Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.508
Filter
1.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969812

ABSTRACT

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Herbicide Resistance , Herbicides , RNA, Circular , RNA, Plant , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , RNA, Circular/genetics , Herbicides/pharmacology , Gene Expression Regulation, Plant/drug effects , RNA, Plant/genetics , Herbicide Resistance/genetics , Seedlings/genetics , Seedlings/drug effects , Seedlings/growth & development , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Genome, Plant
2.
J Agric Food Chem ; 72(25): 14126-14140, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38861684

ABSTRACT

This study confirmed a field population of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) that developed simultaneously high levels of resistance (resistance index >10) to three divergent modes of action herbicides: fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon. The resistance phenotype observed in this population was not attributed to target-site alterations; rather, the resistant plants exhibited a significant increase in the activity of cytochrome P450s (P450s) and enhanced metabolism rates for all three herbicides. RNA sequencing revealed significant upregulation of two P450s, CYP709B1 and CYP704C1, in the resistant plants both before and after herbicide treatments. Molecular docking predicted that the homology models of these P450s should exhibit a binding affinity for a range of herbicides. The heterologous expression of the identified P450s in yeast cells indicated improved growth in the presence of all three of the aforementioned herbicides. Collectively, the increased expression of CYP709B1 and CYP704C1 likely contributed to the P450s-mediated enhanced metabolism, thereby conferring multiple herbicide resistance in B. syzigachne.


Subject(s)
Cytochrome P-450 Enzyme System , Herbicide Resistance , Herbicides , Plant Proteins , Herbicide Resistance/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Herbicides/pharmacology , Herbicides/metabolism , Herbicides/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Molecular Docking Simulation , Poaceae/genetics , Poaceae/metabolism , Poaceae/enzymology , Poaceae/drug effects , Poaceae/chemistry
3.
J Agric Food Chem ; 72(25): 14402-14410, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38875520

ABSTRACT

Tripyrasulfone is currently the only HPPD-inhibiting herbicide that possesses outstanding selectivity even for direct-seeded rice (Oryza sativa) when applied POST to control grass weeds; however, the underlying mechanisms remain unclear. In this study, the inhibitory effects of the real active HDT of tripyrasulfone on recombinant 4-hydroxyphenylpyruvate dioxygenase (HPPDs) from rice and barnyard grass (Echinochloa crus-galli) were similar, with consistent structural interactions and similar binding energies predicted by molecular docking. However, the HPPD expression level in rice was significantly greater than that in barnyard grass after tripyrasulfone treatment. Tripyrasulfone was rapidly taken up and hydrolyzed into HDT, which was similarly distributed within the whole plants of rice and barnyard grass at 24 h after treatment. Compared with barnyard grass, rice has more uniform epicuticular wax in the cuticle of its leaves, absorbing less tripyrasulfone and metabolizing much more tripyrasulfone. Overall, to a greater extent, the different sensitivities to tripyrasulfone between barnyard grass and rice resulted from metabolic variations.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Echinochloa , Herbicides , Molecular Docking Simulation , Oryza , Plant Proteins , Oryza/metabolism , Oryza/chemistry , Echinochloa/drug effects , Echinochloa/genetics , Echinochloa/metabolism , Echinochloa/growth & development , Echinochloa/chemistry , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , Plant Weeds/drug effects , Plant Weeds/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
4.
J Agric Food Chem ; 72(26): 14592-14600, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914518

ABSTRACT

This study represents the initial examination of the herbicidal efficacy, crop safety, and degradation patterns of 2,4-D ethylhexyl ester (2,4-D EHE) at the enantiomeric level. Baseline separation of 2,4-D EHE enantiomers was achieved using a superchiral R-AD column, with their absolute configurations determined through chemical reaction techniques. Evaluation of weed control efficacy against sensitive species such as sun spurge and flixweed demonstrated significantly higher inhibition rates for S-2,4-D EHE compared to R-2,4-D EHE. Conversely, no stereoselectivity was observed in the fresh-weight inhibition rates of both enantiomers on crops or nonsensitive weeds. A sensitive HPLC-MS/MS method was developed to simultaneously detect two enantiomers and the metabolite 2,4-D in plants. Investigation into degradation kinetics revealed no substantial difference in the half-lives of R- and S-2,4-D EHE in maize and flixweed. Notably, the metabolite 2,4-D exhibited prolonged persistence at elevated levels on flixweed, while it degraded rapidly on maize.


Subject(s)
Herbicides , Tandem Mass Spectrometry , Zea mays , Zea mays/chemistry , Zea mays/metabolism , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/metabolism , Stereoisomerism , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2,4-Dichlorophenoxyacetic Acid/metabolism , Chromatography, High Pressure Liquid , Plant Weeds/drug effects , Plant Weeds/growth & development , Plant Weeds/metabolism , Plant Weeds/chemistry , Kinetics , Esters/chemistry , Esters/pharmacology , Esters/metabolism , Araceae/chemistry , Araceae/drug effects , Araceae/metabolism
5.
Pestic Biochem Physiol ; 202: 105912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879294

ABSTRACT

Herbicide resistance is a worldwide concern for weed control. Cucumis melo L. var. agrestis Naud. (C. melo) is an annual trailing vine weed that is commonly controlled by nicosulfuron, acetolactate synthase (ALS)-inhibiting herbicides. However, long-term use of this herbicide has led to the emergence of resistance and several nicosulfuron resistant populations of C. melo have been found. Here we identified a resistant (R) C. melo population exhibiting 7.31-fold resistance to nicosulfuron compared with a reference sensitive (S) population. ALS gene sequencing of the target site revealed no amino acid substitution in R plants, and no difference in enzyme activity, as shown by ALS activity assays in vitro. ALS gene expression was not significantly different before and after the application of nicosulfuron. Pretreatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion reduced nicosulfuron resistance in the R population. RNA-Seq transcriptome analysis was used to identify candidate genes that may confer metabolic resistance to nicosulfuron. We selected genes with annotations related to detoxification functions. A total of 20 candidate genes (7 P450 genes, 1 glutathione S-transferase (GST) gene, 2 ATP-binding cassette (ABC) transporters, and 10 glycosyltransferase (GT)) were identified; 12 of them (7 P450s, 1 GST, 2 ABC transporters, and 2 GTs) were demonstrated significantly differential expression between R and S by quantitative real-time RT-PCR (qRT-PCR). Our findings revealed that the resistance mechanism in C. melo was nontarget-site based. Our results also provide a valuable resource for studying the molecular mechanisms of weed resistance.


Subject(s)
Acetolactate Synthase , Cucumis melo , Herbicide Resistance , Herbicides , Pyridines , Sulfonylurea Compounds , Herbicide Resistance/genetics , Sulfonylurea Compounds/pharmacology , Herbicides/pharmacology , Herbicides/toxicity , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cucumis melo/genetics , Cucumis melo/drug effects , Pyridines/pharmacology , RNA-Seq , Gene Expression Profiling , Malathion/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Pestic Biochem Physiol ; 202: 105946, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879333

ABSTRACT

Eriochloa villosa (Thunb.) Kunth is a troublesome weed widely distributed in maize (Zea mays L.) fields in Northeast China. Many populations of E. villosa have evolved resistance to nicosulfuron herbicides, which inhibit acetolactate synthase (ALS). The objectives of this research were to confirm that E. villosa is resistant to nicosulfuron and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response studies revealed that the R population had not developed a high level of cross-resistance and exhibited greater resistant (25.62-fold) to nicosulfuron than that of the S population and had not yet developed a high level of cross-resistance. An in vitro ALS activity assay demonstrated that the I50 of nicosulfuron was 6.87-fold greater in the R population than the S population. However, based on ALS gene sequencing, the target ALS gene in the R population did not contain mutations. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that ALS gene expression between the R and S populations was significantly different after nicosulfuron application, but no differences were observed in the gene copy number. After the cytochrome P450 inhibitor malathion or the GST inhibitor NBD-Cl was applied, the resistant E. villosa population exhibited increased sensitivity to nicosulfuron. Based on the activities of GSTs and P450s, the activities of the R population were greater than those of the S population after nicosulfuron application. This is the first report that the resistance of E. villosa to ALS inhibitors results from increased target gene expression and increased metabolism. These findings provide a theoretical foundation for the effective control of herbicide-resistant E. villosa.


Subject(s)
Acetolactate Synthase , Herbicide Resistance , Herbicides , Pyridines , Sulfonylurea Compounds , Sulfonylurea Compounds/pharmacology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Acetolactate Synthase/antagonists & inhibitors , Herbicide Resistance/genetics , Herbicides/pharmacology , Pyridines/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Poaceae/genetics , Poaceae/drug effects
7.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893290

ABSTRACT

Herbicides are useful tools for managing weeds and promoting food production and sustainable agriculture. In this study, we report on the development of a novel class of lipophilic pyrimidine-biphenyl (PMB) herbicides. Firstly, three PMBs, Ia, IIa, and IIIa, were rationally designed via a scaffold hopping strategy and were determined to inhibit acetohydroxyacid synthase (AHAS). Computational simulation was carried out to investigate the molecular basis for the efficiency of PMBs against AHAS. With a rational binding mode, and the highest in vitro as well as in vivo potency, Ia was identified as a preferable hit. Furthermore, these integrated analyses guided the design of eighteen new PMBs, which were synthesized via a one-step Suzuki-Miyaura cross-coupling reaction. These new PMBs, Iba-ic, were more effective in post-emergence control of grass weeds compared with Ia. Interestingly, six of the PMBs displayed 98-100% inhibition in the control of grass weeds at 750 g ai/ha. Remarkably, Ica exhibited ≥ 80% control against grass weeds at 187.5 g ai/ha. Overall, our comprehensive and systematic investigation revealed that a structurally distinct class of lipophilic PMB herbicides, which pair excellent herbicidal activities with new interactions with AHAS, represent a noteworthy development in the pursuit of sustainable weed control solutions.


Subject(s)
Herbicides , Pyrimidines , Herbicides/chemistry , Herbicides/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/metabolism , Acetolactate Synthase/chemistry , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Molecular Docking Simulation , Plant Weeds/drug effects , Structure-Activity Relationship , Molecular Structure
8.
Appl Opt ; 63(13): 3712-3724, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856558

ABSTRACT

This study aimed to evaluate the effects of herbicide 2, 4-D-dichlorophenoxy acetic acid on golden apple snail eggs and embryos. Additionally, the study assessed the applicability of optical coherence tomography (OCT), a non-invasive depth cross-sectional microscopic imaging technique, as a novel method, to the best of our knowledge, for studying morphological changes in golden apple snail eggs and embryos, in comparison to the conventional approach of using white light microscopy. The study revealed that the herbicide 2,4-D-dichlorophenoxy acetic acid affected the hatchery rate and morphological changes of the eggs and embryos. The lethal concentration (LC50), representing the concentration of a substance that is expected to cause death in half of the population being studied, of the golden apple eggs and embryos increased with longer exposure time and higher concentrations. The estimated median effective concentration (EC50), which denotes the concentration producing the desired effect in 50% of the exposed golden apple embryos, exhibited a similar trend of change as the LC50. When compared to the microscopic study, it was observed that OCT could be employed to investigate morphological changes of golden apple snail eggs and embryos, enabling evaluation of alterations in both 2D and 3D structures.


Subject(s)
2,4-Dichlorophenoxyacetic Acid , Embryo, Nonmammalian , Herbicides , Tomography, Optical Coherence , Animals , 2,4-Dichlorophenoxyacetic Acid/pharmacology , 2,4-Dichlorophenoxyacetic Acid/toxicity , Tomography, Optical Coherence/methods , Herbicides/pharmacology , Herbicides/toxicity , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Snails/embryology , Snails/drug effects , Ovum/drug effects
9.
BMC Genomics ; 25(1): 621, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898417

ABSTRACT

BACKGROUND: Whole plant senescence represents the final stage in the life cycle of annual plants, characterized by the decomposition of aging organs and transfer of nutrients to seeds, thereby ensuring the survival of next generation. However, the transcriptomic profile of vegetative organs during this death process remains to be fully elucidated, especially regarding the distinctions between natural programmed death and artificial sudden death induced by herbicide. RESULTS: Differential genes expression analysis using RNA-seq in leaves and roots of Arabidopsis thaliana revealed that natural senescence commenced in leaves at 45-52 days after planting, followed by roots initiated at 52-60 days. Additionally, both organs exhibited similarities with artificially induced senescence by glyphosate. Transcription factors Rap2.6L and WKRY75 appeared to serve as central mediators of regulatory changes during natural senescence, as indicated by co-expression networks. Furthermore, the upregulation of RRTF1, exclusively observed during natural death, suggested its role as a regulator of jasmonic acid and reactive oxygen species (ROS) responses, potentially triggering nitrogen recycling in leaves, such as the glutamate dehydrogenase (GDH) shunt. Root senescence was characterized by the activation of AMT2;1 and GLN1;3, facilitating ammonium availability for root-to-shoot translocation, likely under the regulation of PDF2.1. CONCLUSIONS: Our study offers valuable insights into the transcriptomic interplay between phytohormones and ROS during whole plant senescence. We observed distinct regulatory networks governing nitrogen utilization in leaf and root senescence processes. Furthermore, the efficient allocation of energy from vegetative organs to seeds emerges as a critical determinant of population sustainability of annual Arabidopsis.


Subject(s)
Arabidopsis , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides , Plant Senescence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Herbicides/pharmacology , Herbicides/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Senescence/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
PLoS One ; 19(6): e0304863, 2024.
Article in English | MEDLINE | ID: mdl-38905259

ABSTRACT

Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and ß-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.


Subject(s)
Echinochloa , Herbicides , Oils, Volatile , Syzygium , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Echinochloa/drug effects , Syzygium/chemistry , Herbicides/pharmacology , Herbicides/chemistry , Gas Chromatography-Mass Spectrometry
11.
Opt Express ; 32(8): 13733-13745, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859335

ABSTRACT

The development of effective and safe agricultural treatments requires sub-cellular insight of the biochemical effects of treatments in living tissue in real-time. Industry-standard mass spectroscopic imaging lacks real-time in vivo capability. As an alternative, multiphoton fluorescence lifetime imaging microscopy (MPM-FLIM) allows for 3D sub-cellular quantitative metabolic imaging but is often limited to low frame rates. To resolve relatively fast effects (e.g., photosynthesis inhibiting treatments), high-frame-rate MPM-FLIM is needed. In this paper, we demonstrate and evaluate a high-speed MPM-FLIM system, "Instant FLIM", as a time-resolved 3D sub-cellular molecular imaging system in highly scattering, living plant tissues. We demonstrate simultaneous imaging of cellular autofluorescence and crystalline agrochemical crystals within plant tissues. We further quantitatively investigate the herbicidal effects of two classes of agricultural herbicide treatments, photosystem II inhibiting herbicide (Basagran) and auxin-based herbicide (Arylex), and successfully demonstrate the capability of the MPM-FLIM system to measure biological changes over a short time with enhanced imaging speed. Results indicate that high-frame-rate 3D MPM-FLIM achieves the required fluorescence lifetime resolution, temporal resolution, and spatial resolution to be a useful tool in basic plant cellular biology research and agricultural treatment development.


Subject(s)
Herbicides , Microscopy, Fluorescence, Multiphoton , Herbicides/pharmacology , Microscopy, Fluorescence, Multiphoton/methods , Imaging, Three-Dimensional/methods , Agriculture
12.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38833564

ABSTRACT

In brief: Atrazine, like oestrogen, disorganises laminin formation and reduces the number of germ cells and Sertoli cells in the developing testes of the tammar wallaby. This study suggests that interfering with the balance of androgen and oestrogen affects the integrity of laminin structure and testis differentiation. Abstract: The herbicide atrazine was banned in Europe in 2003 due to its endocrine disrupting activity but remains widely used. The integrity of the laminin structure in fetal testis cords requires oestrogen signalling but overexposure to xenoestrogens in the adult can cause testicular dysgenesis. However, whether xenoestrogens affect laminin formation in developing testes has not been investigated. Here we examined the effects of atrazine in the marsupial tammar wallaby during early development and compare it with the effects of the anti-androgen flutamide, oestrogen, and the oestrogen degrader fulvestrant. The tammar, like all marsupials, gives birth to altricial young, allowing direct treatment of the developing young during the male programming window (day 20-40 post partum (pp)). Male pouch young were treated orally with atrazine (5 mg/kg), flutamide (10 mg/kg), 17ß-oestradiol (2.5 mg/kg) and fulvestrant (1 mg/kg) daily from day 20 to 40 pp. Distribution of laminin, vimentin, SOX9 and DDX4, cell proliferation and mRNA expression of SRY, SOX9, AMH, and SF1 were examined in testes at day 50 post partum after the treatment. Direct exposure to atrazine, flutamide, 17ß-oestradiol, and fulvestrant all disorganised laminin but had no effect on vimentin distribution in testes. Atrazine reduced the number of germ cells and Sertoli cells when examined at day 40-50 pp and day 20 to 40 pp, respectively. Both flutamide and fulvestrant reduced the number of germ cells and Sertoli cells. Atrazine also downregulated SRY expression and impaired SOX9 nuclear translocation. Our results demonstrate that atrazine can compromise normal testicular differentiation during the critical male programming window.


Subject(s)
Atrazine , Cell Differentiation , Herbicides , Laminin , Testis , Male , Animals , Testis/drug effects , Testis/metabolism , Testis/cytology , Atrazine/pharmacology , Laminin/metabolism , Cell Differentiation/drug effects , Herbicides/pharmacology , Macropodidae/metabolism , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/cytology , Estrogens/pharmacology , Estrogens/metabolism , Endocrine Disruptors/pharmacology , Cell Count , Androgen Antagonists/pharmacology , Flutamide/pharmacology
13.
J Agric Food Chem ; 72(25): 14114-14125, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867659

ABSTRACT

In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Herbicides , Plant Proteins , Plant Root Nodulation , Sulfonylurea Compounds , Ubiquitin-Protein Ligases , Glycine max/genetics , Glycine max/metabolism , Glycine max/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Herbicides/pharmacology , Plant Root Nodulation/genetics , Plant Root Nodulation/drug effects , Gene Expression Regulation, Plant/drug effects , Sulfonylurea Compounds/pharmacology
14.
J Agric Food Chem ; 72(23): 12946-12955, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809794

ABSTRACT

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.


Subject(s)
Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Oximes , Plant Proteins , Plant Weeds , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Herbicides/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Oximes/chemistry , Oximes/pharmacology , Structure-Activity Relationship , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Triazines/chemistry , Triazines/pharmacology , Esters/chemistry , Esters/pharmacology , Molecular Structure , Ethers/chemistry , Ethers/pharmacology , Drug Discovery
15.
J Agric Food Chem ; 72(22): 12425-12433, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38781442

ABSTRACT

Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 µg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.


Subject(s)
Echinochloa , Herbicides , Oxidoreductases , Plant Proteins , Plant Weeds , Pyridazines , Herbicides/pharmacology , Herbicides/chemistry , Pyridazines/pharmacology , Pyridazines/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Echinochloa/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Weeds/genetics , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Roots/chemistry , Plant Roots/drug effects , Molecular Structure
16.
J Agric Food Chem ; 72(19): 10772-10780, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703122

ABSTRACT

Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4) plays a pivotal role in chlorophyll biosynthesis in plants, making it a prime target for herbicide development. In this study, we conducted an investigation aimed at discovering PPO-inhibiting herbicides. Through this endeavor, we successfully identified a series of novel compounds based on the pyridazinone scaffold. Following structural optimization and biological assessment, compound 10ae, known as ethyl 3-((6-fluoro-5-(6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate, emerged as a standout performer. It exhibited robust activity against Nicotiana tabacum PPO (NtPPO) with an inhibition constant (Ki) value of 0.0338 µM. Concurrently, we employed molecular simulations to obtain further insight into the binding mechanism with NtPPO. Additionally, another compound, namely, ethyl 2-((6-fluoro-5-(5-methyl-6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate (10bh), demonstrated broad-spectrum and highly effective herbicidal properties against all six tested weeds (Leaf mustard, Chickweed, Chenopodium serotinum, Alopecurus aequalis, Poa annua, and Polypogon fugax) at the dosage of 150 g a.i./ha through postemergence application in a greenhouse. This work identified a novel lead compound (10bh) that showed good activity in vitro and excellent herbicidal activity in vivo and had promising prospects as a new PPO-inhibiting herbicide lead.


Subject(s)
Drug Design , Enzyme Inhibitors , Herbicides , Nicotiana , Plant Proteins , Protoporphyrinogen Oxidase , Pyridazines , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/metabolism , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/genetics , Pyridazines/chemistry , Pyridazines/pharmacology , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Nicotiana/metabolism , Nicotiana/enzymology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Molecular Docking Simulation , Molecular Structure , Plant Weeds/drug effects , Plant Weeds/enzymology , Kinetics
17.
Sci Rep ; 14(1): 10215, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702403

ABSTRACT

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Subject(s)
Herbicide Resistance , Herbicides , Lens Plant , Polymorphism, Single Nucleotide , Lens Plant/genetics , Lens Plant/drug effects , Lens Plant/growth & development , Herbicides/pharmacology , Herbicides/toxicity , Herbicide Resistance/genetics , Genome-Wide Association Study , Genes, Plant , Quantitative Trait Loci
18.
Sci Rep ; 14(1): 10356, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710732

ABSTRACT

Herbicide use may pose a risk of environmental pollution or evolution of resistant weeds. As a result, an experiment was carried out to assess the influence of different non-chemical weed management tactics (one hoeing (HH) at 12 DAS followed by (fb) one hand weeding at 30 DAS, one HH at 12 DAS fb Sesbania co-culture and its mulching, one HH at 12 DAS fb rice straw mulching @ 4t ha-1, one HH at 12 DAS fb rice straw mulching @ 6 t ha-1) on weed control, crop growth and yield, and economic returns in direct-seeded rice (DSR). Experiment was conducted during kharif season in a split-plot design and replicated thrice. Zero-till seed drill-sown crop (PN) had the lowest weed density at 25 days after sowing (DAS), while square planting geometry (PS) had the lowest weed density at 60 DAS. PS also resulted in a lower weed management index (WMI), agronomic management index (AMI), and integrated weed management index (IWMI), as well as higher growth attributes, grain yield (4.19 t ha-1), and net return (620.98 US$ ha-1). The cultivar Arize 6444 significantly reduced weed density and recorded higher growth attributes, yield, and economic return. In the case of weed management treatments, one HH at 12 DAS fb Sesbania co-culture and its mulching had the lowest weed density, Shannon-weinner index and eveness at 25 DAS. However, one hoeing at 12 DAS fb one hand weeding at 30 DAS (HH + WH) achieved the highest grain yield (4.85 t ha-1) and net returns (851.03 US$ ha-1) as well as the lowest weed density at 60 DAS. PS × HH + WH treatment combination had the lowest weed persistent index (WPI), WMI, AMI, and IWMI, and the highest growth attributes, production efficiency, and economic return.


Subject(s)
Crops, Agricultural , Oryza , Plant Weeds , Weed Control , Oryza/growth & development , Weed Control/methods , Plant Weeds/growth & development , Plant Weeds/drug effects , Crops, Agricultural/growth & development , Agriculture/methods , Seeds/growth & development , Seeds/drug effects , Herbicides/pharmacology , Crop Production/methods
19.
Mol Biol Rep ; 51(1): 682, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796647

ABSTRACT

BACKGROUND: Control of blackleg disease of canola caused by the fungus Leptosphaeria maculans relies on strategies such as the inhibition of growth with fungicides. However, other chemicals are used during canola cultivation, including fertilizers and herbicides. There is widespread use of herbicides that target the acetolactate synthase (ALS) enzyme involved in branched chain amino acid synthesis and low levels of these amino acids within leaves of Brassica species. In L. maculans the ilv2 gene encodes ALS and thus ALS-inhibiting herbicides may inadvertently impact the fungus. METHODS AND RESULTS: Here, the impact of a commercial herbicide targeting ALS and mutation of the homologous ilv2 gene in L. maculans was explored. Exposure to herbicide had limited impact on growth in vitro but reduced lesion sizes in plant disease experiments. Furthermore, the mutation of the ilv2 gene via CRISPR-Cas9 gene editing rendered the fungus non-pathogenic. CONCLUSION: Herbicide applications can influence disease outcome, but likely to a minor extent.


Subject(s)
Acetolactate Synthase , Amino Acids, Branched-Chain , Herbicides , Leptosphaeria , Plant Diseases , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Plant Diseases/microbiology , Herbicides/pharmacology , Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/metabolism , Leptosphaeria/genetics , Leptosphaeria/pathogenicity , Mutation/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Editing/methods , Plant Leaves/microbiology , CRISPR-Cas Systems/genetics , Brassica/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics
20.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748759

ABSTRACT

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Subject(s)
Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Plant Proteins , Poaceae , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Poaceae/genetics , Poaceae/metabolism , Poaceae/drug effects , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...