Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.139
1.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article En | MEDLINE | ID: mdl-38725448

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
2.
Front Immunol ; 15: 1369849, 2024.
Article En | MEDLINE | ID: mdl-38779681

Background: Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods: We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results: TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion: TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.


Dermatitis , Hydroxyethylrutoside , NF-E2-Related Factor 2 , Oxidative Stress , Scyphozoa , Signal Transduction , Animals , Oxidative Stress/drug effects , Mice , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Dermatitis/drug therapy , Dermatitis/metabolism , Dermatitis/etiology , Humans , Hydroxyethylrutoside/analogs & derivatives , Hydroxyethylrutoside/pharmacology , Hydroxyethylrutoside/therapeutic use , Cnidarian Venoms/pharmacology , Heme Oxygenase-1/metabolism , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Male , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , HaCaT Cells , Reactive Oxygen Species/metabolism , Membrane Proteins
3.
Biomolecules ; 14(5)2024 May 18.
Article En | MEDLINE | ID: mdl-38786003

Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the development of OSCC has not been fully elucidated. Through transcriptome sequencing analysis, we discovered a notable enrichment of ferroptosis-related molecules upon treatment with PPARγ antagonist. We subsequently confirmed the occurrence of ferroptosis through transmission electron microscopy, iron detection, etc. Notably, ferroptosis inhibitors could not completely rescue the cell death caused by PPARγ inhibitors, and the rescue effect was the greatest when disulfidptosis and ferroptosis inhibitors coexisted. We confirmed that the disulfidptosis phenotype indeed existed. Mechanistically, through qPCR and Western blotting, we observed that the inhibition of PPARγ resulted in the upregulation of heme oxygenase 1 (HMOX1), thereby promoting ferroptosis, while solute carrier family 7 member 11 (SLC7A11) was also upregulated to promote disulfidptosis in OSCC. Finally, a flow cytometry analysis of flight and multiplex immunohistochemical staining was used to characterize the immune status of PPARγ antagonist-treated OSCC tissues in a mouse tongue orthotopic transplantation tumor model, and the results showed that the inhibition of PPARγ led to ferroptosis and disulfidptosis, promoted the aggregation of cDCs and CD8+ T cells, and inhibited the progression of OSCC. Overall, our findings reveal that PPARγ plays a key role in regulating cell death in OSCC and that targeting PPARγ may be a potential therapeutic approach for OSCC.


Ferroptosis , PPAR gamma , Ferroptosis/drug effects , Animals , PPAR gamma/metabolism , PPAR gamma/antagonists & inhibitors , Humans , Mice , Cell Line, Tumor , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Heme Oxygenase-1/metabolism , Antineoplastic Agents/pharmacology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Gene Expression Regulation, Neoplastic/drug effects
4.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760744

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Cell Differentiation , Histone Deacetylases , Mesenchymal Stem Cells , Nanoparticles , Animals , Mice , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Cell Differentiation/drug effects , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Male , Bone Regeneration/drug effects , Osteogenesis/drug effects , Cell Nucleus/metabolism , Fracture Healing/drug effects , Humans , Membrane Proteins
5.
Mol Med Rep ; 30(1)2024 Jul.
Article En | MEDLINE | ID: mdl-38785151

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 296-302, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710513

Objective To evaluate the effects of heme oxygenase-1 (HO-1) gene deletion on immune cell composition and inflammatory injury in lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods C57BL/6 wild-type (WT) mice and HO-1 conditional-knockout (HO-1-/-) mice on the same background were randomly divided into four groups (n=5 in every group): WT control group, LPS-treated WT group, HO-1-/- control group and LPS-treated HO-1-/- group. LPS-treated WT and HO-1-/- groups were injected with LPS (15 mg/kg) through the tail vein to establish ALI model, while WT control group and HO-1-/- control group were injected with an equivalent volume of normal saline through the tail vein, respectively. Twelve hours later, the mice were sacrificed and lung tissues from each group were collected for analysis. Histopathological alterations of lung tissues were assessed by HE staining. The levels of mRNA expression of tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and IL-6 were determined by PCR. The percentages of neutrophils (CD45+CD11b+Ly6G+Ly6C-), total monocytes (CD45+CD11b+Ly6Chi), pro-inflammatory monocyte subsets (CD45+CD11b+Ly6ChiCCR2hi) and total macrophages (CD45+CD11b+F4/80+), M1 macrophage (CD45+CD11b+F4/80+CD86+), M2 macrophage (CD45+CD11b+F4/80+CD206+), total T cells (CD45+CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells and myeloid suppressor cells (MDSCs, CD45+CD11b+Gr1+) were detected by flow cytometry. Results Compared with the corresponding control groups, HE staining exhibited increased inflammation in the lung tissues of both LPS-treated WT and HO-1-/- model mice; mRNA expression levels of TNF-α, IL-1ß and IL-6 were up-regulated; the proportions of neutrophils, total monocytes, pro-inflammatory monocyte subsets, MDSCs and total macrophages increased significantly. The percentage of CD3+, CD3+CD4+ and CD3+CD8+ T cells decreased significantly. Under resting-state, compared with WT control mice, the proportion of neutrophils, monocytes and pro-inflammatory monocyte subset increased in lung tissues of HO-1-/- control mice, while the proportion of CD3+ and CD3+CD8+ T cells decreased. Compared with LPS-treated WT mice, the mRNA expression levels of TNF-α and IL-1ß were up-regulated in lung tissues of LPS-treated HO-1-/- mice; the proportion of total monocytes, pro-inflammatory monocyte subsets, M1 macrophages and M1/M2 ratio increased greatly; the percentage of CD3+CD8+ T cells decreased significantly. Conclusion The deletion of HO-1 affects the function of the lung immune system and aggravates the inflammatory injury after LPS stimulation in ALI mice.


Acute Lung Injury , Heme Oxygenase-1 , Lipopolysaccharides , Lung , Mice, Inbred C57BL , Mice, Knockout , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/genetics , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Lung/pathology , Lung/immunology , Lung/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Bull Exp Biol Med ; 176(5): 562-566, 2024 Mar.
Article En | MEDLINE | ID: mdl-38724811

We studied the effect of an NO donor, nitrosyl iron complex with N-ethylthiourea, on Nrf2-dependent antioxidant system activation of tumor cells in vitro. The complex increased intracellular accumulation of Nrf2 transcription factor and induced its nuclear translocation. It was shown that both heme oxygenase-1 gene and protein expression increased significantly under the influence of the complex. Nrf2 activation was accompanied by a decrease in the intracellular accumulation of proinflammatory transcription factor NF-κB p65 subunit and expression of its target genes. The cytotoxic effect of N-ethylthiourea leads to induction of Nrf2/HO-1 antioxidant response and suppression of NF-κB-dependent processes in tumor cells.


Heme Oxygenase-1 , Iron , NF-E2-Related Factor 2 , Thiourea , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Thiourea/analogs & derivatives , Thiourea/pharmacology , HeLa Cells , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Iron/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Nitrogen Oxides/metabolism , Nitrogen Oxides/pharmacology , Antioxidants/pharmacology
8.
Am J Reprod Immunol ; 91(5): e13855, 2024 May.
Article En | MEDLINE | ID: mdl-38745499

Endometriosis (EM) is one of the diseases related to retrograded menstruation and hemoglobin. Heme, released from hemoglobin, is degraded by heme oxygenase-1 (HO-1). In EM lesions, heme metabolites regulate processes such as inflammation, redox balance, autophagy, dysmenorrhea, malignancy, and invasion, where macrophages (Mø) play a fundamental role in their interactions. Regulation occurs at molecular, cellular, and pathological levels. Numerous studies suggest that heme is an indispensable component in EM and may contribute to its pathogenesis. The regulatory role of heme in EM encompasses cytokines, signaling pathways, and kinases that mediate cellular responses to external stimuli. HO-1, a catalytic enzyme in the catabolic phase of heme, mitigates heme's cytotoxicity in EM due to its antioxidant, anti-inflammatory, and anti-proliferative properties. Certain compounds may intervene in EM by targeting heme metabolism, guiding the development of appropriate treatments for all stages of endometriosis.


Endometriosis , Heme Oxygenase-1 , Heme , Endometriosis/metabolism , Endometriosis/drug therapy , Female , Humans , Heme/metabolism , Heme Oxygenase-1/metabolism , Animals , Signal Transduction , Macrophages/metabolism , Macrophages/immunology , Autophagy , Cytokines/metabolism
9.
Sci Rep ; 14(1): 11240, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755191

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Ischemic Stroke , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Rats , Phosphatidylinositol 3-Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Apoptosis/drug effects , Humans , Molecular Docking Simulation
10.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article En | MEDLINE | ID: mdl-38755662

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Actinobacillus pleuropneumoniae/drug effects , Flavanones/therapeutic use , Flavanones/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , NF-E2-Related Factor 2/metabolism , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Mice , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Female , Membrane Proteins , Heme Oxygenase-1
11.
BMC Complement Med Ther ; 24(1): 189, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750475

BACKGROUND: Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS: In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS: The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS: The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.


Apoptosis , Granulosa Cells , Hydrogen Peroxide , NF-E2-Related Factor 2 , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism
12.
PLoS One ; 19(5): e0303556, 2024.
Article En | MEDLINE | ID: mdl-38753858

Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1ß (IL-1ß) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1ß and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.


Acute Lung Injury , Heme Oxygenase-1 , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , MAP Kinase Kinase Kinases , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Mice , NF-E2-Related Factor 2/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology
13.
Commun Biol ; 7(1): 621, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783088

Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.


Bilirubin , Cholestasis , Heme Oxygenase-1 , Mice, Knockout , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cholestasis/metabolism , Cholestasis/pathology , Cholestasis/genetics , Humans , Male , Bilirubin/metabolism , Bilirubin/blood , Mice, Inbred C57BL , Liver/metabolism , Liver/injuries , Liver/pathology , Disease Models, Animal , Membrane Proteins
14.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791428

Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.


Acetamides , Glioblastoma , Heme Oxygenase-1 , Signal Transduction , Vascular Endothelial Growth Factor A , Humans , Glioblastoma/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Heme Oxygenase-1/metabolism , Cell Line, Tumor , Acetamides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Signal Transduction/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Cell Proliferation/drug effects , Disease Progression , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Hypoxia/drug effects
15.
Water Res ; 257: 121649, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38718655

In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.


Iron , Animals , Mice , Iron/chemistry , Tissue Distribution , Liver/drug effects , Chelating Agents/chemistry , Kidney/drug effects , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Male , Heme Oxygenase-1/metabolism , Spleen/drug effects , NF-E2-Related Factor 2/metabolism
16.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700010

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Antibiotics, Antineoplastic , Carbon Monoxide , Cardiotoxicity , Doxorubicin , Membrane Proteins , Animals , Doxorubicin/toxicity , Carbon Monoxide/metabolism , Antibiotics, Antineoplastic/toxicity , Female , Administration, Oral , Mice , Heme Oxygenase-1/metabolism , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/metabolism , Heart Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Carboxyhemoglobin/metabolism , Ventricular Function, Left/drug effects , Humans
17.
Eur J Histochem ; 68(2)2024 May 22.
Article En | MEDLINE | ID: mdl-38779782

Osteoarthritis (OA) is a common degenerative joint disease in the elderly, while oxidative stress-induced chondrocyte degeneration plays a key role in the pathologic progression of OA. One possible reason is that the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which acts as the intracellular defense factor against oxidative stress, is significantly inhibited in chondrocytes. Spinosin (SPI) is a potent Nrf2 agonist, but its effect on OA is still unknown. In this study, we found that SPI can alleviate tert-Butyl hydroperoxide (TBHP)-induced extracellular matrix degradation of chondrocytes. Additionally, SPI can effectively activate Nrf2, heme oxygenase-1 (HO-1), and NADPH quinone oxidoreductase 1 (NQO1) in chondrocytes under the TBHP environment. When Nrf2 was silenced by siRNA, the cartilage protective effect of SPI was also weakened. Finally, SPI showed good alleviative effects on OA in mice. Thus, SPI can ameliorate oxidative stress-induced chondrocyte dysfunction and exhibit a chondroprotective effect through activating the Nrf2/HO-1 pathway, which may provide a novel and promising option for the treatment of OA.


Chondrocytes , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoarthritis , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Signal Transduction/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Heme Oxygenase-1/metabolism , Mice , Oxidative Stress/drug effects , tert-Butylhydroperoxide/pharmacology , Male , Mice, Inbred C57BL , Membrane Proteins
18.
J Ovarian Res ; 17(1): 107, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762721

Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.


Cyclophosphamide , Ferroptosis , Granulosa Cells , Heme Oxygenase-1 , Mitochondria , Reactive Oxygen Species , Ferroptosis/drug effects , Female , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Cyclophosphamide/pharmacology , Cyclophosphamide/adverse effects , Reactive Oxygen Species/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Membrane Potential, Mitochondrial/drug effects
19.
Arch Oral Biol ; 163: 105965, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593562

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a key etiological agent in periodontitis and functions as a facultative intracellular microorganism and involves many virulence factors. These virulence factors participate in multiple intracellular processes, like ferroptosis, the mechanistic underpinnings remain to be elucidated. Aim of this study was to investigate the effects of virulence factors on the host cells. DESIGN: Human umbilical vein endothelial cells (HUVECs) were treated with 4% paraformaldehyde-fixed P. gingivalis, and subsequent alterations in gene expression were profiled via RNA-seq. Further, the molecules associated with ferroptosis were quantitatively analyzed using qRT-PCR and Western blot. RESULTS: A total of 1125 differentially expressed genes (DEGs) were identified, encompassing 225 upregulated and 900 downregulated. Ferroptosis was conspicuously represented in the kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, with notable upregulation of Heme oxygenase 1 (HMOX1), Ferritin light chain (FTL), and Solute carrier family 3 member 2 (SLC3A2) and downregulation of Scavenger receptor class A member 5 (SCARA5) and glutaminase (GLS). Random selection of DEGs for validation through qRT-PCR corroborated the RNA-Seq data (R2 = 0.93). Kelch like ECH associated protein 1 (Keap1) protein expression decreased after 4 and 8 h, while NFE2 like bZIP transcription factor 2 (Nrf2) and HMOX1 were elevated, with significant nuclear translocation of Nrf2. CONCLUSIONS: The virulence factors of P. gingivalis may potentially instigating ferroptosis through activation of the Keap1-Nrf2-HMOX1 signaling cascade, in conjunction with modulating the expression of other ferroptosis-associated elements. Further research is necessary to achieve a thorough comprehension of these complex molecular interactions.


Ferroptosis , Human Umbilical Vein Endothelial Cells , Porphyromonas gingivalis , Virulence Factors , Porphyromonas gingivalis/pathogenicity , Porphyromonas gingivalis/genetics , Ferroptosis/genetics , Humans , Virulence Factors/genetics , Up-Regulation , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Blotting, Western , Down-Regulation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
20.
Fitoterapia ; 175: 105940, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565382

This study aims to clarify the specific anti-fatigue components of Schizophyllum commune (S.commune) and analyze its potential anti-fatigue mechanism. The main anti-fatigue active ingredient of S.commune was locked in n-butanol extract (SPE-n) by activity evaluation. Twelve compounds were identified by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). The anti-fatigue effect of morusin is the most predominant among these 12 ingredients. The determination of biochemical indices showed that morusin could increase liver glycogen reserves, improve the activity of antioxidant enzymes in liver, and reduce reactive oxygen species (ROS) content in muscle tissue, thereby reducing myocyte damage. Further studies revealed that morusin could reduce the level of oxidative stress by activating Nrf2/HO-1 pathway, thus alleviating the fatigue of mice caused by exhaustive exercise. The current findings provide a theoretical basis for the development of natural anti-fatigue functional food.


Fatigue , Schizophyllum , Animals , Mice , Fatigue/drug therapy , Male , Oxidative Stress/drug effects , Liver/drug effects , Molecular Structure , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/isolation & purification , Heme Oxygenase-1/metabolism , Muscle, Skeletal , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Tandem Mass Spectrometry , Membrane Proteins , Animals, Outbred Strains
...