Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.390
Filter
1.
Front Immunol ; 15: 1422113, 2024.
Article in English | MEDLINE | ID: mdl-38966643

ABSTRACT

Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.


Subject(s)
Serpins , Humans , Serpins/metabolism , Serpins/therapeutic use , Animals , Neoplasms/immunology , Neoplasms/therapy , Granzymes/metabolism , Signal Transduction
2.
ACS Nano ; 18(29): 18910-18921, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39001856

ABSTRACT

Granzyme B is an immune-related biomarker that closely correlates with cytotoxic T lymphocytes (CTLs), and hence detecting the expression level of granzyme B can provide a dependable scheme for clinical immune response assessment. In this study, two positron emission tomography (PET) probes [18F]SF-M-14 and [18F]SF-H-14 targeting granzyme B are designed based on the intramolecular cyclization scaffold SF. [18F]SF-M-14 and [18F]SF-H-14 can respond to granzyme B and glutathione (GSH) to conduct intramolecular cyclization and self-assemble into nanoaggregates to enhance the retention of probe at the target site. Both probes are prepared with high radiochemical purity (>98%) and high stability in PBS and mouse serum. In 4T1 cells cocultured with T lymphocytes, [18F]SF-M-14 and [18F]SF-H-14 reach the maximum uptake of 6.71 ± 0.29 and 3.47 ± 0.09% ID/mg at 0.5 h, respectively, but they remain below 1.95 ± 0.22 and 1.47 ± 0.21% ID/mg in 4T1 cells without coculture of T lymphocytes. In vivo PET imaging shows that the tumor uptake in 4T1-tumor-bearing mice after immunotherapy is significantly higher (3.5 times) than that in the untreated group. The maximum tumor uptake of [18F]SF-M-14 and [18F]SF-H-14 in the mice treated with BEC was 4.08 ± 0.16 and 3.43 ± 0.12% ID/g, respectively, while that in the untreated mice was 1.04 ± 0.79 and 1.41 ± 0.11% ID/g, respectively. These results indicate that both probes have great potential in the early evaluation of clinical immunotherapy efficacy.


Subject(s)
Granzymes , Immunotherapy , Positron-Emission Tomography , Animals , Granzymes/metabolism , Mice , Female , Mice, Inbred BALB C , Cell Line, Tumor , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Humans
3.
BMC Oral Health ; 24(1): 829, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039547

ABSTRACT

BACKGROUND: Mucosal-associated invariant T (MAIT) cells assume pivotal roles in numerous autoimmune inflammatory maladies. However, scant knowledge exists regarding their involvement in the pathological progression of oral lichen planus (OLP). The focus of our study was to explore whether MAIT cells were altered across distinct clinical types of OLP. METHODS: The frequency, phenotype, and partial functions of MAIT cells were performed by flow cytometry, using peripheral blood from 18 adults with non-erosive OLP and 22 adults with erosive OLP compared with 15 healthy adults. We also studied the changes in MAIT cells in 15 OLP patients receiving and 10 not receiving corticosteroids. Surface proteins including CD4, CD8, CD69, CD103, CD38, HLA-DR, Tim-3, Programmed Death Molecule-1 (PD-1), and related factors released by MAIT cells such as Granzyme B (GzB), interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-17A, and IL-22 were detected. RESULTS: Within non-erosive OLP patients, MAIT cells manifested an activated phenotype, evident in an elevated frequency of CD69+ CD38+ MAIT cells (p < 0.01). Conversely, erosive OLP patients displayed an activation and depletion phenotype in MAIT cells, typified by elevated CD69 (p < 0.01), CD103 (p < 0.05), and PD-1 expression (p < 0.01). Additionally, MAIT cells exhibited heightened cytokine production, encompassing GzB, IFN-γ, and IL-17A in erosive OLP patients. Notably, the proportion of CD103+ MAIT cells (p < 0.05) and GzB secretion (p < 0.01) by MAIT cells diminished, while the proportion of CD8+ MAIT cells (p < 0.05) rose in OLP patients with corticosteroid therapy. CONCLUSIONS: MAIT cells exhibit increased pathogenicity and pro-inflammatory capabilities in OLP. Corticosteroid therapy influences the expression of certain phenotypes and functions of MAIT cells in the peripheral blood of OLP patients.


Subject(s)
Lichen Planus, Oral , Mucosal-Associated Invariant T Cells , Humans , Lichen Planus, Oral/immunology , Lichen Planus, Oral/pathology , Mucosal-Associated Invariant T Cells/immunology , Male , Female , Middle Aged , Adult , Antigens, CD , Aged , Granzymes/metabolism , Adrenal Cortex Hormones/therapeutic use , Cytokines/metabolism , Programmed Cell Death 1 Receptor , Case-Control Studies , Antigens, Differentiation, T-Lymphocyte , Phenotype , Flow Cytometry , Lectins, C-Type
4.
BMC Cancer ; 24(1): 869, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030523

ABSTRACT

CD8+T cells secreting granzyme A (GZMA) can induce pyroptosis in tumor cells by effectively cleaving gasdermin B (GSDMB), which is stimulated by interferon-γ (IFN-γ). However, the interaction between GZMA-expressing CD8+T cells and GSDMB-expressing tumor cells in colon cancer remains poorly understood. Our research employed multi-color immunohistochemistry (mIHC) staining and integrated clinical data to explore the spatial distribution and clinical relevance of GZMA- and IFN-γ-expressing CD8+ tumor-infiltrating lymphocytes (TILs), as well as GSDMB-expressing CK+ cells, within the tumor microenvironment (TME) of human colon cancer samples. Additionally, we utilizing single-cell RNA sequencing (scRNA-seq) data to examine the functional dynamics and interactions among these cell populations. scRNA-seq analysis of colorectal cancer (CRC) tissues revealed that CD8+TILs co-expressed GZMA and IFN-γ, but not other cell types. Our mIHC staining results indicated that a significant reduction in the infiltration of GZMA+IFN-γ+CD8+TILs in colon cancer patients (P < 0.01). Functional analysis results indicated that GZMA+IFN-γ+CD8+TILs demonstrated enhanced activation and effector functions compared to other CD8+TIL subsets. Furthermore, GSDMB-expressing CK+ cells exhibited augmented immunogenicity. Correlation analysis highlighted a positive association between GSDMB+CK+ cells and GZMA+IFN-γ+CD8+TILs (r = 0.221, P = 0.033). Analysis of cell-cell interactions further showed that these interactions were mediated by IFN-γ and transforming growth factor-ß (TGF-ß), the co-stimulatory molecule ICOS, and immune checkpoint molecules TIGIT and TIM-3. These findings suggested that GZMA+IFN-γ+CD8+TILs modulating GSDMB-expressing tumor cells, significantly impacted the immune microenvironment and patients' prognosis in colon cancer. By elucidating these mechanisms, our present study aims to provide novel insights for the advancement of immunotherapeutic strategies in colon cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Colonic Neoplasms , Granzymes , Interferon-gamma , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Granzymes/metabolism , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Male , Female , Single-Cell Analysis
5.
J Immunol ; 213(3): 328-338, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38905023

ABSTRACT

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Granzymes , Interferon-gamma , Th1 Cells , Chlamydia trachomatis/immunology , Animals , Chlamydia Infections/immunology , Mice , Interferon-gamma/immunology , Interferon-gamma/metabolism , Th1 Cells/immunology , Female , Granzymes/metabolism , Granzymes/immunology , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Humans , T-Lymphocytes, Cytotoxic/immunology , Mice, Knockout , Lymphocyte Activation/immunology , CD4-Positive T-Lymphocytes/immunology
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928129

ABSTRACT

Peripheral blood CD8+ T lymphocytes play a crucial role in cell-mediated immunity and tumor-related immune responses in breast cancer. In this study, label-free quantification analysis and gene set enrichment analysis (GSEA) of CD8+ T lymphocytes in the peripheral blood of benign patients and patients with different breast cancer (BC) subtypes, i.e., luminal A, luminal B, and triple-negative breast cancer (TNBC), were performed using nano-UHPLC and Orbitrap mass spectrometry. Differential protein expression in CD8+ T lymphocytes revealed significant downregulation (log2 FC ≥ 0.38 or ≤-0.38, adj. p < 0.05), particularly in proteins involved in cytotoxicity, cytolysis, and proteolysis, such as granzymes (GZMs) and perforin 1 (PRF1). This downregulation was observed in the benign group (GZMH, GZMM, and PRF1) and luminal B (GZMA, GZMH) subtypes, whereas granzyme K (GZMK) was upregulated in TNBC in comparison to healthy controls. The RNA degradation pathway was significantly downregulated (p < 0.05, normalized enrichment score (NES) from -1.47 to -1.80) across all BC subtypes, suggesting a potential mechanism for regulating gene expression during T cell activation. Also, the Sm-like proteins (LSM2, LSM3, and LSM5) were significantly downregulated in the RNA degradation pathway. Proteomic analysis of CD8+ T lymphocytes in peripheral blood across different breast cancer subtypes provides a comprehensive view of the molecular mechanisms of the systemic immune response that can significantly contribute to advancements in the diagnosis, treatment, and prognosis of this disease.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Granzymes , Humans , Female , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Middle Aged , Granzymes/metabolism , Granzymes/genetics , Granzymes/blood , Adult , Perforin/metabolism , Perforin/genetics , Aged , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic
7.
J Clin Invest ; 134(14)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833303

ABSTRACT

Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.


Subject(s)
CD8-Positive T-Lymphocytes , Leishmaniasis, Cutaneous , Neutrophils , Positive Regulatory Domain I-Binding Factor 1 , Animals , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/pathology , Leishmaniasis, Cutaneous/parasitology , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Neutrophils/immunology , Neutrophils/pathology , Neutrophils/metabolism , Humans , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , Positive Regulatory Domain I-Binding Factor 1/metabolism , Granzymes/metabolism , Granzymes/immunology , Granzymes/genetics , Cell Hypoxia/immunology , Female
8.
J Cancer Res Clin Oncol ; 150(6): 286, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833021

ABSTRACT

BACKGROUND: Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS: We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS: Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION: Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Granzymes , Immunotherapy , Humans , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/mortality , Female , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Granzymes/metabolism , Granzymes/genetics , Treatment Outcome , Middle Aged , Tumor Microenvironment/immunology
9.
Front Immunol ; 15: 1398120, 2024.
Article in English | MEDLINE | ID: mdl-38903528

ABSTRACT

Psoriasis is an inflammatory disease with systemic manifestations that most commonly presents as itchy, erythematous, scaly plaques on extensor surfaces. Activation of the IL-23/IL-17 pro-inflammatory signaling pathway is a hallmark of psoriasis and its inhibition is key to clinical management. Granzyme K (GzmK) is an immune cell-secreted serine protease elevated in inflammatory and proliferative skin conditions. In the present study, human psoriasis lesions exhibited elevated GzmK levels compared to non-lesional psoriasis and healthy control skin. In an established murine model of imiquimod (IMQ)-induced psoriasis, genetic loss of GzmK significantly reduced disease severity, as determined by delayed plaque formation, decreased erythema and desquamation, reduced epidermal thickness, and inflammatory infiltrate. Molecular characterization in vitro revealed that GzmK contributed to macrophage secretion of IL-23 as well as PAR-1-dependent keratinocyte proliferation. These findings demonstrate that GzmK enhances IL-23-driven inflammation as well as keratinocyte proliferation to exacerbate psoriasis severity.


Subject(s)
Cell Proliferation , Granzymes , Inflammation , Interleukin-23 , Keratinocytes , Psoriasis , Psoriasis/immunology , Psoriasis/pathology , Animals , Keratinocytes/metabolism , Keratinocytes/immunology , Keratinocytes/pathology , Humans , Mice , Granzymes/metabolism , Granzymes/genetics , Interleukin-23/metabolism , Inflammation/immunology , Inflammation/pathology , Imiquimod , Disease Models, Animal , Mice, Knockout , Female , Male , Mice, Inbred C57BL
10.
Gut Microbes ; 16(1): 2363020, 2024.
Article in English | MEDLINE | ID: mdl-38841892

ABSTRACT

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Subject(s)
Butyrates , Colitis , Gastrointestinal Microbiome , Granzymes , Interleukin-10 , Mice, Inbred C57BL , Th1 Cells , Animals , Interleukin-10/metabolism , Interleukin-10/genetics , Interleukin-10/immunology , Th1 Cells/immunology , Mice , Gastrointestinal Microbiome/drug effects , Butyrates/metabolism , Butyrates/pharmacology , Granzymes/metabolism , Colitis/immunology , Colitis/microbiology , Colitis/metabolism , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immune Tolerance , Homeodomain Proteins
11.
Front Immunol ; 15: 1392535, 2024.
Article in English | MEDLINE | ID: mdl-38846935

ABSTRACT

The pivotal role of Granzyme B (GzmB) in immune responses, initially tied to cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, has extended across diverse cell types and disease models. A number of studies have challenged conventional notions, revealing GzmB activity beyond apoptosis, impacting autoimmune diseases, inflammatory disorders, cancer, and neurotoxicity. Notably, the diverse functions of GzmB unfold through Perforin-dependent and Perforin-independent mechanisms, offering clinical implications and therapeutic insights. This review underscores the multifaceted roles of GzmB, spanning immunological and pathological contexts, which call for further investigations to pave the way for innovative targeted therapies.


Subject(s)
Granzymes , Killer Cells, Natural , Perforin , T-Lymphocytes, Cytotoxic , Granzymes/metabolism , Humans , Perforin/metabolism , Animals , T-Lymphocytes, Cytotoxic/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/immunology , Neoplasms/therapy
12.
Sci Rep ; 14(1): 13074, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844784

ABSTRACT

While adaptive immune responses have been studied extensively in SLE (systemic lupus erythematosus), there is limited and contradictory evidence regarding the contribution of natural killer (NK) cells to disease pathogenesis. There is even less evidence about the role of NK cells in the more severe phenotype with juvenile-onset (J)SLE. In this study, analysis of the phenotype and function of NK cells in a large cohort of JSLE patients demonstrated that total NK cells, as well as perforin and granzyme A expressing NK cell populations, were significantly diminished in JSLE patients compared to age- and sex-matched healthy controls. The reduction in NK cell frequency was associated with increased disease activity, and transcriptomic analysis of NK populations from active and low disease activity JSLE patients versus healthy controls confirmed that disease activity was the main driver of differential NK cell gene expression. Pathway analysis of differentially expressed genes revealed an upregulation of interferon-α responses and a downregulation of exocytosis in active disease compared to healthy controls. Further gene set enrichment analysis also demonstrated an overrepresentation of the apoptosis pathway in active disease. This points to increased propensity for apoptosis as a potential factor contributing to NK cell deficiency in JSLE.


Subject(s)
Killer Cells, Natural , Lupus Erythematosus, Systemic , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Female , Male , Adolescent , Child , Phenotype , Granzymes/metabolism , Granzymes/genetics , Perforin/metabolism , Perforin/genetics , Apoptosis/genetics , Transcriptome , Gene Expression Profiling , Case-Control Studies
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734321

ABSTRACT

Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Granzymes , Hepatitis A Virus Cellular Receptor 2 , Perforin , Tuberculosis , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Granzymes/metabolism , Granzymes/genetics , Granzymes/immunology , Perforin/metabolism , Perforin/genetics , Perforin/immunology , Adult , Female , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Middle Aged , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Mycobacterium tuberculosis/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, CD/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Proteomics/methods , Antigens, Differentiation, T-Lymphocyte , Apyrase
14.
Mol Ther ; 32(7): 2373-2392, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38745414

ABSTRACT

Interleukin (IL)18 is a potent pro-inflammatory cytokine that is activated upon caspase 1 cleavage of the latent precursor, pro-IL18. Therapeutic T cell armoring with IL18 promotes autocrine stimulation and positive modulation of the tumor microenvironment (TME). However, existing strategies are imperfect since they involve constitutive/poorly regulated activity or fail to modify the TME. Here, we have substituted the caspase 1 cleavage site within pro-IL18 with that preferred by granzyme B, yielding GzB-IL18. We demonstrate that GzB-IL18 is constitutively released but remains functionally latent unless chimeric antigen receptor (CAR) T cells are activated, owing to concomitant granzyme B release. Armoring with GzB-IL18 enhances cytolytic activity, proliferation, interferon (IFN)-γ release, and anti-tumor efficacy by a similar magnitude to constitutively active IL18. We also demonstrate that GzB-IL18 provides a highly effective armoring strategy for γδ CAR T cells, leading to enhanced metabolic fitness and significant potentiation of therapeutic activity. Finally, we show that constitutively active IL18 can unmask CAR T cell-mediated cytokine release syndrome in immunocompetent mice. By contrast, GzB-IL18 promotes anti-tumor activity and myeloid cell re-programming without inducing such toxicity. Using this stringent system, we have tightly coupled the biological activity of IL18 to the activation state of the host CAR T cell, favoring safer clinical implementation of this technology.


Subject(s)
Granzymes , Immunotherapy, Adoptive , Interleukin-18 , Receptors, Chimeric Antigen , Interleukin-18/metabolism , Granzymes/metabolism , Animals , Mice , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Cell Line, Tumor , Tumor Microenvironment/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Cytotoxicity, Immunologic , Xenograft Model Antitumor Assays , Interferon-gamma/metabolism
15.
Yakugaku Zasshi ; 144(5): 475-481, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692920

ABSTRACT

Zinc is one of the essential trace elements, and is involved in various functions in the body. Zinc deficiency is known to cause immune abnormalities, but the mechanism is not fully understood. Therefore, we focused our research on tumor immunity to elucidate the effect of zinc on colorectal cancer and its mechanisms. Mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) to develop colorectal cancer, then the relationship between zinc content in the diet and the number and area of tumors in the colon was observed. The number of tumors in the colon was significantly higher in the no-zinc-added diet group compared to the normal zinc intake group, and about half the number in the high-zinc-intake group compared to the normal-zinc-intake group. In T-cell-deficient mice, the number of tumors in the high-zinc-intake group was similar to that in the normal-zinc-intake group, suggesting that the inhibitory effect of zinc was dependent on T cells. Furthermore, we found that the amount of granzyme B transcript released by cytotoxic T cells upon antigen stimulation was significantly increased by the addition of zinc. We also showed that granzyme B transcriptional activation by zinc addition was dependent on calcineurin activity. Collectively, we have shown that zinc exerts its tumor-suppressive effect by acting on cytotoxic T cells, the center of cellular immunity, and that it increases the transcription of granzyme B, one of the key molecules involved in tumor immunity. In this symposium, we would like to introduce our latest data on the relationship between zinc and tumor immunity.


Subject(s)
Colorectal Neoplasms , Immunity, Cellular , Zinc , Animals , Humans , Mice , Azoxymethane , Colorectal Neoplasms/immunology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Granzymes/metabolism , T-Lymphocytes, Cytotoxic/immunology
16.
ACS Infect Dis ; 10(6): 2108-2117, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38819300

ABSTRACT

Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.


Subject(s)
Granzymes , Mice, Knockout , Animals , Granzymes/metabolism , Mice , Positron-Emission Tomography/methods , Positron Emission Tomography Computed Tomography , Copper Radioisotopes , Female , Mice, Inbred C57BL , Bacterial Infections/diagnostic imaging , Bacterial Infections/immunology , Disease Models, Animal , Lung/diagnostic imaging , Lung/microbiology , Lung/immunology , Radiopharmaceuticals , Orthomyxoviridae Infections/immunology
17.
J Nucl Med ; 65(7): 1137-1143, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754959

ABSTRACT

Developing a noninvasive imaging method to detect immune system activation with a high temporal resolution is key to improving inflammatory bowel disease (IBD) management. In this study, granzyme B (GZMB), typically released from cytotoxic T and natural killer cells, was targeted using PET with 68Ga-NOTA-GZP (where GZP is ß-Ala-Gly-Gly-Ile-Glu-Phe-Asp-CHO) to detect early intestinal inflammation in murine models of colitis. Methods: Bioinformatic analysis was used to assess the potential of GZMB as a biomarker for detecting IBD and predicting response to treatment. Human active and quiescent Crohn disease and ulcerative colitis tissues were stained for GZMB. We used IL-10-/- mice treated with dextran sulfate sodium (DSS) as an IBD model, wild-type C57BL/6J mice as a control, and anti-tumor necrosis factor as therapy. We used a murine GZMB-binding peptide conjugated to a NOTA chelator (NOTA-GZP) labeled with 68Ga as the PET tracer. PET imaging was conducted at 1, 3, and 4 wk after colitis induction to evaluate temporal changes. Results: Bioinformatic analysis showed that GZMB gene expression is significantly upregulated in human ulcerative colitis and Crohn disease compared with the noninflamed bowel by 2.98-fold and 1.92-fold, respectively; its expression is lower by 2.16-fold in treatment responders than in nonresponders. Immunofluorescence staining of human tissues demonstrated a significantly higher GZMB in patients with active than with quiescent IBD (P = 0.032).68Ga-NOTA-GZP PET imaging showed significantly increased bowel uptake in IL-10-/- mice with DSS-induced colitis compared with vehicle-treated IL-10-/- mice (SUVmean, 0.75 vs. 0.24; P < 0.001) and both vehicle- and DSS-treated wild-type mice (SUVmean, 0.26 and 0.37; P < 0.001). In the IL-10-/- DSS-induced colitis model, the bowel PET probe uptake decreased in response to treatment with tumor necrosis factor-α (SUVmean, 0.32; P < 0.001). There was a 4-fold increase in colonic uptake of 68Ga-NOTA-GZP in the colitis model compared with the control 1 wk after colitis induction. The uptake gradually decreased to approximately 2-fold by 4 wk after IBD induction; however, the inflamed bowel uptake remained significantly higher than control at all time points (week 4 SUVmean, 0.23 vs. 0.08; P = 0.001). Conclusion: GZMB is a promising biomarker to detect active IBD and predict response to treatment. This study provides compelling evidence to translate GZMB PET for imaging IBD activity in clinical settings.


Subject(s)
Granzymes , Inflammatory Bowel Diseases , Positron-Emission Tomography , Animals , Mice , Inflammatory Bowel Diseases/diagnostic imaging , Humans , Granzymes/metabolism , Mice, Inbred C57BL
18.
Nat Commun ; 15(1): 3937, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729924

ABSTRACT

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.


Subject(s)
Apoptosis , Cryopreservation , Granzymes , Interleukin-15 , Interleukin-18 , Killer Cells, Natural , Granzymes/metabolism , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Interleukin-18/metabolism , Animals , Cryopreservation/methods , Mice , Cell Line, Tumor , CRISPR-Cas Systems
19.
Sci Rep ; 14(1): 12188, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806640

ABSTRACT

Natural killer (NK) cells are closely associated with malignant tumor progression and metastasis. However, studies on their relevance in colorectal cancer (CRC) are limited. We aimed to comprehensively analyze the absolute counts, phenotypes, and function of circulating NK cells in patients with CRC using multiparametric flow cytometry. The distribution of NK cell subsets in the peripheral circulation of patients with CRC was significantly altered relative to the control group. This is shown by the decreased frequency and absolute count of CD56dimCD16+ NK cells with antitumor effects, contrary to the increased frequency of CD56bright NK and CD56dimCD16- NK cells with poor or ineffective antitumor effects. NK cells in patients with CRC were functionally impaired, with decreased intracellular interferon (IFN)-γ secretion and a significantly lower percentage of cell surface granzyme B and perforin expression. In addition, IFN-γ expression decreased significantly with the tumor stage progression. Based on a comprehensive analysis of the absolute counts, phenotypes, and functional markers of NK cells, we found an altered subset distribution and impaired function of circulating NK cells in patients with CRC.


Subject(s)
Colorectal Neoplasms , Granzymes , Interferon-gamma , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/blood , Male , Female , Middle Aged , Interferon-gamma/metabolism , Aged , Granzymes/metabolism , Perforin/metabolism , CD56 Antigen/metabolism , Flow Cytometry , Adult
20.
BMC Cancer ; 24(1): 627, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783281

ABSTRACT

BACKGROUND: CCR8-expressing regulatory T cells (Tregs) are selectively localized within tumors and have gained attention as potent suppressors of anti-tumor immunity. This study focused on CCR8+ Tregs and their interaction with CD8+ T cells in the tumor microenvironment of human lung cancer. We evaluated their spatial distribution impact on CD8+ T cell effector function, specifically granzyme B (GzmB) expression, and clinical outcomes. METHODS: A total of 81 patients with lung squamous cell carcinoma (LSCC) who underwent radical surgical resection without preoperative treatment were enrolled. Histological analyses were performed, utilizing an automated image analysis system for double-stained immunohistochemistry assays of CCR8/Foxp3 and GzmB/CD8. We investigated the association of CCR8+ Tregs and GzmB+ CD8+ T cells in tumor tissues and further evaluated the prognostic impact of their distribution profiles. RESULTS: Histological evaluation using the region of interest (ROI) protocol showed that GzmB expression levels in CD8+ T cells were decreased in areas with high infiltration of CCR8+ Tregs, suggesting a suppressive effect of CCR8+ Tregs on T cell cytotoxicity in the local tumor microenvironment. Analysis of the association with clinical outcomes showed that patients with more CCR8+ Tregs and lower GzmB expression, represented by a low GzmB/CCR8 ratio, had worse progression-free survival. CONCLUSIONS: Our data suggest that local CCR8+ Treg accumulation is associated with reduced CD8+ T cell cytotoxic activity and poor prognosis in LSCC patients, highlighting the biological role and clinical significance of CCR8+ Tregs in the tumor microenvironment. The GzmB/CCR8 ratio may be a useful prognostic factor for future clinical applications in LSCC.


Subject(s)
CD8-Positive T-Lymphocytes , Granzymes , Lung Neoplasms , Receptors, CCR8 , T-Lymphocytes, Regulatory , Tumor Microenvironment , Humans , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/metabolism , Lung Neoplasms/surgery , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Prognosis , Female , Male , Receptors, CCR8/metabolism , Receptors, CCR8/immunology , Granzymes/metabolism , Tumor Microenvironment/immunology , Aged , Middle Aged , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Biomarkers, Tumor/metabolism , Aged, 80 and over , Adult
SELECTION OF CITATIONS
SEARCH DETAIL