Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.814
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124420, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38728848

As common pollutants, Cu2+ and glyphosate pose a serious threat to human health and the ecosystem. Herein, a fluorescent probe (E)-7-(diethylamino)-N'(4-(diethylamino)-2-hydroxybenzyl)-2-oxo-2H chromophore-3-carbazide (DDHC) was designed and synthesised for the sequential recognition of Cu2+ and glyphosate. DDHC has the advantages of a short synthesis path, easy-to-obtain raw materials, good anti-interference ability, and strong stability. The interaction of the DDHC-Cu2+ complexes with glyphosate allows the amino and carboxyl groups in glyphosate molecules to coordinate with Cu2+ strongly, competing for the Cu2+ in the DDHC-Cu2+ complexes and releasing the DDHC, leading to the recovery of fluorescence. The recognition was further validated through Job's plot, HRMS, and DFT calculations. In addition, the successful recovery of Cu2+ and glyphosate in different environmental water samples fully demonstrates the practical application potential of DDHC. Especially, DDHC has low cytotoxicity and can enter zebrafish and HeLa cells, rapidly reacting with Cu2+ and glyphosate in the body, generating visible fluorescence quenching and recovery phenomena, achieving real-time visual monitoring of exogenous Cu2+ and glyphosate in zebrafish and HeLa cells. The targeting and dual selectivity of DDHC greatly enhance its potential application value in the field of detection, providing important theoretical support for studying the fate of multiple pollutants in the environment.


Copper , Fluorescent Dyes , Glycine , Glyphosate , Zebrafish , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/analysis , Copper/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Animals , HeLa Cells , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Herbicides/analysis , Density Functional Theory
2.
Anal Methods ; 16(21): 3364-3371, 2024 May 30.
Article En | MEDLINE | ID: mdl-38742948

Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 µM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.


Copper , Fluorescent Dyes , Glycine , Glyphosate , Herbicides , Glycine/analogs & derivatives , Glycine/chemistry , Fluorescent Dyes/chemistry , Humans , Copper/chemistry , Copper/analysis , Herbicides/analysis , Herbicides/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Optical Imaging/methods , Food Contamination/analysis , Smartphone , Food Analysis/methods
3.
Anal Chim Acta ; 1308: 342647, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38740456

BACKGROUND: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.


Electrochemical Techniques , Electrodes , Glycine , Glyphosate , Graphite , Nitrogen , Photochemical Processes , Graphite/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Nitrogen/chemistry , Polymers/chemistry , Copper/chemistry , Gels/chemistry , Herbicides/analysis , Limit of Detection , Magnetite Nanoparticles/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry
4.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38735117

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
5.
Anal Chem ; 96(19): 7772-7779, 2024 May 14.
Article En | MEDLINE | ID: mdl-38698542

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Atrazine , Electrochemical Techniques , Herbicides , Hydrogels , Atrazine/analysis , Herbicides/analysis , Hydrogels/chemistry , Electrochemical Techniques/instrumentation , Graphite/chemistry , Electrodes , Limit of Detection , Nitriles/chemistry , Nitriles/analysis , Nanofibers/chemistry , Water Pollutants, Chemical/analysis
6.
Food Chem ; 449: 139215, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38581791

Misuse of amide herbicides in the fisheries environment can pose unpredictable harm to aquatic products and ultimately human health. Thus, the development of a real-time, rapid on-site detection method is crucial. This study proposes for the first time, a paper-based visual detection method for amide herbicides in fish serum, by coating the molecularly imprinted polymer layer onto quantum dots, prepared fluorescent sensing materials (QDs@MIPs) for the detection of amide herbicides in aquatic products. These materials specifically cause fluorescence quenching in the presence of amide herbicides resulting in a color change. For practical application, this research designed a rapid test strip based on QDs@MIPs, meanwhile, incorporate a smartphone or a fluorescence spectrophotometer for qualitative and quantitative measurements, the limit of detection ranges of 0.061-0.500 µM. The method can be used for on-site evaluation of aquatic products, providing new technology for monitoring the safety of aquatic products.


Amides , Fishes , Herbicides , Quantum Dots , Herbicides/analysis , Herbicides/blood , Animals , Quantum Dots/chemistry , Amides/chemistry , Food Contamination/analysis , Limit of Detection , Molecular Imprinting , Spectrometry, Fluorescence/methods
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646767

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Atrazine , Herbicides , Models, Theoretical , Soil Pollutants , Soil , Atrazine/analysis , Atrazine/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Herbicides/analysis , Herbicides/chemistry , Soil/chemistry , Biodegradation, Environmental , Machine Learning , Forecasting
8.
Sci Total Environ ; 927: 172287, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593877

In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg-1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios.


Environmental Restoration and Remediation , Herbicides , Soil Pollutants , Herbicides/analysis , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Adsorption , Soil/chemistry , Agriculture/methods
9.
Food Chem ; 449: 139259, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38626667

Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.


Diquat , Food Contamination , Malus , Metal-Organic Frameworks , Solanum tuberosum , Terbium , Zea mays , Metal-Organic Frameworks/chemistry , Zea mays/chemistry , Malus/chemistry , Food Contamination/analysis , Diquat/chemistry , Diquat/analysis , Terbium/chemistry , Solanum tuberosum/chemistry , Herbicides/analysis , Herbicides/chemistry , Cadmium/analysis , Limit of Detection
10.
Environ Monit Assess ; 196(5): 478, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664274

The management of invasive weeds on both arable and non-arable land is a vast challenge. Converting these invasive weeds into biochar and using them to control the fate of herbicides in soil could be an effective strategy within the concept of turning waste into a wealth product. In this study, the fate of imazethapyr (IMZ), a commonly used herbicide in various crops, was investigated by introducing such weeds as biochar, i.e., Parthenium hysterophorus (PB) and Lantana camara (LB) in sandy loam soil. In terms of kinetics, the pseudo-second order (PSO) model provided the best fit for both biochar-mixed soils. More IMZ was sorbed onto LB-mixed soil compared to PB-mixed soil. When compared to the control (no biochar), both PB and LB biochars (at concentrations of 0.2% and 0.5%) increased IMZ adsorption, although the extent of this effect varied depending on the dosage and type of biochar. The Freundlich adsorption isotherm provided a satisfactory explanation for IMZ adsorption in soil/soil mixed with biochar, with the adsorption process exhibiting high nonlinearity. The values of Gibb's free energy change (ΔG) were negative for both adsorption and desorption in soil/soil mixed with biochar, indicating that sorption was exothermic and spontaneous. Both types of biochar significantly affect IMZ dissipation, with higher degradation observed in LB-amended soil compared to PB-amended soil. Hence, the findings suggest that the preparation of biochar from invasive weeds and its utilization for managing the fate of herbicides can effectively reduce the residual toxicity of IMZ in treated agroecosystems in tropical and subtropical regions.


Charcoal , Herbicides , Nicotinic Acids , Plant Weeds , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/analysis , Herbicides/analysis , Herbicides/chemistry , Soil/chemistry , Adsorption , Nicotinic Acids/chemistry , Lantana/chemistry , Introduced Species , Kinetics , Asteraceae/chemistry
11.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570374

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Eucalyptus , Herbicides , Oryza , Quinolines , Sasa , Soil Pollutants , Triazines , Charcoal , Soil , Adsorption , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis
12.
Food Chem ; 450: 139298, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38615532

A convenient, efficient, and green dispersive liquid-liquid microextraction based on the in situ formation of solidified supramolecular solvents combined with high performance liquid chromatography was developed for the determination of four phenylurea herbicides in liquid samples, including monuron, monolinuron, isoproturon, and chlortoluron. Herein, a novel supramolecular solvent was prepared by the in situ reaction of [P4448]Br and NH4PF6, which had the advantages of low melting point, high density, and good dispersibility. In addition, the microscopic morphology and physical properties of supramolecular solvent were characterized, and the extraction conditions were optimized. The results showed that the analytes had good linearity (R2 > 0.9998) within the linear range. The limits of detection and quantification for the four phenylurea herbicides were in the range of 0.13-0.19 µg L-1 and 0.45-0.65 µg L-1, respectively. The prepared supramolecular solvent is suitable for the efficient extraction of phenylurea herbicides in water, fruit juice, and milk.


Fruit and Vegetable Juices , Herbicides , Liquid Phase Microextraction , Milk , Phenylurea Compounds , Solvents , Liquid Phase Microextraction/methods , Herbicides/chemistry , Herbicides/isolation & purification , Herbicides/analysis , Milk/chemistry , Phenylurea Compounds/isolation & purification , Phenylurea Compounds/chemistry , Phenylurea Compounds/analysis , Fruit and Vegetable Juices/analysis , Solvents/chemistry , Animals , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Chromatography, High Pressure Liquid , Food Contamination/analysis
13.
Sci Total Environ ; 929: 172388, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614356

The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.


Aquaculture , Environmental Monitoring , Pesticide Residues , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Pesticide Residues/analysis , Risk Assessment , Animals , Herbicides/analysis
14.
Environ Pollut ; 349: 123940, 2024 May 15.
Article En | MEDLINE | ID: mdl-38599268

A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.


Agriculture , Environmental Monitoring , Pesticides , Rivers , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Quebec , Pesticides/analysis , Pesticide Residues/analysis , Atrazine/analysis , Tandem Mass Spectrometry , Geologic Sediments/chemistry , Herbicides/analysis
15.
Chemosphere ; 357: 142075, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648985

Pesticides are considered one of the main sources of contamination of surface waters, especially in rural areas highly influenced by traditional agricultural practices. The objective of this work was to evaluate the impact caused by pesticides and their transformation products (TPs) related to olive groves in surface waters with strong agricultural pressure. 11 streams were monitored during four sampling campaigns over 2 years. A solid-phase extraction, followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was used in the quantitative target approach, with more than 70 validated compounds. Target method was combined with a suspect screening strategy involving more than 500 pesticides and TPs, using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) to identify additional pesticides and TPs out of the scope of analysis. A total of 43 different compounds were detected with the target method. The herbicide MCPA was present in all samples and at the highest concentration (1260 ng L-1), followed by the fungicide carbendazim (1110 ng L-1), and the herbicide chlorotoluron (706 ng L-1). The suspect screening strategy revealed the presence of 7 compounds out of the target analysis (1 pesticide and 6 TPs). 6 analytes were confirmed with the analytical standards. Semi-quantification results revealed that TPs exhibited higher concentrations than their corresponding parent compounds, indicating higher persistency. Some small streams showed a comparable number of pesticides and concentrations to the most polluted large river. The determined pesticide and TPs concentrations represented an estimated environmental hazard in almost all sampling sites under study. This work underscores the importance of including pesticide TPs and small streams impacted by extensive agricultural activities in water quality monitoring programs.


Agriculture , Environmental Monitoring , Olea , Pesticides , Rivers , Tandem Mass Spectrometry , Water Pollutants, Chemical , Rivers/chemistry , Water Pollutants, Chemical/analysis , Pesticides/analysis , Risk Assessment , Olea/chemistry , Solid Phase Extraction , Carbamates/analysis , Chromatography, High Pressure Liquid , Herbicides/analysis , Benzimidazoles/analysis , Phenylurea Compounds
16.
Ecotoxicol Environ Saf ; 274: 116199, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38492485

This study established a residue detection method based on the QuEChERS pre-treatment method and combined it with high-performance liquid chromatography-tandem mass spectrometry to test six herbicides (metamitron, clopyralid, desmedipham, phenmedipham, ethofumesate, and haloxyfop-p-methyl) in sugar beet plants, soil, and roots. The degradation dynamics and terminal residues of each herbicide in sugar beets were analysed. Finally, the dietary risks of various herbicides in sugar beets were evaluated based on the dietary structure of Chinese people, and the risk quotient values were below 100%. Using this detection method, all reagents exhibited good linearity (0.9724 ≤ R2 ≤ 0.9998), The limit of quantification (LOQ) ranged from 0.01 to 0.05 mg/L, the matrix effect ranged from -1.2% to -50%, the addition recovery rate ranged from 77.00% to 103.48%, and the relative standard deviation ranged from 1.61% to 16.17%; therefore, all indicators of this method met the residue detection standards. Under field conditions, the half-lives (t1/2) ranged about 0.65 ∼ 2.96 d and 0.38 ∼ 27.59 d in sugar beet plants and soil, respectively. All herbicides were easily degraded in sugar beet plants and soil (t1/2 < 30 d). The terminal residue amounts in the beet plants, soil, and roots ranged from < LOQ to 0.243 mg/kg. The dietary risk assessment of each pesticide was conducted based on the residual median of the terminal residues and the highest residual values on the edible part of the beetroot. The chronic exposure risk quotient (RQc) and acute exposure risk quotient (RQa) values were < 100%, indicating that the residue of each pesticide in beetroot posed low risks to consumers in China at the recommended dosage.


Beta vulgaris , Fluorine Compounds , Herbicides , Pesticide Residues , Pesticides , Pyridines , China , Herbicides/analysis , Pesticide Residues/analysis , Pesticides/analysis , Soil/chemistry , Sugars , Vegetables
17.
Environ Sci Pollut Res Int ; 31(17): 25437-25453, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472573

2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.


Graphite , Herbicides , Nanocomposites , Water Pollutants, Chemical , Adsorption , Herbicides/analysis , Graphite/chemistry , Ferrosoferric Oxide , Water/chemistry , Nanocomposites/chemistry , Magnetic Phenomena , 2,4-Dichlorophenoxyacetic Acid , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
18.
Chemosphere ; 355: 141679, 2024 May.
Article En | MEDLINE | ID: mdl-38527632

Due to its low cost, its ease of use and to the "mild action" declared for long time by the Control and Approval Agencies towards it, the herbicide Glyphosate, is one of the currently best-selling and most-used agricultural products worldwide. In this work, we evaluated the presence and spread of Glyphosate in the Po River Basin (Northern Italy), one of the regions with the most intensified agriculture in Europe and where, by now for decades, a strong and general loss of aquatic biodiversity is observed. In order to carry out a more precise study of the real presence of this herbicide in the waters, samples were collected from the minor water network for two consecutive years, starting in 2022, at an interval time coinciding with those of the spring and summer crop treatments. In contrast to the sampling strategies generally adopted by Environmental Protection Agencies, a more focused sampling strategy was adopted to highlight the possible high concentrations in minor watercourses in direct contact with cultivated fields. Finally, we investigated the possible consequences that the higher amounts of Glyphosate found in our monitoring activities can have on stress reactions in plant (Groenlandia densa) and animal (Daphnia magna) In all the monitoring campaigns we detected exceeding European Environmental Quality Standard - EQS limits (0.1 µg/L) values. Furthermore, in some intensively agricultural areas, concentrations reached hundreds of µg/L, with the highest peaks during spring. In G. densa and D. magna, the exposition to increasing doses of herbicide showed a clear response linked to metabolic stress. Overall, our results highlight how, after several decades of its use, the Glyphosate use efficiency is still too low, leading to economic losses for the farm and to strong impacts on ecosystem health. Current EU policy indications call for an agroecological approach necessary to find alternatives to chemical weed control, which farms can develop in different contexts in order to achieve the sustainability goals set by the Farm to Fork strategy.


Herbicides , Water Pollutants, Chemical , Animals , Glyphosate , Ecosystem , Glycine , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Herbicides/analysis
19.
J Sep Sci ; 47(5): e2300746, 2024 Mar.
Article En | MEDLINE | ID: mdl-38471966

In this work, monodisperse and nano-porous poly(bismaleimide-co-divinylbenzene) microspheres with large specific surface area (427.6 m2 /g) and rich pore structure were prepared by one-pot self-stable precipitation polymerization of 2,2'-bis[4-(4-maleimidophenoxy) phenyl] propane and divinylbenzene. The prepared poly(bismaleimide-co-divinylbenzene) microspheres were employed as dispersive solid-phase extraction (DSPE) adsorbent for the extraction of triazine herbicides. Under optimized conditions, good linearities were obtained between the peak area and the concentration of triazine herbicides in the range of 1-400 µg/L (R2 ≥ 0.9987) with the limits of detection of 0.12-0.31 µg/L. Triazine herbicides were detected using the described approach in vegetable samples (i.e., cucumber, tomato, and maize) with recoveries of 93.6%-117.3% and relative standard deviations of 0.4%-3.5%. In addition, the recoveries of triazine herbicides remained above 80.7% after being used for nine DSPE cycles, showing excellent reusability of poly(bismaleimide-co-divinylbenzene) microspheres. The adsorption of poly(bismaleimide-co-divinylbenzene) microspheres toward triazine herbicides was a monolayer and chemical adsorption. The adsorption mechanism between triazine herbicides and adsorbents might be a combination of hydrogen bonding, electrostatic interaction, and π-π conjugation. The results confirmed the potential use of the poly(bismaleimide-co-divinylbenzene) microspheres-based DSPE coupled to the high-performance liquid chromatography method for the detection of triazine herbicide residues in vegetable samples.


Herbicides , Vegetables , Vinyl Compounds , Vegetables/chemistry , Chromatography, High Pressure Liquid/methods , Microspheres , Porosity , Triazines/analysis , Solid Phase Extraction/methods , Herbicides/analysis , Limit of Detection
20.
Sci Total Environ ; 922: 171290, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38431163

Municipal biosolids (MBS) are suggested to be abundant, sustainable, inexpensive fertilisers, rich in phosphorus and nitrogen. However, MBS can also contain glyphosate and phosphonates that can degrade to AMPA. Glyphosate-based herbicides (GBH) are used in field crops all over the world. Most glyphosate generally degrades within a few weeks, mainly as aminomethylphosphonic acid (AMPA). AMPA is more persistent than glyphosate, and can accumulate from one crop year to the next. AMPA is phytotoxic even to glyphosate-resistant crops. The aims of this study were to assess whether MBS applications constitute: 1) an additional source of glyphosate and AMPA to agricultural soils with respect to GBH, 2) a significant source of trace metals, and 3) a partial replacement of mineral fertilisation while maintaining similar yields. To this end, four experimental agricultural sites were selected in Québec (Canada). Soil samples (0-20 cm) were collected to estimate the as yet unmeasured contribution of MBS application to glyphosate and AMPA inputs in agricultural soils. MBS applied in 2021 and 2022 had mean concentrations of 0.69 ± 0.53 µg glyphosate/dry g and 6.26 ± 1.93 µg AMPA/dry g. Despite the presence of glyphosate and AMPA in MBS, monitoring of these two compounds in corn and soybean crops over two years showed no significant difference between plots treated with and without MBS applications. For the same site, yields measured at harvest were similar between treatments. MBS application could thus represent a partial alternative to mineral fertilisers for field crops, while limiting the economic and environmental costs associated with their incineration and landfilling. It is also an economic advantage for agricultural producers given the possibility of using fewer mineral fertilisers and therefore reducing the environmental impact of their use.


Herbicides , Organophosphonates , Soil Pollutants , Glyphosate , Soil , Biosolids , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analysis , Glycine , Quebec , Fertilizers , Environmental Monitoring , Herbicides/analysis , Minerals , Fertilization , Soil Pollutants/analysis
...