Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Front Immunol ; 15: 1383753, 2024.
Article in English | MEDLINE | ID: mdl-39040106

ABSTRACT

Outbreaks of Ebolaviruses, such as Sudanvirus (SUDV) in Uganda in 2022, demonstrate that species other than the Zaire ebolavirus (EBOV), which is currently the sole virus represented in current licensed vaccines, remain a major threat to global health. There is a pressing need to develop effective pan-species vaccines and novel monoclonal antibody-based therapeutics for Ebolavirus disease. In response to recent outbreaks, the two dose, heterologous Ad26.ZEBOV/MVA-BN-Filo vaccine regimen was developed and was tested in a large phase II clinical trial (EBL2001) as part of the EBOVAC2 consortium. Here, we perform bulk sequencing of the variable heavy chain (VH) of B cell receptors (BCR) in forty participants from the EBL2001 trial in order to characterize the BCR repertoire in response to vaccination with Ad26.ZEBOV/MVA-BN-Filo. We develop a comprehensive database, EBOV-AbDab, of publicly available Ebolavirus-specific antibody sequences. We then use our database to predict the antigen-specific component of the vaccinee repertoires. Our results show striking convergence in VH germline gene usage across participants following the MVA-BN-Filo dose, and provide further evidence of the role of IGHV3-15 and IGHV3-13 antibodies in the B cell response to Ebolavirus glycoprotein. Furthermore, we found that previously described Ebola-specific mAb sequences present in EBOV-AbDab were sufficient to describe at least one of the ten most expanded BCR clonotypes in more than two thirds of our cohort of vaccinees following the boost, providing proof of principle for the utility of computational mining of immune repertoires.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Receptors, Antigen, B-Cell , Vaccination , Humans , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Computational Biology/methods , Adult , Male , B-Lymphocytes/immunology , Female , Data Mining
2.
Commun Biol ; 7(1): 871, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020082

ABSTRACT

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Polysaccharides , Viral Envelope Proteins , Animals , Ebolavirus/immunology , Antibodies, Monoclonal/immunology , Mice , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/prevention & control , Polysaccharides/immunology , Antibodies, Viral/immunology , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Complement Activation , Mice, Inbred BALB C , Female , Complement System Proteins/immunology , Complement System Proteins/metabolism , Glycoproteins/immunology
3.
Front Immunol ; 15: 1429909, 2024.
Article in English | MEDLINE | ID: mdl-39081315

ABSTRACT

Previous studies have demonstrated the efficacy and feasibility of an anti-viral vaccine strategy that takes advantage of pre-existing CD4+ helper T (Th) cells induced by Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccination. This strategy uses immunization with recombinant fusion proteins comprised of a cell surface expressed viral antigen, such as a viral envelope glycoprotein, engineered to contain well-defined BCG Th cell epitopes, thus rapidly recruiting Th cells induced by prior BCG vaccination to provide intrastructural help to virus-specific B cells. In the current study, we show that Th cells induced by BCG were localized predominantly outside of germinal centers and promoted antibody class switching to isotypes characterized by strong Fc receptor interactions and effector functions. Furthermore, BCG vaccination also upregulated FcγR expression to potentially maximize antibody-dependent effector activities. Using a mouse model of Ebola virus (EBOV) infection, this vaccine strategy provided sustained antibody levels with strong IgG2c bias and protection against lethal challenge. This general approach can be easily adapted to other viruses, and may be a rapid and effective method of immunization against emerging pandemics in populations that routinely receive BCG vaccination.


Subject(s)
Antibodies, Viral , BCG Vaccine , Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , BCG Vaccine/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , T-Lymphocytes, Helper-Inducer/immunology , Vaccination/methods , Mice, Inbred C57BL , Female , Humans , Disease Models, Animal , Receptors, IgG/immunology , Vaccine Development , Immunoglobulin Class Switching , Immunization
4.
PLoS Pathog ; 20(6): e1012262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924060

ABSTRACT

Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Lassa Fever , Lassa virus , Marburg Virus Disease , Marburgvirus , Animals , Mice , Ebolavirus/immunology , Lassa virus/immunology , Marburgvirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Lassa Fever/immunology , Lassa Fever/prevention & control , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Viral Vaccines/immunology , Humans , Vaccination , Female , Antibodies, Viral/immunology , Immunogenicity, Vaccine , Ebola Vaccines/immunology
5.
EBioMedicine ; 104: 105170, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823088

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.


Subject(s)
Antibodies, Viral , Disease Models, Animal , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Ebolavirus/immunology , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Antibodies, Viral/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Humans , Viral Load , Glycoproteins/immunology , Glycoproteins/metabolism , Viral Envelope Proteins/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity
6.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
7.
Antiviral Res ; 226: 105873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580170

ABSTRACT

In the 1990s, monoclonal antibodies (mAbs) progressed from scientific tools to advanced therapeutics, particularly for the treatment of cancers and autoimmune and inflammatory disorders. In the arena of infectious disease, the inauguration of mAbs as a post-exposure treatment in humans against Ebola virus (EBOV) occurred in response to the 2013-2016 West Africa outbreak. This review recounts the history of a candidate mAb treatment, ZMapp, beginning with its emergency use in the 2013-2016 outbreak and advancing to randomized controlled trials into the 2018-2020 African outbreak. We end with a brief discussion of the hurdles and promise toward mAb therapeutic use against infectious disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/immunology , Ebolavirus/immunology , Ebolavirus/drug effects , Antibodies, Viral/therapeutic use , Antibodies, Viral/immunology , Animals , Disease Outbreaks , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/immunology , Africa, Western/epidemiology
8.
PLoS Negl Trop Dis ; 18(4): e0011500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603720

ABSTRACT

BACKGROUND: The exposure to parasites may influence the immune response to vaccines in endemic African countries. In this study, we aimed to assess the association between helminth exposure to the most prevalent parasitic infections, schistosomiasis, soil transmitted helminths infection and filariasis, and the Ebola virus glycoprotein (EBOV GP) antibody concentration in response to vaccination with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in African and European participants using samples obtained from three international clinical trials. METHODS/PRINCIPAL FINDINGS: We conducted a study in a subset of participants in the EBL2001, EBL2002 and EBL3001 clinical trials that evaluated the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against EVD in children, adolescents and adults from the United Kingdom, France, Burkina Faso, Cote d'Ivoire, Kenya, Uganda and Sierra Leone. Immune markers of helminth exposure at baseline were evaluated by ELISA with three commercial kits which detect IgG antibodies against schistosome, filarial and Strongyloides antigens. Luminex technology was used to measure inflammatory and activation markers, and Th1/Th2/Th17 cytokines at baseline. The association between binding IgG antibodies specific to EBOV GP (measured on day 21 post-dose 2 and on Day 365 after the first dose respectively), and helminth exposure at baseline was evaluated using a multivariable linear regression model adjusted for age and study group. Seventy-eight (21.3%) of the 367 participants included in the study had at least one helminth positive ELISA test at baseline, with differences of prevalence between studies and an increased prevalence with age. The most frequently detected antibodies were those to Schistosoma mansoni (10.9%), followed by Acanthocheilonema viteae (9%) and then Strongyloides ratti (7.9%). Among the 41 immunological analytes tested, five were significantly (p < .003) lower in participants with at least one positive helminth ELISA test result: CCL2/MCP1, FGFbasic, IL-7, IL-13 and CCL11/Eotaxin compared to participants with negative helminth ELISA tests. No significant association was found with EBOV-GP specific antibody concentration at 21 days post-dose 2, or at 365 days post-dose 1, adjusted for age group, study, and the presence of any helminth antibodies at baseline. CONCLUSIONS/SIGNIFICANCE: No clear association was found between immune markers of helminth exposure as measured by ELISA and post-vaccination response to the Ebola Ad26.ZEBOV/ MVA-BN-Filo vaccine regimen. TRIAL REGISTRATION: NCT02416453, NCT02564523, NCT02509494. ClinicalTrials.gov.


Subject(s)
Antibodies, Viral , Ebola Vaccines , Hemorrhagic Fever, Ebola , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult , Africa , Antibodies, Helminth/blood , Antibodies, Viral/blood , Cytokines/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Ebolavirus/immunology , Ebolavirus/genetics , Enzyme-Linked Immunosorbent Assay , Helminthiasis/immunology , Helminthiasis/prevention & control , Helminths/immunology , Helminths/genetics , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin G/blood , Aged
9.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603762

ABSTRACT

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Subject(s)
Antibodies, Bispecific , Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Antibodies, Viral/immunology , Humans , Filoviridae/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Monoclonal/immunology , Female , Mice, Inbred BALB C , Filoviridae Infections/immunology , Filoviridae Infections/therapy , Filoviridae Infections/prevention & control
10.
Lancet Infect Dis ; 24(7): 746-759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552653

ABSTRACT

BACKGROUND: Health-care providers and front-line workers are at risk of contracting Ebola virus disease during an Ebola virus outbreak and consequently of becoming drivers of the disease. We aimed to assess the long-term immunogenicity of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen and the safety of and immune memory response to an Ad26.ZEBOV booster vaccination at 1 year or 2 years after the first dose in this at-risk population. METHODS: This open-label, single-centre, randomised, phase 2 trial was conducted at one study site within a hospital in Boende, Democratic Republic of the Congo. Adult health-care providers and front-line workers, excluding those with a known history of Ebola virus disease, were vaccinated with a two-dose heterologous regimen administered at a 56-day interval via a 0·5 mL intramuscular injection in the deltoid muscle, comprising Ad26.ZEBOV as the first dose and MVA-BN-Filo as the second dose. After the initial vaccination on day 1, participants were randomly assigned (1:1) via randomisation envelopes, opened in a sequential order, to receive an Ad26.ZEBOV booster vaccination at 1 year (group 1) or 2 years (group 2) after the first dose. We present the secondary and exploratory objectives of the trial-results of the primary objective have been published elsewhere. We measured immunogenicity at six timepoints per group as geometric mean concentrations (GMCs) of Ebola virus glycoprotein-specific IgG binding antibodies, using the Filovirus Animal Non-Clinical Group ELISA. We assessed serious adverse events occurring up to 6 months after the last dose and local and systemic solicited and unsolicited adverse events reported for 7 days after the booster vaccination. Antibody responses were analysed per protocol, serious adverse events per full analysis set (FAS), and adverse events for all boosted FAS participants. This trial is registered as completed on ClinicalTrials.gov (NCT04186000). FINDINGS: Between Dec 18, 2019, and Feb 8, 2020, 699 health-care providers and front-line workers were enrolled and 698 were randomly assigned (350 to group 1 and 348 to group 2 [FAS]); 534 (77%) participants were male and 164 (23%) were female. 319 in group 1 and 317 in group 2 received the booster. 29 (8%) in group 1 and 26 (7%) in group 2 did not complete the study, mostly due to loss to follow-up or moving out of the study area. In both groups, injection-site pain or tenderness (87 [27%] of 319 group 1 participants vs 90 [28%] of 317 group 2 participants) and headache (91 [29%] vs 93 [29%]) were the most common solicited adverse events related to the investigational product. One participant (in group 2) had a related serious adverse event after booster vaccination (fever of ≥40·0°C). Before booster vaccination, Ebola virus glycoprotein-specific IgG binding antibody GMCs were 279·9 ELISA units (EU) per mL (95% CI 250·6-312·7) in 314 group 1 participants (1 year after first dose) and 274·6 EU/mL (242·1-311·5) in 310 group 2 participants (2 years after first dose). These values were 5·2 times higher in group 1 and 4·9 times higher in group 2 than before vaccination on day 1. 7 days after booster vaccination, these values increased to 10 781·6 EU/mL (9354·4-12 426·4) for group 1 and 10 746·9 EU/mL (9208·7-12 542·0) for group 2, which were approximately 39 times higher than before booster vaccination in both groups. 1 year after booster vaccination in 299 group 1 participants, a GMC that was 7·6-times higher than before booster vaccination was still observed (2133·1 EU/mL [1827·7-2489·7]). INTERPRETATION: Overall, the vaccine regimen and booster dose were well tolerated. A similar and robust humoral immune response was observed for participants boosted 1 year and 2 years after the first dose, supporting the use of the regimen and flexibility of booster dose administration for prophylactic vaccination in at-risk populations. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Coalition for Epidemic Preparedness Innovations.


Subject(s)
Antibodies, Viral , Ebola Vaccines , Ebolavirus , Health Personnel , Hemorrhagic Fever, Ebola , Immunization, Secondary , Humans , Democratic Republic of the Congo , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/immunology , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Ebola Vaccines/adverse effects , Male , Adult , Female , Antibodies, Viral/blood , Ebolavirus/immunology , Ebolavirus/genetics , Middle Aged , Young Adult , Vaccination/methods
11.
J Virol ; 98(3): e0162723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305150

ABSTRACT

Ebola virus disease (EVD) caused by Ebola virus (EBOV) is a severe, often fatal, hemorrhagic disease. A critical component of the public health response to curb EVD epidemics is the use of a replication-competent, recombinant vesicular stomatitis virus (rVSV)-vectored Ebola vaccine, rVSVΔG-ZEBOV-GP (ERVEBO). In this Gem, we will discuss the past and ongoing development of rVSVΔG-ZEBOV-GP, highlighting the importance of basic science and the strength of public-private partnerships to translate fundamental virology into a licensed VSV-vectored Ebola vaccine.


Subject(s)
Ebola Vaccines , Ebolavirus , Genetic Vectors , Hemorrhagic Fever, Ebola , Vesiculovirus , Humans , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebolavirus/genetics , Ebolavirus/immunology , Genetic Vectors/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Vesiculovirus/genetics , Public-Private Sector Partnerships
12.
Elife ; 122024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285487

ABSTRACT

Viral inclusion bodies (IBs) commonly form during the replication of Ebola virus (EBOV) in infected cells, but their role in viral immune evasion has rarely been explored. Here, we found that interferon regulatory factor 3 (IRF3), but not TANK-binding kinase 1 (TBK1) or IκB kinase epsilon (IKKε), was recruited and sequestered in viral IBs when the cells were infected by EBOV transcription- and replication-competent virus-like particles (trVLPs). Nucleoprotein/virion protein 35 (VP35)-induced IBs formation was critical for IRF3 recruitment and sequestration, probably through interaction with STING. Consequently, the association of TBK1 and IRF3, which plays a vital role in type I interferon (IFN-I) induction, was blocked by EBOV trVLPs infection. Additionally, IRF3 phosphorylation and nuclear translocation induced by Sendai virus or poly(I:C) stimulation were suppressed by EBOV trVLPs. Furthermore, downregulation of STING significantly attenuated VP35-induced IRF3 accumulation in IBs. Coexpression of the viral proteins by which IB-like structures formed was much more potent in antagonizing IFN-I than expression of the IFN-I antagonist VP35 alone. These results suggested a novel immune evasion mechanism by which EBOV evades host innate immunity.


Subject(s)
Hemorrhagic Fever, Ebola , Immune Evasion , Inclusion Bodies, Viral , Interferon Regulatory Factor-3 , Interferon Type I , Humans , Ebolavirus , Hemorrhagic Fever, Ebola/immunology
13.
J Virol ; 96(18): e0057422, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36073921

ABSTRACT

Ebola virus disease (EVD) is a complex infectious disease characterized by high inflammation, multiorgan failure, the dysregulation of innate and adaptive immune responses, and coagulation abnormalities. Evidence accumulated over the last 2 decades indicates that, during fatal EVD, the infection of antigen-presenting cells (APC) and the dysregulation of T cell immunity preclude a successful transition between innate and adaptive immunity, which constitutes a key disease checkpoint. In order to better understand the contribution of the APC-T cell crosstalk to EVD pathophysiology, we have developed avatar mice transplanted with human, donor-specific APCs and T cells. Here, we show that the transplantation of T cells and APCs from Ebola virus (EBOV)-naive individuals into avatar mice results in severe disease and death and that this phenotype is dependent on T cell receptor (TCR)-major histocompatibility complex (MCH) recognition. Conversely, avatar mice were rescued from death induced by EBOV infection after the transplantation of both T cells and plasma from EVD survivors. These results strongly suggest that protection from EBOV reinfection requires both cellular and humoral immune memory responses. IMPORTANCE The crosstalk between dendritic cells and T cells marks the transition between innate and adaptive immune responses, and it constitutes an important checkpoint in EVD. In this study, we present a mouse avatar model in which T cell and dendritic cell interactions from a specific donor can be studied during EVD. Our findings indicate that T cell receptor-major histocompatibility complex-mediated T cell-dendritic cell interactions are associated with disease severity, which mimics the main features of severe EVD in these mice. Resistance to an EBOV challenge in the model was achieved via the transplantation of both survivor T cells and plasma.


Subject(s)
Cell Communication , Dendritic Cells , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Cell Communication/immunology , Dendritic Cells/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/physiopathology , Humans , Mice , Survivors , T-Lymphocytes/immunology , T-Lymphocytes/virology
14.
Cell ; 185(6): 943-945, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35303426

ABSTRACT

Recent outbreaks of Ebola have brought to the forefront the need for focused therapeutic treatments. In this issue of Cell, Milligan and colleagues build on previous studies of antibody treatments for Ebola virus disease, uncovering broad synergistic protective immunity when administered in combination (as antibody cocktails).


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Ebolavirus/immunology , Epitopes/immunology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35110410

ABSTRACT

Despite more than 300,000 rVSVΔG-ZEBOV-glycoprotein (GP) vaccine doses having been administered during Ebola virus disease (EVD) outbreaks in the Democratic Republic of the Congo (DRC) between 2018 and 2020, seroepidemiologic studies of vaccinated Congolese populations are lacking. This study examines the antibody response at 21 d and 6 mo postvaccination after single-dose rVSVΔG-ZEBOV-GP vaccination among EVD-exposed and potentially exposed populations in the DRC. We conducted a longitudinal cohort study of 608 rVSVΔG-ZEBOV-GP-vaccinated individuals during an EVD outbreak in North Kivu Province, DRC. Participants provided questionnaires and blood samples at three study visits (day 0, visit 1; day 21, visit 2; and month 6, visit 3). Anti-GP immunoglobulin G (IgG) antibody titers were measured in serum by the Filovirus Animal Nonclinical Group anti-Ebola virus GP IgG enzyme-linked immunosorbent assay. Antibody response was defined as an antibody titer that had increased fourfold from visit 1 to visit 2 and was above four times the lower limit of quantification at visit 2; antibody persistence was defined as a similar increase from visit 1 to visit 3. We then examined demographics for associations with follow-up antibody titers using generalized linear mixed models. A majority of the sample, 87.2%, had an antibody response at visit 2, and 95.6% demonstrated antibody persistence at visit 3. Being female and of young age was predictive of a higher antibody titer postvaccination. Antibody response and persistence after Ebola vaccination was robust in this cohort, confirming findings from outside of the DRC.


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunogenicity, Vaccine/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , Child , Democratic Republic of the Congo , Disease Outbreaks/prevention & control , Female , Glycoproteins/immunology , Humans , Male , Middle Aged , Seroepidemiologic Studies , Vaccination/methods , Viral Envelope Proteins/immunology , Young Adult
17.
mBio ; 13(1): e0337921, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012339

ABSTRACT

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ebola Vaccines , Ebolavirus , Macaca mulatta , Vesicular Stomatitis , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebola Vaccines/therapeutic use , Ebolavirus/genetics , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Macaca mulatta/immunology , SARS-CoV-2 , Vaccination/methods , Vesicular Stomatitis/genetics , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesiculovirus/genetics
18.
Antiviral Res ; 197: 105226, 2022 01.
Article in English | MEDLINE | ID: mdl-34923028

ABSTRACT

It has been shown that a very early cell-intrinsic response to infection is the upregulation of CD47 cell surface expression, a molecule known for delivering a "don't eat me signal" that inhibits macrophage-mediated phagocytosis and antigen presentation. Thus, blockade of CD47 signaling during lymphocytic choriomenigitis virus infections of mice has been shown to enhance the kinetics and potency of immune responses, thereby producing faster recovery. It seems counterintuitive that one of the earliest responses to infection would be immunoinhibitory, but it has been hypothesized that CD47 induction acts as an innate immune system checkpoint to prevent immune overactivation and immunopathogenic responses during certain infections. In the current study we examined the effect of CD47 blockade on lethal Ebola virus infection of mice. At 6 days post-infection, CD47 blockade was associated with significantly increased activation of B cells along with increases in recently cytolytic CD8+ T cells. However, the anti-CD47-treated mice exhibited increased weight loss, higher virus titers, and succumbed more rapidly. The anti-CD47-treated mice also had increased inflammatory cytokines in the plasma indicative of a "cytokine storm". Thus, in the context of this rapid hemorrhagic disease, CD47 blockade indeed exacerbated immunopathology and disease severity.


Subject(s)
CD47 Antigen/genetics , CD47 Antigen/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Animals , Cytokines/blood , Cytokines/immunology , Ebolavirus/pathogenicity , Female , Hemorrhagic Fever, Ebola/pathology , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Phagocytosis , RAW 264.7 Cells , Severity of Illness Index , Signal Transduction
19.
J Infect Dis ; 225(10): 1852-1855, 2022 05 16.
Article in English | MEDLINE | ID: mdl-34791300

ABSTRACT

Numerous studies have demonstrated the importance of the adaptive immunity for survival following Ebola virus (EBOV) infection. To evaluate the contribution of tissue damage to EBOV-induced immune suppression, acute liver damage or hemolysis, 2 symptoms associated with lethal EBOV infection, were chemically induced in vaccinated mice. Results show that either liver damage or hemolysis was sufficient to inhibit the host humoral response against EBOV glycoprotein and to drastically reduce the level of circulating T cells. This study thus provides a possible mechanism for the limited specific antibody production and lymphopenia in individuals with lethal hemorrhagic fever infections.


Subject(s)
Antibody Formation , Hemorrhagic Fever, Ebola , Lymphopenia , Animals , Antibodies, Viral , Ebolavirus , Glycoproteins , Hemolysis , Hemorrhagic Fever, Ebola/immunology , Liver/pathology , Liver/virology , Lymphopenia/virology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL