Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Biochemistry ; 63(17): 2153-2165, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39152907

ABSTRACT

Per and polyfluoroalkyl substances (PFAS) are a large family of anthropogenic fluorinated chemicals of increasing environmental concern. Over recent years, numerous microbial communities have been found to be capable of metabolizing some polyfluoroalkyl substances, generating a range of low-molecular-weight PFAS metabolites. One proposed pathway for the microbial breakdown of fluorinated carboxylates includes ß-oxidation, this pathway is initiated by the formation of a CoA adduct. However, until recently no PFAS-CoA adducts had been reported. In a previous study, we were able to use a bacterial medium-chain acyl-CoA synthetase (mACS) to form CoA adducts of fluorinated adducts of propanoic acid and pentanoic acid but were not able to detect any products of fluorinated hexanoic acid analogues. Herein, we expressed and purified a long-chain acyl-CoA synthetase (lACS) and a A461K variant of mACS from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that lACS can catalyze the formation of CoA adducts of 1:5 fluorotelomer carboxylic acid (FTCA), 2:4 FTCA and 3:3 FTCA, albeit with generally low turnover rates (<0.02 s-1) compared with the nonfluorinated hexanoic acid (5.39 s-1). In addition, the A461K variant was found to have an 8-fold increase in selectivity toward hexanoic acid compared with wild-type mACS, suggesting that Ala-461 has a mechanistic role in selectivity toward substrate chain length. This provides further evidence to validate the proposed activation step involving the formation of CoA adducts in the enzymatic breakdown of PFAS.


Subject(s)
Caproates , Coenzyme A Ligases , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/chemistry , Caproates/metabolism , Caproates/chemistry , Gordonia Bacterium/metabolism , Gordonia Bacterium/enzymology , Gordonia Bacterium/genetics , Halogenation , Coenzyme A/metabolism , Coenzyme A/chemistry , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/chemistry , Substrate Specificity
2.
Environ Pollut ; 360: 124618, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39067736

ABSTRACT

The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.


Subject(s)
Biodegradation, Environmental , Petroleum , Petroleum/metabolism , Gordonia Bacterium/metabolism , Gordonia Bacterium/genetics , Soil Microbiology , Soil Pollutants/metabolism
3.
Appl Environ Microbiol ; 90(8): e0034024, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39082821

ABSTRACT

Soil-dwelling Actinomycetes are a diverse and ubiquitous component of the global microbiome but largely lack genetic tools comparable to those available in model species such as Escherichia coli or Pseudomonas putida, posing a fundamental barrier to their characterization and utilization as hosts for biotechnology. To address this, we have developed a modular plasmid assembly framework, along with a series of genetic control elements for the previously genetically intractable Gram-positive environmental isolate Rhodococcus ruber C208, and demonstrate conserved functionality in 11 additional environmental isolates of Rhodococcus, Nocardia, and Gordonia. This toolkit encompasses five Mycobacteriale origins of replication, five broad-host-range antibiotic resistance markers, transcriptional and translational control elements, fluorescent reporters, a tetracycline-inducible system, and a counter-selectable marker. We use this toolkit to interrogate the carotenoid biosynthesis pathway in Rhodococcus erythropolis N9T-4, a weakly carotenogenic environmental isolate and engineer higher pathway flux toward the keto-carotenoid canthaxanthin. This work establishes several new genetic tools for environmental Mycobacteriales and provides a synthetic biology framework to support the design of complex genetic circuits in these species.IMPORTANCESoil-dwelling Actinomycetes, particularly the Mycobacteriales, include both diverse new hosts for sustainable biomanufacturing and emerging opportunistic pathogens. Rhodococcus, Gordonia, and Nocardia are three abundant genera with particularly flexible metabolisms and untapped potential for natural product discovery. Among these, Rhodococcus ruber C208 was shown to degrade polyethylene; Gordonia paraffinivorans can assimilate carbon from solid hydrocarbons; and Nocardia neocaledoniensis (and many other Nocardia spp.) possesses dual isoprenoid biosynthesis pathways. Many species accumulate high levels of carotenoid pigments, indicative of highly active isoprenoid biosynthesis pathways which may be harnessed for fermentation of terpenes and other commodity isoprenoids. Modular genetic toolkits have proven valuable for both fundamental and applied research in model organisms, but such tools are lacking for most Actinomycetes. Our suite of genetic tools and DNA assembly framework were developed for broad functionality and to facilitate rapid prototyping of genetic constructs in these organisms.


Subject(s)
Nocardia , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Nocardia/genetics , Nocardia/metabolism , Gordonia Bacterium/metabolism , Gordonia Bacterium/genetics , Metabolic Engineering , Plasmids/genetics
4.
Ecotoxicol Environ Saf ; 281: 116635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944007

ABSTRACT

Since we rely entirely on plastics or their products in our daily lives, plastics are the invention of the hour. Polyester plastics, such as Polyethylene Terephthalate (PET), are among the most often used types of plastics. PET plastics have a high ratio of aromatic components, which makes them very resistant to microbial attack and highly persistent. As a result, massive amounts of plastic trash accumulate in the environment, where they eventually transform into microplastic (<5 mm). Rather than macroplastics, microplastics are starting to pose a serious hazard to the environment. It is imperative that these polymer microplastics be broken down. Through the use of enrichment culture, the PET microplastic-degrading bacterium was isolated from solid waste management yards. Bacterial strain was identified as Gordonia sp. CN2K by 16 S rDNA sequence analysis and biochemical characterization. It is able to use polyethylene terephthalate as its only energy and carbon source. In 45 days, 40.43 % of the PET microplastic was degraded. By using mass spectral analysis and HPLC to characterize the metabolites produced during PET breakdown, the degradation of PET is verified. The metabolites identified in the spent medium included dimer compound, bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET), and terephthalate. Furthermore, the PET sheet exposed to the culture showed considerable surface alterations in the scanning electron microscope images. This illustrates how new the current work is.


Subject(s)
Biodegradation, Environmental , Gordonia Bacterium , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Gordonia Bacterium/metabolism , Gordonia Bacterium/genetics , Plastics , Microplastics , RNA, Ribosomal, 16S/genetics
5.
Article in English | MEDLINE | ID: mdl-38805028

ABSTRACT

A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , Plant Leaves , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Plant Leaves/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Fatty Acids/chemistry , Fatty Acids/analysis , Thailand , Salt-Tolerant Plants/microbiology , Geologic Sediments/microbiology , Phospholipids/analysis , Phospholipids/chemistry , Wetlands , Gordonia Bacterium/genetics , Gordonia Bacterium/classification , Gordonia Bacterium/isolation & purification
6.
Indian J Med Microbiol ; 48: 100562, 2024.
Article in English | MEDLINE | ID: mdl-38508492

ABSTRACT

Gordonia bronchialis is an aerobic gram-positive bacilli and also weakly acid fast. It requires a long incubation time and extensive biochemical reactions for identification. Therefore, use of broad-range polymerase chain reaction (PCR) for amplification of genes such as 16S rRNA or hsp65 followed by sequencing or advanced techniques like MALDI-TOF MS is needed for identification. Here, we present a case of persistent sternal wound infection following open heart surgery, caused by G. bronchialis in a 58 years old male, identified using MALDI-TOF MS-based system. The patient improved with oral Cefpodoxime 200 mg BD for four weeks.


Subject(s)
Actinomycetales Infections , Sternum , Surgical Wound Infection , Humans , Male , Middle Aged , Surgical Wound Infection/microbiology , Surgical Wound Infection/drug therapy , Surgical Wound Infection/diagnosis , Sternum/microbiology , Sternum/surgery , Actinomycetales Infections/microbiology , Gordonia Bacterium/genetics , Gordonia Bacterium/isolation & purification , Anti-Bacterial Agents/therapeutic use , Cardiac Surgical Procedures/adverse effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Recurrence , RNA, Ribosomal, 16S/genetics
7.
Microbiology (Reading) ; 169(6)2023 06.
Article in English | MEDLINE | ID: mdl-37384374

ABSTRACT

Bacterial strain GONU, belonging to the genus Gordonia, was isolated from a municipal waste-contaminated soil sample and was capable of utilizing an array of endocrine-disrupting phthalate diesters, including di-n-octyl phthalate (DnOP) and its isomer di(2-ethylhexyl) phthalate (DEHP), as the sole carbon and energy sources. The biochemical pathways of the degradation of DnOP and DEHP were evaluated in strain GONU by using a combination of various chromatographic, spectrometric and enzymatic analyses. Further, the upregulation of three different esterases (estG2, estG3 and estG5), a phthalic acid (PA)-metabolizing pht operon and a protocatechuic acid (PCA)-metabolizing pca operon were revealed based on de novo whole genome sequence information and substrate-induced protein profiling by LC-ESI-MS/MS analysis followed by differential gene expression by real-time PCR. Subsequently, functional characterization of the differentially upregulated esterases on the inducible hydrolytic metabolism of DnOP and DEHP revealed that EstG5 is involved in the hydrolysis of DnOP to PA, whereas EstG2 and EstG3 are involved in the metabolism of DEHP to PA. Finally, gene knockout experiments further validated the role of EstG2 and EstG5, and the present study deciphered the inducible regulation of the specific genes and operons in the assimilation of DOP isomers.


Subject(s)
Diethylhexyl Phthalate , Gordonia Bacterium , Tandem Mass Spectrometry , Gordonia Bacterium/genetics , Esterases
10.
Bioprocess Biosyst Eng ; 46(2): 195-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36451047

ABSTRACT

In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.


Subject(s)
Gordonia Bacterium , Niacin , Methylnitronitrosoguanidine , Aminohydrolases/chemistry , Biotransformation , Gordonia Bacterium/genetics , Methane
12.
Viruses ; 14(8)2022 07 27.
Article in English | MEDLINE | ID: mdl-36016269

ABSTRACT

Bacteriophages infecting bacteria of the genus Gordonia have increasingly gained interest in the scientific community for their diverse applications in agriculture, biotechnology, and medicine, ranging from biocontrol agents in wastewater management to the treatment of opportunistic pathogens in pulmonary disease patients. However, due to the time and costs associated with experimental isolation and cultivation, host ranges for many bacteriophages remain poorly characterized, hindering a more efficient usage of bacteriophages in these areas. Here, we perform a series of computational genomic inferences to predict the putative host ranges of all Gordonia cluster DR bacteriophages known to date. Our analyses suggest that BiggityBass (as well as several of its close relatives) is likely able to infect host bacteria from a wide range of genera-from Gordonia to Nocardia to Rhodococcus, making it a suitable candidate for future phage therapy and wastewater treatment strategies.


Subject(s)
Bacteriophages , Gordonia Bacterium , Bacteriophages/genetics , Genome, Viral , Genomics , Gordonia Bacterium/genetics , Humans , Phylogeny , Wastewater
13.
Enferm Infecc Microbiol Clin (Engl Ed) ; 40(5): 255-257, 2022 05.
Article in English | MEDLINE | ID: mdl-35577444

ABSTRACT

PURPOSE: Gordonia species are known to be opportunistic human pathogens causing secondary infections. We present the second case in the world of endocarditis caused by Gordonia bronchialis and a review of all the cases of endocarditis caused by Gordonia spp. METHODS: The identification was performed by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing were performed to confirm the identification. Antimicrobial susceptibility was performed by MIC test Strip on Mueller-Hinton agar supplemented with 5% defibrinated sheep blood according to Clinical and Laboratory Standards Institute. RESULTS: Pacemaker-induced endocarditis due to Gordonia bronchialis infection was determined in an 88-year old woman. The patient was treated with ceftriaxone and ciprofloxacin until completing 6 weeks from the pacemaker explant with a good evolution. CONCLUSION: The case presented supports the pathogenic role of Gordonia bronchialis as an opportunistic pathogen and highlights the high risk of suffering infections caused by environmental bacteria.


Subject(s)
Endocarditis , Gordonia Bacterium , Pacemaker, Artificial , Actinobacteria , Animals , Gordonia Bacterium/genetics , Humans , Pacemaker, Artificial/adverse effects , RNA, Ribosomal, 16S/genetics , Sheep/genetics
15.
Curr Microbiol ; 79(3): 82, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35107610

ABSTRACT

Although conventional oil refining process like hydrodesulfurization (HDS) is capable of removing sulfur compounds present in crude oil, it cannot desulfurize recalcitrant organosulfur compounds such as dibenzothiophenes (DBTs), benzothiophenes (BTs), etc. Biodesulfurization (BDS) is a process of selective removal of sulfur moieties from DBT or BT by desulfurizing microbes. Therefore, BDS can be used as a complementary and economically feasible technology to achieve deep desulfurization of crude oil without affecting the calorific value. In the recent past, members of biodesulfurizing actinomycete genus Gordonia, isolated from versatile environments like soil, activated sludge, human beings etc. have been greatly exploited in the field of petroleum refining technology. The bacterium Gordonia sp. is slightly acid-fast and has been used for unconventional but potential oil refining processes like BDS in petroleum refineries. Gordonia sp. is unique in a way, that it can desulfurize both aliphatic and aromatic organosulfurs without affecting the calorific value of hydrocarbon molecules. Till date, approximately six different species and nineteen strains of the genus Gordonia have been recognized for BDS activity. Various factors such as enzyme specificity, availability of essential cofactors, feedback inhibition, toxicity of organic pollutants and the oil-water separations limit the desulfurization rate of microbial biocatalyst and influence its commercial applications. The current review selectively highlights the role of this versatile genus in removing sulfur from fossil fuels, mechanisms and future prospects on sustainable environment friendly technologies for crude oil refining.


Subject(s)
Gordonia Bacterium , Petroleum , Fossil Fuels , Gordonia Bacterium/genetics , Humans , Sulfur , Sulfur Compounds
17.
Genomics ; 113(6): 4327-4336, 2021 11.
Article in English | MEDLINE | ID: mdl-34801686

ABSTRACT

Gordonia are Gram-positive bacteria which have immense biotechnological potential. Genomes of several Gordonia spp. have been sequenced but a detailed analysis of the differentially expressed genes during growth, the promoters which drive their expression and the information on the core promoter sequence is lacking. Here, we report the identification of core promoter sequence in Gordonia sp. IITR100. The GC content of the promoters was found to be within a range of 62-65%. The 5'-UTR length in the genes was also analysed and about 56% promoters were found to have long 5'-UTR. The functionality of the promoters was validated by microarray profiling. Based on the differential expression of genes, two growth phase dependent promoters PdsbA and Pglx were isolated and analysed. They add to the existing repertoire of the promoters functional in both Gram-negative and Gram-positive bacteria. Our results suggest that the core promoter sequence identified is conserved in members of Gordonia spp. and is similar to that of other members of Actinobacteria.


Subject(s)
Actinobacteria , Gordonia Bacterium , Actinobacteria/genetics , Base Composition , Gordonia Bacterium/genetics , Promoter Regions, Genetic
18.
J Basic Microbiol ; 60(1): 14-21, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31696960

ABSTRACT

Gordoniae are one of the most promising hydrocarbon-oxidizing actinobacteria. Here we present the genome sequence analysis of thermotolerant strain Gordonia sp. 1D isolated from oil-refinery soil. It is capable of alkane consumption and biosurfactant production at temperatures of up to 50°C. Gordonia sp. 1D demonstrates maximum biosurfactant production when grown on hexadecane, and at 40°C it was slightly higher than at 27°C: 35 and 39 mN/m, respectively. For the first time, it was experimentally confirmed that the carbohydrate component of extracellular biosurfactants produced by strain 1D is trehalose. In addition, genes for the production of trehalose lipid biosurfactants were identified. The genetic determinants for two different pathways for trehalose synthesis were found. The strain carries genes otsA and otsB involved in de novo trehalose biosynthesis. Moreover, the genes treY and treZ responsible for trehalose biosynthesis from maltooligosaccharides and starch or glycogen were identified.


Subject(s)
Genome, Bacterial/genetics , Gordonia Bacterium/genetics , Gordonia Bacterium/metabolism , Trehalose/metabolism , Genes, Bacterial , Glycolipids/chemistry , Glycolipids/metabolism , Gordonia Bacterium/classification , Hydrocarbons/metabolism , Petroleum/microbiology , Phylogeny , Soil Microbiology , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Temperature
19.
Int J Biol Macromol ; 141: 671-679, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31493456

ABSTRACT

Gordonia sp. IITR100 is a biodesulfurizing bacterium which can metabolize dibenzothiophene (DBT) to 2 hydroxybiphenyl in four steps via the 4S pathway. The genes involved in the metabolism are present in the form of an operon, dszABC, which gets activated by a TetR family protein. Here, we report the detailed characterization of the DNA binding and ligand binding property of the TetR family protein. The protein was found to be conserved across other desulfurizing organisms. The protein was purified and was found to exist as dimer. The presence of ligand binding site was identified by docking studies and the structural changes in the protein upon ligand binding were determined by CD spectroscopy and tryptophan fluorescence. Further, it was determined that this protein binds to an imperfect palindromic DNA sequence present in the dsz promoter DNA. Binding to the DNA also changes conformation of the protein.


Subject(s)
Bacterial Proteins/metabolism , DNA/metabolism , Gordonia Bacterium/genetics , Gordonia Bacterium/metabolism , Operon/genetics , Bacterial Proteins/chemistry , Binding Sites , Ligands , Models, Molecular , Promoter Regions, Genetic/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary
20.
J Agric Food Chem ; 67(31): 8548-8558, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31266305

ABSTRACT

Herein, we report a double enzyme system to degrade 12 phthalate esters (PAEs), particularly bulky PAEs, such as the widely used bis(2-ethylhexyl) phthalate (DEHP), in a one-pot cascade process. A PAE-degrading bacterium, Gordonia sp. strain 5F, was isolated from soil polluted with plastic waste. From this strain, a novel esterase (GoEst15) and a mono(2-ethylhexyl) phthalate hydrolase (GoEstM1) were identified by homology-based cloning. GoEst15 showed broad substrate specificity, hydrolyzing DEHP and 10 other PAEs to monoalkyl phthalates, which were further degraded by GoEstM1 to phthalic acid. GoEst15 and GoEstM1 were heterologously coexpressed in Escherichia coli BL21 (DE3), which could then completely degrade 12 PAEs (5 mM), within 1 and 24 h for small and bulky substrates, respectively. To our knowledge, GoEst15 is the first DEHP hydrolase with a known protein sequence, which will enable protein engineering to enhance its catalytic performance in the future.


Subject(s)
Bacterial Proteins/chemistry , Esterases/chemistry , Esters/chemistry , Gordonia Bacterium/enzymology , Phthalic Acids/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biodegradation, Environmental , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/metabolism , Esterases/genetics , Esterases/metabolism , Esters/metabolism , Gordonia Bacterium/genetics , Gordonia Bacterium/isolation & purification , Gordonia Bacterium/metabolism , Hydrolysis , Phthalic Acids/metabolism , Sequence Alignment , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL