Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.469
Filter
1.
Diagn Pathol ; 19(1): 105, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095799

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor. It is estimated that approximately 50-80% of HCC cases worldwide are caused by hepatitis b virus (HBV) infection, and other pathogenic factors have been shown to promote the development of HCC when coexisting with HBV. Understanding the molecular mechanisms of HBV-induced hepatocellular carcinoma (HBV-HCC) is crucial for the prevention, diagnosis, and treatment of the disease. In this study, we analyzed the molecular mechanisms of HBV-induced HCC by combining bioinformatics and deep learning methods. Firstly, we collected a gene set related to HBV-HCC from the GEO database, performed differential analysis and WGCNA analysis to identify genes with abnormal expression in tumors and high relevance to tumors. We used three deep learning methods, Lasso, random forest, and SVM, to identify key genes RACGAP1, ECT2, and NDC80. By establishing a diagnostic model, we determined the accuracy of key genes in diagnosing HBV-HCC. In the training set, RACGAP1(AUC:0.976), ECT2(AUC:0.969), and NDC80 (AUC: 0.976) showed high accuracy. They also exhibited good accuracy in the validation set: RACGAP1(AUC:0.878), ECT2(AUC:0.731), and NDC80(AUC:0.915). The key genes were found to be highly expressed in liver cancer tissues compared to normal liver tissues, and survival analysis indicated that high expression of key genes was associated with poor prognosis in liver cancer patients. This suggests a close relationship between key genes RACGAP1, ECT2, and NDC80 and the occurrence and progression of HBV-HCC. Molecular docking results showed that the key genes could spontaneously bind to the anti-hepatocellular carcinoma drugs Lenvatinib, Regorafenib, and Sorafenib with strong binding activity. Therefore, ECT2, NDC80, and RACGAP1 may serve as potential biomarkers for the diagnosis of HBV-HCC and as targets for the development of targeted therapeutic drugs.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Computational Biology , Liver Neoplasms , Machine Learning , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/virology , Liver Neoplasms/genetics , Liver Neoplasms/diagnosis , Humans , Biomarkers, Tumor/genetics , Hepatitis B virus/genetics , GTPase-Activating Proteins/genetics , Hepatitis B/complications , Hepatitis B/diagnosis , Hepatitis B/virology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Databases, Genetic
2.
BMC Mol Cell Biol ; 25(1): 19, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090552

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.


Subject(s)
CpG Islands , DNA Methylation , Genomic Imprinting , Hepatitis B virus , Hepatitis B , Promoter Regions, Genetic , Spermatozoa , Humans , Male , DNA Methylation/genetics , Promoter Regions, Genetic/genetics , Spermatozoa/metabolism , CpG Islands/genetics , Genomic Imprinting/genetics , Hepatitis B/genetics , Hepatitis B/virology , Adult , Hepatitis B virus/genetics , Haplotypes/genetics , Middle Aged
3.
Virol J ; 21(1): 170, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090742

ABSTRACT

BACKGROUND: Chronic hepatitis B virus (HBV) infection affects around 250 million people worldwide, causing approximately 887,000 deaths annually, primarily owing to cirrhosis and hepatocellular carcinoma (HCC). The current approved treatments for chronic HBV infection, such as interferon and nucleos(t)ide analogs, have certain limitations as they cannot completely eradicate covalently closed circular DNA (cccDNA). Considering that HBV replication relies on host transcription factors, focusing on host factors in the HBV genome may provide insights into new therapeutic targets against HBV. Therefore, understanding the mechanisms underlying viral persistence and hepatocyte pathogenesis, along with the associated host factors, is crucial. In this study, we investigated novel therapeutic targets for HBV infection by identifying gene and pathway networks involved in HBV replication in primary human hepatocytes (PHHs). Importantly, our study utilized cultured primary hepatocytes, allowing transcriptomic profiling in a biologically relevant context and enabling the investigation of early HBV-mediated effects. METHODS: PHHs were infected with HBV virion particles derived from HepAD38 cells at 80 HBV genome equivalents per cell (Geq/cell). For transcriptomic sequencing, PHHs were harvested 1, 2-, 3-, 5-, and 7 days post-infection (dpi). After preparing the libraries, clustering and sequencing were conducted to generate RNA-sequencing data. This data was processed using Bioinformatics tools and software to analyze DEGs and obtain statistically significant results. Furthermore, qRT-PCR was performed to validate the RNA-sequencing results, ensuring consistent findings. RESULTS: We observed significant alterations in the expression patterns of 149 genes from days 1 to 7 following HBV infection (R2 > 0.7, q < 0.05). Functional analysis of these genes identified RNA-binding proteins involved in mRNA metabolism and the regulation of alternative splicing during HBV infection. Results from qRT-PCR experiments and the analysis of two validation datasets suggest that RBM14 and RPL28 may serve as potential biomarkers for HBV-associated HCC. CONCLUSIONS: Transcriptome analysis of gene expression changes during HBV infection in PHHs provided valuable insights into chronic HBV infection. Additionally, understanding the functional involvement of host factor networks in the molecular mechanisms of HBV replication and transcription may facilitate the development of novel strategies for HBV treatment.


Subject(s)
Hepatitis B virus , Hepatocytes , Virus Replication , Humans , Hepatocytes/virology , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Gene Expression Profiling , Host-Pathogen Interactions , Cells, Cultured , Gene Regulatory Networks , Hepatitis B/virology , Hepatitis B/genetics , Hepatitis B, Chronic/virology
4.
BMC Infect Dis ; 24(1): 805, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123117

ABSTRACT

BACKGROUND: Globally, around 7 to 20 million people are believed to be suffering from coinfection with both hepatitis B virus (HBV) and hepatitis C virus (HCV). The loop-mediated isothermal amplification (LAMP) approach, introduced by Notomi and colleagues, has undergone substantial advancements as an effective molecular tool that enables the simultaneous analysis of multiple samples in a single tube. METHODS: The present study examined the simultaneous detection of HBV and HCV in a single tube using melt curve analysis multiplex LAMP (mLAMP), which is based on the identification of unique melting peak temperatures. Selected regions for primer design including the S gene of HBV and the UTR gene of HCV. Primer optimization is initially performed through individual HBV and HCV LAMP analysis. Following the optimization process, the mLAMP assay was evaluated by optimizing the multiplex reaction mixture, determining the reaction time, and analyzing the limit of detection (LOD). The results are also analyzed using lateral flow dipsticks (LFD), which enable the visual detection of HBV and HCV by adding 20 pmol FITC-labeled LF primers into the reaction mixture prior the mLAMP. RESULTS: The LOD for the mLAMP assay was determined as 10 copies/µl, and no cross-reactivity with other microorganisms was detected. The detection results obtained from patient plasma were also visually demonstrated using LFD, and displayed significant concordance with those obtained from Real-Time Polymerase Chain Assay. The mLAMP assay revealed a diagnostic sensitivity of 95% for detecting the HBV, and LOD is 90% for HCV. The overall diagnostic sensitivity of the mLAMP assay for both viruses was 85%. The assay confirmed a specificity of 100%. CONCLUSION: The mLAMP assay displays significant promise for analyzing coinfected samples by simultaneously detecting the dual targets HBV and HCV within a set temperature of 62 °C, all within a time frame of 1 h. Additionally, when paired with disposable LFD, the mLAMP assay enables rapid visual detection of assay results in a matter of minutes. The result contributes to the mLAMP assay being highly suitable for coinfection screening, particularly in field conditions.


Subject(s)
Coinfection , Hepacivirus , Hepatitis B virus , Hepatitis B , Hepatitis C , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Humans , Nucleic Acid Amplification Techniques/methods , Hepatitis C/diagnosis , Hepatitis C/virology , Hepatitis C/complications , Hepatitis B/diagnosis , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepacivirus/genetics , Hepacivirus/isolation & purification , Coinfection/diagnosis , Coinfection/virology , Molecular Diagnostic Techniques/methods , Limit of Detection , DNA Primers/genetics
5.
Virology ; 598: 110197, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098184

ABSTRACT

Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Hepatitis B virus , Hepatitis B , Hepatitis B virus/genetics , Hepatitis B virus/classification , Humans , Hepatitis B/virology , Genotype , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology
6.
World J Gastroenterol ; 30(26): 3193-3197, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39086636

ABSTRACT

In this editorial we comment on the article published in the recent issue of the World Journal of Gastroenterology. We focus specifically on the problem of occult hepatitis B virus (HBV) infection, that is a result of previous hepatitis B (PHB) and a source for reactivation of HBV. The prevalence of PHB is underestimated due to the lack of population testing programs. However, this condition not only complicate anticancer treatment, but may be responsible for the development of other diseases, like cancer or autoimmune disorders. Here we unveil possible mechanisms responsible for realization of these processes and suggest practical approaches for diagnosis and treatment.


Subject(s)
Hepatitis B virus , Hepatitis B , Virus Activation , Humans , Hepatitis B virus/immunology , Hepatitis B virus/pathogenicity , Hepatitis B/epidemiology , Hepatitis B/virology , Hepatitis B/diagnosis , Antiviral Agents/therapeutic use , Prevalence
7.
Emerg Microbes Infect ; 13(1): 2387448, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39109538

ABSTRACT

Therapeutics for eradicating hepatitis B virus (HBV) infection are still limited and current nucleos(t)ide analogs (NAs) and interferon are effective in controlling viral replication and improving liver health, but they cannot completely eradicate the hepatitis B virus and only a very small number of patients are cured of it. The TCR-like antibodies recognizing viral peptides presented on human leukocyte antigens (HLA) provide possible tools for targeting and eliminating HBV-infected hepatocytes. Here, we generated three TCR-like antibodies targeting three different HLA-A2.1-presented peptides derived from HBV core and surface proteins. Bispecific antibodies (BsAbs) were developed by fuzing variable fragments of these TCR-like mAbs with an anti-CD3ϵ antibody. Our data demonstrate that the BsAbs could act as T cell engagers, effectively redirecting and activating T cells to target HBV-infected hepatocytes in vitro and in vivo. In HBV-persistent mice expressing human HLA-A2.1, two infusions of BsAbs induced marked and sustained suppression in serum HBsAg levels and also reduced the numbers of HBV-positive hepatocytes. These findings highlighted the therapeutic potential of TCR-like BsAbs as a new strategy to cure hepatitis B.


Subject(s)
Antibodies, Bispecific , Disease Models, Animal , Hepatitis B virus , Hepatitis B , Hepatocytes , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Hepatocytes/virology , Hepatocytes/immunology , Mice , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , Hepatitis B/immunology , Hepatitis B/virology , HLA-A2 Antigen/immunology , Hepatitis B Surface Antigens/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
8.
J Cell Mol Med ; 28(14): e18533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034442

ABSTRACT

Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , Sorafenib , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Mice , Hepatitis B virus/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Hepatitis B/complications , Hepatitis B/drug therapy , Hepatitis B/virology , Ditiocarb/pharmacology , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Cell Proliferation/drug effects , Trans-Activators , Viral Regulatory and Accessory Proteins
9.
Methods Mol Biol ; 2837: 1-9, 2024.
Article in English | MEDLINE | ID: mdl-39044070

ABSTRACT

Hepatitis B, the leading cause of liver diseases worldwide, is a result of infection with hepatitis B virus (HBV). Due to its obligate intracellular life cycle, culture systems for efficient HBV replication are vital. Although basic and translational research on HBV has been performed for many years, conventional hepatocellular culture systems are not optimal. These studies have greatly benefited from recent improvements in cell culture models based on stem cell technology for HBV replication and infection studies. Here we describe a protocol for the differentiation of human stem cell-derived hepatocyte-like cells (HLCs) and subsequent HBV infection. HLCs are capable of expressing hepatocyte markers and host factors important for hepatic function maintenance. These cells fully support HBV infection and virus-host interactions. Stem cell-derived HLCs provide a new tool for antiviral drug screening and development.


Subject(s)
Cell Differentiation , Hepatitis B virus , Hepatitis B , Hepatocytes , Virus Replication , Humans , Hepatocytes/virology , Hepatocytes/cytology , Hepatitis B virus/physiology , Hepatitis B/virology , Cell Culture Techniques/methods , Stem Cells/virology , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured
10.
Methods Mol Biol ; 2837: 45-58, 2024.
Article in English | MEDLINE | ID: mdl-39044074

ABSTRACT

Hepatitis B virus (HBV) infects hepatocytes that are in the G0/G1 phase with intact nuclear membrane and organized chromosome architecture. In the nucleus of the infected cells, HBV covalently closed circular (ccc) DNA, an episomal minichromosome, serves as the template for all viral transcripts and the reservoir of persistent infection. Nuclear positioning of cccDNA can be assessed by the spatial distance between viral DNA and host chromosomal DNA through Circular Chromosome Conformation Capture (4C) combined with high-throughput sequencing (4C-seq). The 4C-seq analysis relies on proximity ligation and is commonly used for mapping genomic DNA regions that communicate within a host chromosome. The method has been tailored for studying nuclear localization of HBV episomal cccDNA in relation to the host chromosomes. In this study, we present a step-by-step protocol for 4C-seq analysis of HBV infection, including sample collection and fixation, 4C DNA library preparation, sequence library preparation, and data analysis. Although limited by proximity ligation of DNA fragments, 4C-seq analysis provides useful information of HBV localization in 3D genome, and aids the understanding of viral transcription in light of host chromatin conformation.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , High-Throughput Nucleotide Sequencing , Hepatitis B virus/genetics , Humans , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Hepatitis B/virology , Host-Pathogen Interactions/genetics , Chromosomes/genetics , Gene Library , Chromosomes, Human/genetics , Chromosomes, Human/virology
11.
Methods Mol Biol ; 2837: 23-32, 2024.
Article in English | MEDLINE | ID: mdl-39044072

ABSTRACT

Hepatitis B virus (HBV) is an obligate human hepatotropic DNA virus causing both transient and chronic infection. The livers of chronic hepatitis B patients have a high risk of developing liver fibrosis, cirrhosis, and hepatocellular carcinoma. The nuclear episomal viral DNA intermediate, covalently closed circular DNA (cccDNA), forms a highly stable complex with host and viral proteins to serve as a transcription template and support HBV infection chronicity. Thus, characterization of the composition and dynamics of cccDNA nucleoprotein complexes providing cccDNA stability and gene regulation is of high importance for both basic and medical research. The presented method for chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) allows to assess provisional physical interaction of the protein of interest (POI) with cccDNA using POI-specific antibody, the level of enrichment of a POI on cccDNA versus control/background is characterized quantitatively using qPCR.


Subject(s)
Chromatin Immunoprecipitation , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B virus/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Humans , DNA, Viral/genetics , Chromatin Immunoprecipitation/methods , Real-Time Polymerase Chain Reaction/methods , Hepatitis B/virology , Hepatitis B/genetics
12.
Methods Mol Biol ; 2837: 113-124, 2024.
Article in English | MEDLINE | ID: mdl-39044079

ABSTRACT

HBV covalently closed circular DNA (cccDNA) plays an important role in the persistence of hepatitis B virus (HBV) infection by serving as the template for transcription of viral RNAs. To cure HBV infection, it is expected that cccDNA needs either to be eliminated or silenced. Hence, precise cccDNA quantification is essential. Sample preparation is crucial to specifically detect cccDNA. Southern blot is regarded as the "gold standard" for specific cccDNA detection but lacks sensitivity. Here, we describe a rapid and reliable modified kit-based, HBV protein-free DNA extraction method as well as a novel enhanced sensitivity Southern blot that uses branched DNA technology to detect HBV DNA in cell culture and liver tissue samples. It is useful for both HBV molecular biology and antiviral research.


Subject(s)
Blotting, Southern , DNA, Circular , DNA, Viral , Hepatitis B virus , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Humans , DNA, Viral/genetics , DNA, Viral/isolation & purification , DNA, Circular/isolation & purification , DNA, Circular/analysis , DNA, Circular/genetics , Blotting, Southern/methods , Hepatitis B/virology , Hepatitis B/diagnosis , Liver/virology
13.
Methods Mol Biol ; 2837: 59-66, 2024.
Article in English | MEDLINE | ID: mdl-39044075

ABSTRACT

Of all the chemical modifications of RNAs, the N6-methyladenosine (m6A) modification is the most prevalent and well-characterized RNA modification that is functionally implicated in a wide range of biological processes. The m6A modification occurs in hepatitis B virus (HBV) RNAs and this modification regulates the HBV life cycle in several ways. Thus, understanding the mechanisms underlying m6A modification of HBV RNAs is crucial in understanding HBV infectious process and associated pathogenesis. Here, we describe the currently utilized method in the detection and characterization of m6A-methylated RNAs during viral infection.


Subject(s)
Adenosine , Hepatitis B virus , Immunoprecipitation , RNA, Viral , Adenosine/analogs & derivatives , Adenosine/metabolism , Hepatitis B virus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Methylation , Immunoprecipitation/methods , Hepatitis B/virology
14.
Methods Mol Biol ; 2837: 125-135, 2024.
Article in English | MEDLINE | ID: mdl-39044080

ABSTRACT

Hepatitis B virus (HBV) is undoubtedly a master in exploiting host resources while evading host defense for its multiplication within a constrained genetic coding capacity. To further unravel these cunning strategies, a clear picture of virus-host interaction with key subcellular and molecular contexts is needed. Here, we describe a FISH protocol modified from the ViewRNA assay that allows direct visualization of HBV RNA, DNA, and cccDNA in cell culture models (e.g., HepAD38, HepG2-NTCP). It can be coupled with immunofluorescence staining of viral or host proteins or other fluorescent tagging systems which could illuminate numerous aspects of virus-host interactions.


Subject(s)
DNA, Viral , Hepatitis B virus , In Situ Hybridization, Fluorescence , RNA, Viral , Humans , Hepatitis B virus/genetics , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , DNA, Viral/genetics , DNA, Circular/genetics , Hep G2 Cells , Hepatitis B/virology , Cell Culture Techniques/methods , Virus Replication/genetics
15.
Methods Mol Biol ; 2837: 99-111, 2024.
Article in English | MEDLINE | ID: mdl-39044078

ABSTRACT

Hepatitis B virus (HBV) infection remains a global public health issue, and approximately 294 million individuals worldwide are chronically infected with HBV. Approved antivirals rarely cure chronic HBV infection due to their inability to eliminate the HBV covalently closed circular DNA (cccDNA), the viral episome, in the nucleus of infected hepatocytes. The persistence of cccDNA underlies the chronic nature of HBV infection and the frequent relapse after the cessation of antiviral treatment. However, drug development targeting cccDNA formation and maintenance is hindered by the lack of sufficient biological knowledge on cccDNA, and of its reliable detection due to its low abundance and the presence of high levels of HBV DNA species similar to cccDNA. Here, we describe a Southern blot method for reliably detecting the HBV cccDNA even in the presence of high levels of plasmid DNA and other HBV DNA species, based on the efficient removal of plasmid DNA and all DNA species with free 3' ends. This approach also allows the detection of certain potential intermediates during cccDNA formation.


Subject(s)
DNA, Circular , DNA, Viral , Hepatitis B virus , DNA, Circular/genetics , Hepatitis B virus/genetics , DNA, Viral/genetics , Humans , Blotting, Southern/methods , Plasmids/genetics , Virus Replication , Hepatitis B/virology , Hepatocytes/virology , Hepatocytes/metabolism
16.
Methods Mol Biol ; 2837: 199-206, 2024.
Article in English | MEDLINE | ID: mdl-39044086

ABSTRACT

Chimeric mouse models with a humanized liver (Hu-HEP mice) provide a unique tool to study human hepatotropic virus diseases, including viral infection, viral pathogenesis, and anti-viral therapy. Here, we describe a detailed protocol for studying hepatitis B infection in NRG-derived fumarylacetoacetate hydrolase (FAH) knockout mice repopulated with human hepatocytes (FRG-Hu HEP mice). The procedures include (1) maintenance and genotyping of the FRG mice, (2) intrasplenic injection of primary human hepatocytes (PHH), (3) 2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) drug reduction cycling to improve human hepatocyte repopulation, (4) human albumin detection, and (5) HBV infection and detection. The method is simple and allows for highly reproducible generation of FRG-Hu HEP mice for HBV infection and therapy investigations.


Subject(s)
Disease Models, Animal , Hepatitis B virus , Hepatitis B , Hepatocytes , Hydrolases , Liver , Mice, Knockout , Animals , Humans , Mice , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/deficiency , Hepatitis B/virology , Hepatitis B virus/genetics , Liver/virology , Liver/pathology , Hepatocytes/virology , Hepatocytes/transplantation , Mice, Inbred NOD , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/deficiency , Chimera , Cyclohexanones , Nitrobenzoates
17.
Methods Mol Biol ; 2837: 219-226, 2024.
Article in English | MEDLINE | ID: mdl-39044088

ABSTRACT

HBV-specific CD8+ T cells are only present at the low frequency during chronic infection. Thus, they are often undetectable by conventional ex vivo staining methods using peptide-loaded HLA class I tetramers. Detection sensitivity can be increased by magnetic bead-based enrichment strategies following staining with peptide-loaded HLA class I tetramers. Additionally, some downstream applications like e.g., single cell RNA sequencing of virus-specific CD8+ T cells may also require a pre-enrichment step to increase the frequency of the cells of interest. For this, peptide-loaded HLA class I tetramers-associated magnetic bead-based enrichment is also a suitable method.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Histocompatibility Antigens Class I , Peptides , CD8-Positive T-Lymphocytes/immunology , Humans , Hepatitis B virus/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Peptides/immunology , Immunomagnetic Separation/methods , Epitopes, T-Lymphocyte/immunology , Hepatitis B/immunology , Hepatitis B/virology
18.
Methods Mol Biol ; 2837: 207-218, 2024.
Article in English | MEDLINE | ID: mdl-39044087

ABSTRACT

Mice infected with a recombinant adeno-associated virus carrying a replication-competent hepatitis B virus genome (rAAV-HBV) via the intravenous route establish a persistent HBV replication in hepatocytes and develop immune tolerance. They serve as models to evaluate antiviral immunity and to assess potential therapeutic approaches for chronic HBV infection. Combining selected HBV variants and different mouse genotypes allows for addressing a broad spectrum of research questions. This chapter describes the basic principles of the rAAV-HBV mouse model, rAAV-HBV production and purification methods, and finally, the in vivo application.


Subject(s)
Dependovirus , Disease Models, Animal , Genetic Vectors , Hepatitis B virus , Virus Replication , Animals , Dependovirus/genetics , Dependovirus/isolation & purification , Hepatitis B virus/genetics , Mice , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Humans , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/immunology , Hepatitis B/virology , Hepatitis B/immunology
19.
Clin Transplant ; 38(7): e15389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952185

ABSTRACT

INTRODUCTION: Hepatitis B virus reactivation (HBVr) can occur in solid organ transplant (SOT) recipients with previously inactive hepatitis B virus (HBV) infection. Previous studies have reported that HBVr is generally less than 10% in nonliver SOT recipients with past HBV infection. METHODS: We conducted a retrospective study from January 2018 to August 2023 at Mayo Clinic sites in Arizona, Florida, and Minnesota. We examined the antiviral prophylaxis strategy used and the characteristics of HBVr in hepatitis B core antibody-positive (HBcAb +) nonliver SOT adult recipients. Past HBV infection was defined as HBcAb + / hepatitis B surface antigen (HBsAg) -. Chronic HBV infection was defined as HBcAb + / HBsAg +. RESULTS: A total of 180 nonliver SOT recipients were identified during the study period. Indefinite antiviral prophylaxis was utilized in 77 recipients, and none developed HBVr after transplantation. In 103 recipients without antiviral prophylaxis, the incidence of HBVr was 12% (12/97) and 33% (2/6) in those with past HBV infection and chronic HBV infection. The incidence of HBVr in patients with past HBV infection is 16% (8/50), 15% (3/20), and 5% (1/22) in kidney, heart, and lungs, respectively. HBVr was more frequent in those who received alemtuzumab. Among 14 recipients with HBVr, none had HBV-associated liver failure or death. CONCLUSIONS: Our study observed a higher rate of HBVr (12%) in nonliver SOT recipients with past HBV infection compared to the previous studies. Further studies are needed to identify predictors of HBVr in nonliver SOT recipients and optimize antiviral prophylaxis guidance.


Subject(s)
Antiviral Agents , Hepatitis B virus , Hepatitis B , Organ Transplantation , Virus Activation , Humans , Retrospective Studies , Male , Female , Hepatitis B virus/isolation & purification , Incidence , Middle Aged , Organ Transplantation/adverse effects , Hepatitis B/virology , Hepatitis B/epidemiology , Follow-Up Studies , Risk Factors , Antiviral Agents/therapeutic use , Prognosis , Adult , Risk Assessment , Postoperative Complications/epidemiology , Postoperative Complications/virology , Aged
20.
World J Gastroenterol ; 30(25): 3147-3151, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39006388

ABSTRACT

In this editorial, we discussed the apparent discrepancy between the findings described by Colapietro et al, in their case report and data found in the literature. Colapietro et al reported a case of hepatitis B virus (HBV)-related hepatic decompensation in a patient with chronic myeloid leukemia and a previously resolved HBV infection who was receiving Bruton's tyrosine kinase (BTK) inhibitor therapy. First of all, we recapitulated the main aspects of the immune system involved in the response to HBV infection in order to underline the role of the innate and adaptive response, focusing our attention on the protective role of anti-HBs. We then carefully analyzed literature data on the risk of HBV reactivation (HBVr) in patients with previous HBV infection who were treated with either tyrosine kinase inhibitors or BTK inhibitors for their hematologic malignancies. Based on literature data, we suggested that several factors may contribute to the different risks of HBVr: The type of hematologic malignancy; the type of therapy (BTK inhibitors, especially second-generation, seem to be at a higher risk of HBVr than those with tyrosine kinase inhibitors); previous exposure to an anti-CD20 as first-line therapy; and ethnicity and HBV genotype. Therefore, the warning regarding HBVr in the specific setting of patients with hematologic malignancies requires further investigation.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Hematologic Neoplasms , Hepatitis B virus , Protein Kinase Inhibitors , Virus Activation , Humans , Virus Activation/drug effects , Virus Activation/immunology , Hepatitis B virus/drug effects , Hepatitis B virus/immunology , Hepatitis B virus/pathogenicity , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Hematologic Neoplasms/immunology , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/virology , Hepatitis B/virology , Hepatitis B/diagnosis , Hepatitis B/drug therapy , Hepatitis B/immunology , Risk Factors , Antiviral Agents/therapeutic use , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/virology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL