Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.912
Filter
1.
Allergol Immunopathol (Madr) ; 52(4): 15-20, 2024.
Article in English | MEDLINE | ID: mdl-38970260

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible heterogeneous disease of lung interstitial tissue. To combat progression of PF, new drugs are required to be developed. Rhizoma coptidis (COP), one of the main alkaloids of Coptis chinensis, is a traditional herbal medicine used to treat various inflammatory diseases. OBJECTIVE: To investigate the possible effects of Coptisine (Cop) on the growth, inflammation, as well as FMT of TNF-ß1-induced HFL1 cells and uncover the mechanism. MATERIAL AND METHODS: Human fetal lung fibroblast 1 (HFL1) was induced using 6ng/mL TGF-ß1 as a model of pulmonary fibrosis. CCK-8, Brdu, and transwell assays indicated the effects on cell growth as well as motility. qPCR and the corresponding kits indicted the effects on cell inflammation. Immunoblot showed the effects on FMT and further confirmed the mechanism. RESULTS: Coptisine inhibits excessive growth as well as motility of TNF-ß1-induced HFL1 cells. It further inhibits inflammation and ROS levels in TNF-ß1-induced HFL1 cells. Coptisine inhibits the FMT process of TNF-ß1-induced HFL1 cells. Mechanically, coptisine promotes the Nrf2/HO-1 pathway. CONCLUSION: Coptisine can inhibit the excessive growth, inflammation as well as FMT of lung fibroblasts into myofibroblasts. It could serve as a promising drug of PF.


Subject(s)
Berberine , Cell Proliferation , Fibroblasts , Lung , Myofibroblasts , Humans , Cell Proliferation/drug effects , Berberine/pharmacology , Berberine/analogs & derivatives , Myofibroblasts/drug effects , Lung/pathology , Lung/drug effects , Fibroblasts/drug effects , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Pulmonary Fibrosis/drug therapy , Transforming Growth Factor beta1/metabolism , Cell Line , Coptis , Heme Oxygenase-1/metabolism , Signal Transduction/drug effects , Cell Movement/drug effects , Reactive Oxygen Species/metabolism , Cell Differentiation/drug effects , Anti-Inflammatory Agents/pharmacology
2.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39023011

ABSTRACT

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Methane , NF-E2-Related Factor 2 , Reperfusion Injury , Signal Transduction , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Signal Transduction/drug effects , Mice , Heme Oxygenase-1/metabolism , Methane/pharmacology , Male , Humans , Saline Solution/pharmacology , Intestines/drug effects , Intestines/injuries , Mice, Inbred C57BL , Membrane Proteins
3.
J Cell Mol Med ; 28(13): e18386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990057

ABSTRACT

Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.


Subject(s)
Acute Lung Injury , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , NF-E2-Related Factor 2 , Naphthoquinones , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , NF-E2-Related Factor 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Naphthoquinones/pharmacology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Cytokines/metabolism , Heme Oxygenase-1/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Membrane Proteins/metabolism
4.
PLoS One ; 19(7): e0306926, 2024.
Article in English | MEDLINE | ID: mdl-38990890

ABSTRACT

The primary objective of this work was to delve into the potential therapeutic advantages and dissect the molecular mechanisms of salidroside in enhancing erectile function in rats afflicted with diabetic microvascular erectile dysfunction (DMED), addressing both the whole-animal and cellular dimensions.We established a DMED model in Sprague‒Dawley (SD) rats and conducted in vivo experiments. The DMED rats were administered varying doses of salidroside, the effects of which on DMED were compared. Erectile function was evaluated by applying electrical stimulation to the cavernous nerves and measuring intracavernous pressure in real time. The penile tissue underwent histological examination and Western blotting. Hydrogen peroxide (H2O2) was employed in the in vitro trial to induce an oxidative stress for the purpose of identifying alterations in cell viability. The CCK-8 assay was used to measure the viability of corpus cavernous smooth muscle cells (CCSMCs) treated with vs. without salidroside. Flow cytometry was utilized to detect alterations in intracellular reactive oxygen species (ROS). Apoptosis was assessed through Western blotting and TdT-mediated dUTP nick-end labelling (TUNEL). Animal and cellular experiments indicate that the Nrf2/HO-1 signalling pathway may be upregulated by salidroside, leading to the improvement of erectile function in diabetic male rats by alleviating oxidative stress and reducing apoptosis in corpus cavernosum tissue.


Subject(s)
Apoptosis , Erectile Dysfunction , Glucosides , NF-E2-Related Factor 2 , Oxidative Stress , Phenols , Rats, Sprague-Dawley , Reactive Oxygen Species , Signal Transduction , Animals , Male , Oxidative Stress/drug effects , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Phenols/pharmacology , Phenols/therapeutic use , Glucosides/pharmacology , Rats , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/drug therapy , Penis/drug effects , Penis/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Cell Survival/drug effects
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000120

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) affects squamous cells in the head and neck region and is currently ranked as the sixth most common cancer worldwide. NF-E2-related factor 2 (NRF2) plays a crucial role in cellular protection and defence mechanisms and NRF2 over-expression has been linked to various cancers; however, its role in the response of HNSCC cells remains elusive. We investigated the effects of ML385, a selective NRF2 inhibitor, on HNSCC to understand the underlying molecular mechanisms, and to assess the potential of ML385 as a therapeutic agent. We treated HNSCC cell lines with ML385 and observed a significant reduction in the expression of NRF2 and its downstream target, heme oxygenase-1 (HO-1), using Western blotting. We evaluated its effects on various cellular processes, including cell proliferation, cloning, migration, and wound healing, in HNSCC cell lines. ML385 treatment substantially reduced NRF2 expression, promoting a decrease in the investigated cellular activities. Additionally, we examined changes in the expression of cell-cycle-related proteins and found that ML385 induced cell cycle arrest at the G1/S phase in HNSCC cell lines. Our findings suggest that ML385 can regulate cell cycle progression, inhibit HNSCC growth, and have potential as a therapeutic agent for HNSCC.


Subject(s)
Cell Movement , Cell Proliferation , Head and Neck Neoplasms , NF-E2-Related Factor 2 , Squamous Cell Carcinoma of Head and Neck , Humans , NF-E2-Related Factor 2/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Cell Movement/drug effects , Heme Oxygenase-1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Acetamides , Benzodioxoles
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1135-1140, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977343

ABSTRACT

OBJECTIVE: To investigate the protective effect of dexmedetomidine (DEX) against erastin-induced ferroptosis in human renal tubular epithelial cells (HK-2 cells) and explore the underlying mechanism. METHODS: HK-2 cells were treated with erastin alone or in combination with different concentrations (2.5, 5.0 and 10 µmol/L) of DEX, and the changes in cell viability were observed using CCK-8 assay. To explore the mechanism by which DEX inhibits erastin-induced ferroptosis, HK-2 cells were treated with erastin, erastin+10 µmol/L DEX, or erastin+10 µmol/L DEX+ML385 (a Nrf2 inhibitor), after which the cell viability was assessed. The level of intracellular Fe2+ was detected by cell ferrous iron colorimetric assay kit, and flow cytometry was performed to detect reactive oxygen species (ROS); MDA and reduced glutathione assay kits were used to detect the contents of MDA and GSH in the cells; The expressions of Nrf2, HO-1 and GPX4 proteins were detected by Western blotting. RESULTS: Erastin treatment significantly inhibited the viability of the cells, decreased GSH content, and increased intracellular levels of Fe2+, ROS and MDA. The combined treatment with 10 µmol/L DEX markedly increased the viability of the cells, increased GSH content, reduced the levels of Fe2+, ROS and MDA, and upregulated the protein expressions of Nrf2, HO-1 and GPX4 in the cells. The application of ML385 obviously blocked the protective effect of DEX and caused significant inhibition of the Nrf2/HO-1/GPX4 pathway, decreased the cell viability and GSH content, and increased the levels of Fe2+, ROS and MDA in HK-2 cells. CONCLUSION: The protective effect of DEX against erastin-induced ferroptosis of HK-2 cells is probably mediated by activation of the Nrf2/HO-1/GPX4 pathway to inhibit oxidative stress.


Subject(s)
Cell Survival , Dexmedetomidine , Epithelial Cells , Ferroptosis , Heme Oxygenase-1 , Kidney Tubules , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species , Humans , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Dexmedetomidine/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Kidney Tubules/cytology , Kidney Tubules/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects , Heme Oxygenase-1/metabolism , Signal Transduction/drug effects , Piperazines/pharmacology
7.
J Am Heart Assoc ; 13(14): e034076, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958135

ABSTRACT

BACKGROUND: Endothelial cell (EC) dysfunction involves reduced nitric oxide (NO) bioavailability due to NO synthase uncoupling linked to increased oxidation and reduced cofactor availability. Loss of endothelial function and NO bioavailability are associated with inflammation, including leukocyte activation. Eicosapentaenoic acid (EPA) administered as icosapent ethyl reduced cardiovascular events in REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) in relation to on-treatment EPA blood levels. The mechanisms of cardiovascular protection for EPA remain incompletely elucidated but likely involve direct effects on the endothelium. METHODS AND RESULTS: In this study, human ECs were treated with EPA and challenged with the cytokine IL-6 (interleukin-6). Proinflammatory responses in the ECs were confirmed by ELISA capture of sICAM-1 (soluble intercellular adhesion molecule-1) and TNF-α (tumor necrosis factor-α). Global protein expression was determined using liquid chromatography-mass spectrometry tandem mass tag. Release kinetics of NO and peroxynitrite were monitored using porphyrinic nanosensors. IL-6 challenge induced proinflammatory responses from the ECs as evidenced by increased release of sICAM-1 and TNF-α, which correlated with a loss of NO bioavailability. ECs pretreated with EPA modulated expression of 327 proteins by >1-fold (P<0.05), compared with IL-6 alone. EPA augmented expression of proteins involved in NO production, including heme oxygenase-1 and dimethylarginine dimethylaminohydrolase-1, and 34 proteins annotated as associated with neutrophil degranulation. EPA reversed the endothelial NO synthase uncoupling induced by IL-6 as evidenced by an increased [NO]/[peroxynitrite] release ratio (P<0.05). CONCLUSIONS: These direct actions of EPA on EC functions during inflammation may contribute to its distinct cardiovascular benefits.


Subject(s)
Eicosapentaenoic Acid , Inflammation , Interleukin-6 , Nitric Oxide , Tumor Necrosis Factor-alpha , Humans , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Intercellular Adhesion Molecule-1/metabolism , Heme Oxygenase-1/metabolism , Nitric Oxide Synthase Type III/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cells, Cultured , Biological Availability , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Peroxynitrous Acid/metabolism , Inflammation Mediators/metabolism
8.
Arch Biochem Biophys ; 758: 110084, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971420

ABSTRACT

Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.


Subject(s)
Caspase 3 , Chemical and Drug Induced Liver Injury , Flavonols , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction , Valproic Acid , Animals , NF-E2-Related Factor 2/metabolism , Male , Signal Transduction/drug effects , Flavonols/pharmacology , NF-kappa B/metabolism , Valproic Acid/pharmacology , Rats , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Caspase 3/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism
9.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000345

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, cause gastric mucosal damage, including ulcers, directly or indirectly, by which the development of GI-safer (-sparing) NSAIDs relates to unmet medical needs. This study aimed to document the preventive effects of walnut polyphenol extracts (WPEs) against NSAID-induced gastric damage along with the molecular mechanisms. RGM-1 gastric mucosal cells were administered with indomethacin, and the expressions of the inflammatory mediators between indomethacin alone or a combination with WPEs were compared. The expressions of the inflammatory mediators, including COX-1 and COX-2, prostaglandin E2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), and antioxidant capacity, were analyzed by Western blot analysis, RT-PCR, and ELISA, respectively. HO-1, Nrf-2, and keap1 were investigated. The in vivo animal models were followed with in vitro investigations. The NSAIDs increased the expression of COX-2 and decreased COX-1 and 15-PGDH, but the WPEs significantly attenuated the NSAID-induced COX-2 expression. Interestingly, the WPEs induced the expression of 15-PGDH. By using the deletion constructs of the 15-PGDH promoter, we found that c-Jun is the most essential determinant of the WPE-induced up-regulation of 15-PGDH expression. We confirmed that the knockdown of c-Jun abolished the ability of the WPEs to up-regulate the 15-PGDH expression. In addition, the WPEs significantly increased the HO-1 expression. The WPEs increased the nuclear translocation of Nrf2 by Keap-1 degradation, and silencing Nrf2 markedly reduced the WPE-induced HO-1 expression. We found that the WPE-induced HO-1 up-regulation was attenuated in the cells harboring the mutant Keap1, in which the cysteine 151 residue was replaced by serine. These in vitro findings were exactly validated in indomethacin-induced gastric rat models. Daily walnut intake can be a promising nutritional supplement providing potent anti-inflammatory, antioxidative, and mucosa-protective effects against NSAID-induced GI damage.


Subject(s)
Gastric Mucosa , Hydroxyprostaglandin Dehydrogenases , Indomethacin , Juglans , NF-E2-Related Factor 2 , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Indomethacin/adverse effects , Juglans/chemistry , Rats , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Hydroxyprostaglandin Dehydrogenases/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Male , Plant Extracts/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cell Line , Membrane Proteins/metabolism , Membrane Proteins/genetics , Polyphenols/pharmacology
10.
Immun Inflamm Dis ; 12(6): e1169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860757

ABSTRACT

INTRODUCTION: We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS: An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1ß. Both models were then treated with PRP. RESULTS: In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1ß, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS: The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.


Subject(s)
Apoptosis , Chondrocytes , NF-E2-Related Factor 2 , Osteoarthritis , Platelet-Rich Plasma , Signal Transduction , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Rats , Chondrocytes/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Quassins/pharmacology , Quassins/therapeutic use , Rats, Sprague-Dawley , Disease Models, Animal , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-1beta/metabolism , Inflammation/immunology , Cells, Cultured
11.
Pharmazie ; 79(6): 101-108, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38877681

ABSTRACT

In this study, we hypothesized that lixisenatide (LIX) and ticagrelor (TIC) could have a protective effect against type 2 diabetes mellitus (T2DM)-induced vascular damage. Furthermore, we explored the possible additional protective effect of co-administering LIX and TIC in the treatment regimen. Methods: 50 male rats were divided into five groups, each comprising 10 rats: C (control), D (T2DM rats), D + LIX (T2DM rats treated with LIX for 4 weeks), D + TIC (T2DM rats treated with TIC for 4 weeks), and D + LIX + TIC (T2DM rats treated with LIX + TIC for 4 weeks). Results: The D group showed an increase in body weight, blood glucose, hemostatic model assessment for insulin resistance (HOMA-IR), aorta reactive oxygen species (ROS), and nuclear factor kappa B (NF-κ B), along with a reduction in serum insulin, aorta superoxide dismutase (SOD), glutathione reduced (GSH), nuclear factor erythroid-2 (NrF2), hemeoxygenase-1 (HO-1), and endothelial nitric oxide synthase (eNOS). Deterioration in the aorta histopathological condition, coupled with a noticeable impairment in vascular reactivity compared to the C group, was observed. A single administration of LIX showed a reduction in body weight, blood glucose, HOMA-IR, aorta ROS, and NF-κ B, accompanied by an increase in serum insulin, aorta SOD, GSH, NrF2, HO-1, and eNOS. Amelioration in the aorta histopathological condition and improved vascular reactivity compared to the D group were reported. Similarly, a single administration of TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta SOD, GSH, NrF2, HO-1, and eNOS. A slight amelioration was detected in the aorta histopathological condition, with improved vascular reactivity compared to the D group. The combined administration of LIX and TIC showed a reduction in aorta ROS and NF-κ B, along with an increase in aorta GSH, SOD, HO-1, and eNOS. This was combined with evident amelioration in the aorta histopathological condition and noticeable improvement in vascular reactivity compared to the single treatment with either LIX or TIC group. Conclusion: The present study introduces clear evidence that the administration of LIX and TIC can improve metabolic and vascular complications of T2DM through modulating eNOS and NrF2 /HO-1 signaling. The combined administration of LIX and TIC produced more significant effects than a single treatment.


Subject(s)
Diabetes Mellitus, Experimental , NF-E2-Related Factor 2 , Nitric Oxide Synthase Type III , Peptides , Reactive Oxygen Species , Signal Transduction , Ticagrelor , Animals , Male , Nitric Oxide Synthase Type III/metabolism , Rats , Signal Transduction/drug effects , Ticagrelor/pharmacology , Ticagrelor/administration & dosage , Peptides/pharmacology , Peptides/administration & dosage , NF-E2-Related Factor 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Reactive Oxygen Species/metabolism , Blood Glucose/drug effects , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , NF-kappa B/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Heme Oxygenase-1/metabolism , Insulin , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Drug Synergism , Glucagon-Like Peptide-2 Receptor
12.
World J Gastroenterol ; 30(20): 2709-2725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855154

ABSTRACT

BACKGROUND: Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM: To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS: Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS: HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, ß-leucine (ß-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION: HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. ß-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.


Subject(s)
Colon , Constipation , Hydrogen , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Sirtuin 1 , Animals , Humans , Male , Rats , Colon/drug effects , Colon/metabolism , Colon/pathology , Constipation/metabolism , Constipation/drug therapy , Disease Models, Animal , Feces/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Hydrogen/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sirtuin 1/metabolism , Water/metabolism
13.
Food Chem Toxicol ; 190: 114796, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852756

ABSTRACT

Pulmonary fibrosis is the outcome of the prolonged interstitial pneumonia, characterized by excessive accumulation of fibroblasts and collagen deposition, leading to its development. This study aimed to study the changes in PI3K/AKT and NRF2/HO-1 signaling expression and intestinal microbiota in a rat model of a novel bleomycin-induced pulmonary fibrosis. The findings of our study showed the model was successfully established. The results showed that the alveolar septum in the model was significantly widened and infiltrated by severe inflammatory cells. Alveolar atrophy occurred due to the formation of multiple inflammatory foci. During this period, fibrous tissue was distributed in strips and patches, primarily around the pulmonary interstitium and bronchus. Moreover, lung damage and fibrosis progressively worsened over time. The mRNA expression of HO-1 and NRF2 in the model decreased while the mRNA expression of HIF-1α, VEGF, PI3K and AKT increased. Furthermore, it was observed to decrease the protein expression of E-cad, HO-1 and NRF2, and increase the protein expression of α-SMA and p-AKT. Additionally, this model leaded to an imbalance in the intestinal microbiota. This study demonstrate that the novel pulmonary fibrosis model activates the NRF2/HO-1 pathway and the PI3K/AKT pathway in rat lung tissues, and leading to intestinal barrier disorder.


Subject(s)
Bleomycin , Gastrointestinal Microbiome , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Bleomycin/toxicity , Bleomycin/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Male , Rats , Rats, Sprague-Dawley , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics
14.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
16.
Int Immunopharmacol ; 136: 112380, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850790

ABSTRACT

BACKGROUND AND AIMS: Impaired intestinal barrier function is key in maintaining intestinal inflammation in Crohn's disease (CD). However, no targeted treatment in clinical practice has been developed. Peiminine (Pm) strongly protects the epithelial barrier, the purpose of this study is to investigate whether Pm affects CD-like colitis and potential mechanisms for its action. METHODS: Trinitro-benzene-sulfonic acid (TNBS)-induced mice and Il-10-/- mice were used as CD animal models. Colitis symptoms, histological analysis, and intestinal barrier permeability were used to assess the Pm's therapeutic effect on CD-like colitis. The colon organoids were induced by TNF-α to evaluate the direct role of Pm in inhibiting apoptosis of the intestinal epithelial cells. Western blotting and small molecule inhibitors were used to investigate further the potential mechanism of Pm in inhibiting apoptosis of intestinal epithelial cells. RESULTS: Pm treatment reduced body weight loss, disease activity index (DAI) score, and inflammatory score, demonstrating that colonic inflammation in mice were alleviated. Pm decreased the intestinal epithelial apoptosis, improved the intestinal barrier function, and prevented the loss of tight junction proteins (ZO1 and claudin-1) in the colon of CD mice and TNF-α-induced colonic organoids. Pm activated Nrf2/HO1 signaling, which may protect intestinal barrier function. CONCLUSIONS: Pm inhibits intestinal epithelial apoptosis in CD mice by activating Nrf2/HO1 pathway. This partially explains the potential mechanism of Pm in ameliorating intestinal barrier function in mice and provides a new approach to treating CD.


Subject(s)
Apoptosis , Colitis , Crohn Disease , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2 , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Colitis/drug therapy , Colitis/chemically induced , Colitis/pathology , Mice , Signal Transduction/drug effects , Apoptosis/drug effects , Humans , Male , Colon/pathology , Colon/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Interleukin-10/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Membrane Proteins
17.
Mol Pharm ; 21(7): 3566-3576, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38899552

ABSTRACT

Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.


Subject(s)
Antioxidants , Lithocholic Acid , Nanoparticles , Oxidative Stress , Polymers , Probucol , Reactive Oxygen Species , Probucol/pharmacology , Probucol/administration & dosage , Probucol/chemistry , Oxidative Stress/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Lithocholic Acid/chemistry , Lithocholic Acid/pharmacology , Animals , Polymers/chemistry , Cell Line , Antioxidants/pharmacology , Antioxidants/chemistry , NF-E2-Related Factor 2/metabolism , Cell Survival/drug effects , Mice , Heme Oxygenase-1/metabolism , Humans
18.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910496

ABSTRACT

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Subject(s)
Heme Oxygenase-1 , Osteoarthritis , Osteoclasts , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoclasts/metabolism , Humans , Animals , Oxidative Stress , Cell Differentiation , Osteogenesis , Male , Mice , Reactive Oxygen Species/metabolism
19.
Exp Cell Res ; 440(1): 114127, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38857839

ABSTRACT

CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.


Subject(s)
Apoptosis , Heme Oxygenase-1 , Ischemic Stroke , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Rats, Sprague-Dawley , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Neurons/metabolism , Neurons/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Rats , Male , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , Signal Transduction , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Heme Oxygenase (Decyclizing)
20.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867250

ABSTRACT

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...