enzymes and molecular markers of apoptosis in undifferentiated and differentiated MC3T3-E1 cells (cell differentiation was induced by treatment with AA/ß-GP). Differentiated osteoblasts showed lower expression and activity of catalase, glutathione S-transferase and glutathione peroxidase. The total superoxide dismutase activity and the expression of Cu/Zn superoxide dismutase were also lower, while the expression of Mn superoxide dismutase was higher in differentiated osteoblasts. The level of malondialdehyde, a widely used marker for oxidative stress, was lower in the AA/ß-GP group compared with control cells, but this difference was not significant. Western blotting showed that treatment with AA/ß-GP increased the Bax/Bcl-2 ratio used as an index of cellular vulnerability to apoptosis. In addition, the activities of caspases 3, 8 and 9 and cleaved poly (ADP) ribose polymerase were significantly higher in differentiated cells. These findings provide new insights into how changes in the activities of major antioxidant enzymes and in the signaling pathways associated with apoptosis may influence the susceptibility of bone cells to oxidative stress.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Cell Differentiation/drug effects , Glycerophosphates/pharmacology , Osteoblasts/cytology , Osteoblasts/drug effects , Animals , Blotting, Western , Cell Line , Hydrogen Peroxide/pharmacology , Mice
12.
Rev Invest Clin ; 60(6): 496-501, 2008.
Article in Spanish | MEDLINE | ID: mdl-19378836

ABSTRACT

INTRODUCTION: Mesenchymal stem cells have the potential to differentiate into several types of cells including osteoblasts. These stem cells have cell surface markers found on cells of endothelial and subendothelial origin of the umbilical cord vein. Taking this into consideration we have postulated that human umbilical vein endothelial cells (HUVEC) could present osteogenic differentiation as well. Gene activation that could drive osteogenic differentiation is regulated by exogenous and endogenous factors. OBJECTIVE: The induction osteogenesis in HUVEC. MATERIAL AND METHODS: We used: a) an osteogenic medium containing 0.1 microM dexamethasone, 10 microM beta-glycerophosphate, 50 microM L-ascorbic-acid 2-phosphate, 20% MCGS serum; and b) a treatment with DNA demethylating agents hydralazine and 5'-aza-2'-deoxycytidine (0.39-200 microM). Phenotypic characteristics of HUVEC were their spindle and stellate shapes with fine homogenous cytoplasm, typically associated with fibroblast-like cells. RESULTS: The control cells (without osteogenic treatment) exhibited little extracellular matrix, whereas the osteogenically treated cells appeared shortened and flattened, and they were surrounded by extracellular matrix that subsequently became mineralized in vitro. After 28 days in culture, morphologic and histochemical studies confirmed that osteogenic medium had a strong stimulatory effect on the alkaline phosphatase activity of endothelial cells, a very early marker of cell differentiation into the osteogenic lineage. Hydralazine and 5'-aza-2'-deoxycytidine, two drugs utilized in chromatin remodeling leading to gene re-expression of inactivated DNA hypermethylated islands, did not favor osteoblast differentiation. CONCLUSION: Our study shows that HUVEC can differentiate along an osteogenic lineage and thus provide an alternative source for cell-based therapies and tissue engineering strategies.


Subject(s)
Endothelial Cells/cytology , Endothelium, Vascular/cytology , Osteogenesis/physiology , Alkaline Phosphatase/metabolism , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/pharmacology , Azacitidine/pharmacology , Cell Differentiation/drug effects , Cell Shape/drug effects , Cells, Cultured/drug effects , Culture Media/pharmacology , DNA Methylation/drug effects , Dexamethasone/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Glycerophosphates/pharmacology , Humans , Hydralazine/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Umbilical Veins/cytology
13.
Santiago de Chile; Chile. Ministerio de Salud; 2003. 7 p. tab.
Non-conventional in Spanish | LILACS, MINSALCHILE | ID: lil-665363

ABSTRACT

El presente informe responde a una solicitud del Departamento de Salud Bucal de la División de Rectoría y Regulación Sanitaria, para evaluar la evidencia científica disponible sobre la efectividad del glicerofosfato de calcio presente en pastas dentífricas, en el tratamiento de las caries dentales. Lo anterior, en el contexto de una campaña publicitaria que afirma que este agente tendría capacidad "reparadora" de las caries, lo que ha desatado polémica en cuanto al significado y los fundamentos técnicos de esa afirmación. En rigor, la campaña señala que el producto "repara y protege los dientes de tu familia día a día", que el calcio activo "entrega Calcio activo, el cual trabaja directamente en estos daños incipientes del esmalte dental, reponiendo el Calcio perdido", que "trabaja sobre los daños microscópicos producidos por las bacterias en los dientes" , que el resultado es "esmalte dental mucho más fuerte, enriquecido con Calcio, y más protegido contra las caries", y que " logra con sus ingredientes retardar el aparecimiento de caries". La página web de la empresa (Unilever) señala que el ingrediente activo al que se atribuye este efecto reparador es el Glicerofosfato de Calcio.


Subject(s)
Humans , Tooth Calcification , Calcium/pharmacology , Dental Caries/therapy , Dental Enamel , Glycerophosphates/pharmacology , Evidence-Based Medicine , Dental Caries/prevention & control , Chile
SELECTION OF CITATIONS
SEARCH DETAIL