Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.766
Filter
1.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965360

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Subject(s)
Brain , Cellular Senescence , Herpes Simplex , Herpesvirus 1, Human , Multiple Sclerosis , Animals , Mice , Brain/virology , Brain/pathology , Brain/metabolism , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/pathogenicity , Herpes Simplex/virology , Herpes Simplex/pathology , Female , Mice, Inbred C57BL , Encephalomyelitis, Autoimmune, Experimental/virology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Phenotype , Central Nervous System/virology , Central Nervous System/metabolism , Central Nervous System/pathology , Spinal Cord/virology , Spinal Cord/metabolism , Spinal Cord/pathology , Biomarkers/metabolism , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/pathology , Encephalitis, Herpes Simplex/metabolism
3.
Biomolecules ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786010

ABSTRACT

Cholesterol, a crucial component of cell membranes, influences various biological processes, including membrane trafficking, signal transduction, and host-pathogen interactions. Disruptions in cholesterol homeostasis have been linked to congenital and acquired conditions, including neurodegenerative disorders such as Alzheimer's disease (AD). Previous research from our group has demonstrated that herpes simplex virus type I (HSV-1) induces an AD-like phenotype in several cell models of infection. This study explores the interplay between cholesterol and HSV-1-induced neurodegeneration. The impact of cholesterol was determined by modulating its levels with methyl-beta-cyclodextrin (MßCD) using the neuroblastoma cell lines SK-N-MC and N2a. We have found that HSV-1 infection triggers the intracellular accumulation of cholesterol in structures resembling endolysosomal/autophagic compartments, a process reversible upon MßCD treatment. Moreover, MßCD exhibits inhibitory effects at various stages of HSV-1 infection, underscoring the importance of cellular cholesterol levels, not only in the viral entry process but also in subsequent post-entry stages. MßCD also alleviated several features of AD-like neurodegeneration induced by viral infection, including lysosomal impairment and intracellular accumulation of amyloid-beta peptide (Aß) and phosphorylated tau. In conclusion, these findings highlight the connection between cholesterol, neurodegeneration, and HSV-1 infection, providing valuable insights into the underlying mechanisms of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cholesterol , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Cholesterol/metabolism , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/virology , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Herpes Simplex/virology , Herpes Simplex/metabolism , Herpes Simplex/drug therapy , Herpes Simplex/pathology , Cell Line, Tumor , Animals , beta-Cyclodextrins/pharmacology , Lysosomes/metabolism , Lysosomes/drug effects , tau Proteins/metabolism , Phenotype , Mice
4.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620036

ABSTRACT

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Mitochondria , Mitochondria/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Humans , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpes Simplex/pathology , Animals , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/pathology , Disease Progression , Chlorocebus aethiops
6.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38445887

ABSTRACT

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Subject(s)
Artifacts , Ganglia, Sensory , Herpesvirus 1, Human , Sensory Receptor Cells , Sequence Analysis, RNA , Single-Cell Gene Expression Analysis , Virus Latency , Animals , Mice , Cell Death , Datasets as Topic , Ganglia, Sensory/immunology , Ganglia, Sensory/pathology , Ganglia, Sensory/virology , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , MicroRNAs/analysis , MicroRNAs/genetics , Reproducibility of Results , RNA, Viral/analysis , RNA, Viral/genetics , Sensory Receptor Cells/pathology , Sensory Receptor Cells/virology
7.
J Neuroinflammation ; 21(1): 38, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302975

ABSTRACT

BACKGROUND: Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro. METHODS: Cell viability and tissues integrity were determined by lactate dehydrogenase release in supernatant and immunohistological (IHC) analyses. Brain slices were infected with green fluorescent protein (GFP-) expressing HSV-1 and HSV-2. Virus replication and spread were determined by confocal microscopy, PCR and virus culture. Expression of pro-inflammatory cytokines and chemokines were detected by PCR. Cell tropism and HSV-induced neuropathology were determined by IHC analysis. Finally, the in situ data of HSV-infected hfOBSC were compared to the neuropathology detected in human HSE brain sections. RESULTS: Slicing and serum-free culture conditions were optimized to maintain the viability and tissue architecture of ex vivo human fetal brain slices for at least 14 days at 37 °C in a CO2 incubator. The hfOBSC supported productive HSV-1 and HSV-2 infection, involving predominantly infection of neurons and astrocytes, leading to expression of pro-inflammatory cytokines and chemokines. Both viruses induced programmed cell death-especially necroptosis-in infected brain slices at later time points after infection. The virus spread, cell tropism and role of programmed cell death in HSV-induced cell death resembled the neuropathology of HSE. CONCLUSIONS: We developed a novel human brain culture model in which the viability of the major brain-resident cells-including neurons, microglia, astrocytes and oligodendrocytes-and the tissue architecture is maintained for at least 2 weeks in vitro under serum-free culture conditions. The close resemblance of cell tropism, spread and neurovirulence of HSV-1 and HSV-2 in the hfOBSC model with the neuropathological features of human HSE cases underscores its potential to detail the pathophysiology of other neurotropic viruses and as preclinical model to test novel therapeutic interventions.


Subject(s)
Encephalitis, Herpes Simplex , Herpes Simplex , Herpesvirus 1, Human , Infant, Newborn , Adult , Humans , Astrocytes/pathology , Necroptosis , Herpes Simplex/pathology , Brain/pathology , Cytokines , Neurons/pathology , Chemokines
8.
Virol Sin ; 39(2): 251-263, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219860

ABSTRACT

Viral encephalitis continues to be a significant public health concern. In our previous study, we discovered a lower expression of antiviral factors, such as IFN-ß, STING and IFI16, in the brain tissues of patients with Rasmussen's encephalitis (RE), a rare chronic neurological disorder often occurred in children, characterized by unihemispheric brain atrophy. Furthermore, a higher cumulative viral score of human herpes viruses (HHVs) was also found to have a significant positive correlation with the unihemispheric atrophy in RE. Type I IFNs (IFN-I) signaling is essential for innate anti-infection response by binding to IFN-α/ß receptor (IFNAR). In this study, we infected WT mice and IFNAR-deficient A6 mice with herpes simplex virus 1 (HSV-1) via periocular injection to investigate the relationship between IFN-I signaling and HHVs-induced brain lesions. While all mice exhibited typical viral encephalitis lesions in their brains, HSV-induced epilepsy was only observed in A6 mice. The gene expression matrix, functional enrichment analysis and protein-protein interaction network revealed four gene models that were positively related with HSV-induced epilepsy. Additionally, ten key genes with the highest scores were identified. Taken together, these findings indicate that intact IFN-I signaling can effectively limit HHVs induced neural symptoms and brain lesions, thereby confirming the positive correlation between IFN-I signaling repression and brain atrophy in RE and other HHVs encephalitis.


Subject(s)
Epilepsy , Herpes Simplex , Herpesvirus 1, Human , Interferon Type I , Signal Transduction , Animals , Female , Mice , Brain/pathology , Brain/virology , Disease Models, Animal , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/immunology , Encephalitis, Herpes Simplex/pathology , Epilepsy/virology , Epilepsy/pathology , Herpes Simplex/virology , Herpes Simplex/pathology , Herpes Simplex/immunology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/immunology , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Inbred C57BL , Mice, Knockout , Protein Interaction Maps , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency
9.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569367

ABSTRACT

The proper functioning of mesenchymal stem cells (MSCs) is of paramount importance for the homeostasis of the body. Inflammation and infection can alter the function of MSCs, which can also affect the regenerative potential and immunological status of tissues. It is not known whether human herpes simplex viruses 1 and 2 (HSV1 and HSV2), well-known human pathogens that can cause lifelong infections, can induce changes in MSCs. In non-healing ulcers, HSV infection is known to affect deeper tissue layers. In addition, HSV infection can recur after initially successful cell therapies. Our aim was to study the response of adipose-derived MSCs (ADMSCs) to HSV infection in vitro. After confirming the phenotype and differentiation capacity of the isolated cells, we infected the cells in vitro with HSV1-KOS, HSV1-532 and HSV2 virus strains. Twenty-four hours after infection, we examined the gene expression of the cells via RNA-seq and RT-PCR; detected secreted cytokines via protein array; and determined autophagy via Western blot, transmission electron microscopy (TEM) and fluorescence microscopy. Infection with different HSV strains resulted in different gene-expression patterns. In addition to the activation of pathways characteristic of viral infections, distinct non-immunological pathways (autophagy, tissue regeneration and differentiation) were also activated according to analyses with QIAGEN Ingenuity Pathway Analysis, Kyoto Encyclopedia of Genes and Genome and Genome Ontology Enrichment. Viral infections increased autophagy, as confirmed via TEM image analysis, and also increased levels of the microtubule-associated protein light chain 3 (LC3B) II protein. We identified significantly altered accumulation for 16 cytokines involved in tissue regeneration and inflammation. Our studies demonstrated that HSV infection can alter the viability and immunological status of ADMSCs, which may have implications for ADMSC-based cell therapies. Alterations in autophagy can affect numerous processes in MSCs, including the inhibition of tissue regeneration as well as pathological differentiation.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Mesenchymal Stem Cells , Humans , Herpesvirus 1, Human/physiology , Herpes Simplex/pathology , Mesenchymal Stem Cells/metabolism , Herpesvirus 2, Human , Cytokines/metabolism , Inflammation/metabolism
11.
Article in English | MEDLINE | ID: mdl-36229369

ABSTRACT

Since the global COVID-19 pandemic, numerous reports have been made regarding oral lesions seen in COVID-19 patients. It remains unclear whether or not these are true manifestations of COVID-19. Here we present 3 patients who were hospitalized for COVID-19 and who developed atypical herpetic ulcerations during their treatment with remdesivir (Veklury) and steroids. In healthy patients, recurrent infection by herpes simplex virus (HSV) presents as lesions only on the lips and the attached oral mucosa. Atypical herpetic ulcerations are seen in immunocompromised patients. They present as large, stellate shaped ulcerations with raised borders and may involve movable mucosa. The 3 cases presented in this report resembled the atypical herpetic ulcerations typically seen in patients with immunosuppression. Through our report, we aimed to introduce the possibility of atypical herpetic ulcers in patients being treated for COVID-19, to allow for their timely diagnosis and to raise awareness of the underlying immunocompromised state.


Subject(s)
COVID-19 , Herpes Simplex , Oral Ulcer , Stomatitis, Herpetic , Humans , Herpes Simplex/diagnosis , Herpes Simplex/pathology , Ulcer , Pandemics , COVID-19/complications , Stomatitis, Herpetic/diagnosis , Stomatitis, Herpetic/drug therapy , Stomatitis, Herpetic/pathology
12.
Medicine (Baltimore) ; 101(50): e32289, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36550828

ABSTRACT

RATIONALE: This case is a rare manifestation of central nervous system infection of Herpes simplex virus (HSV)-2. Due to few studies in China, it provides a pathological basis for further diagnosis and treatment of HSV-2. PATIENT CONCERNS: We describe a patient with HSV-2 virus infection who was diagnosed with HSV-2 encephalitis in a Chinese patient. DIAGNOSIS: Based on brain biopsy and pathological findings, the patient was diagnosed with HSV-2 encephalitis. INTERVENTIONS: Hormone and antiviral therapy were given. OUTCOME: The patient eventually died. LESSONS: The diagnosis and differential diagnosis of the disease is very difficult. Its differential diagnosis include cerebrovascular disease, bacteria or fungi and other viral infection of the brain.


Subject(s)
Encephalitis, Herpes Simplex , Herpes Simplex , Vascular Diseases , White Matter , Child , Humans , Herpesvirus 2, Human , White Matter/diagnostic imaging , White Matter/pathology , Encephalitis, Herpes Simplex/diagnosis , Encephalitis, Herpes Simplex/drug therapy , Herpes Simplex/complications , Herpes Simplex/diagnosis , Herpes Simplex/pathology , Brain/diagnostic imaging , Brain/pathology , Vascular Diseases/pathology
13.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555725

ABSTRACT

HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1ß, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , NF-kappa B/metabolism , Microglia/metabolism , Herpesvirus 1, Human/metabolism , Sirtuin 1/metabolism , Inflammation/metabolism , Cytokines/metabolism , Herpes Simplex/pathology
14.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4428-4435, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046872

ABSTRACT

The study investigated the inhibitory effect and mechanism of tectorigenin derivative(SGY) against herpes simplex virus type Ⅰ(HSV-1) by in vitro experiments. The cytotoxicity of SGY and positive drug acyclovir(ACV) on African green monkey kidney(Vero) cells and mouse microglia(BV-2) cells was detected by cell counting kit-8(CCK-8) method, and the maximum non-toxic concentration and median toxic concentration(TC_(50)) of the drugs were calculated. After Vero cells were infected with HSV-1, the virulence was determined by cytopathologic effects(CPE) to calculate viral titers. The inhibitory effect of the tested drugs on HSV-1-induced cytopathy in Vero cells was measured, and their modes of action were initially explored by virus adsorption, replication and inactivation. The effects of the drugs on viral load of BV-2 cells 24 h after HSV-1 infection and the Toll-like receptor(TLR) mRNA expression were detected by real-time fluorescence quantitative PCR(RT-qPCR). The maximum non-toxic concentrations of SGY against Vero and BV-2 cells were 382.804 µg·mL~(-1) and 251.78 µg·mL~(-1), respectively, and TC_(50) was 1 749.98 µg·mL~(-1) and 2 977.50 µg·mL~(-1), respectively. In Vero cell model, the half maximal inhibitory concentration(IC_(50)) of SGY against HSV-1 was 54.49 µg·mL~(-1), and the selection index(SI) was 32.12, with the mode of action of significantly inhibiting replication and directly inactivating HSV-1. RT-qPCR results showed that SGY markedly reduced the viral load in cells. The virus model group had significantly increased relative expression of TLR2, TLR3 and tumor necrosis factor receptor-associated factor 3(TRAF3) and reduced relative expression of TLR9 as compared with normal group, and after SGY intervention, the expression of TLR2, TLR3 and TRAF3 was decreased to different degrees and that of TLR9 was enhanced. The expression of inflammatory factors inducible nitric oxide synthase(iNOS), tumor necrosis factor-α(TNF-α), and interleukin-1ß(IL-1ß) was remarkably increased in virus model group as compared with that in normal group, and the levels of these inflammatory factors dropped after SGY intervention. In conclusion, SGY significantly inhibited and directly inactivated HSV-1 in vitro. In addition, it modulated the expression of TLR2, TLR3 and TLR9 related pathways, and suppressed the increase of inflammatory factor levels.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Herpes Simplex/drug therapy , Herpes Simplex/pathology , Herpesvirus 1, Human/metabolism , Isoflavones , Mice , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/pharmacology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vero Cells , Virus Replication
15.
Reumatismo ; 74(2)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36101991

ABSTRACT

Since COVID-19 vaccination started in December 2020, different side effects were reported. This case report describes the possibility of developing disseminated herpes simplex infection after COVID-19 vaccine in a patient with rheumatoid arthritis. In this case report, we describe a 63-year-old Iranian female. She was a known case of seronegative rheumatoid arthritis and presented with generalized papulo-pustular itchy and painful skin lesions which appeared about seven days after the second dose of Sinopharm BIBP COVID-19 vaccine (BIBP-CorV). A biopsy of the skin lesions revealed acantholysis, neutrophils, and enlarged keratinocytes with eosinophilic intra-nuclear inclusions. Findings were consistent with herpes simplex infection. She was successfully treated by acyclovir. Disseminated cutaneous herpes simplex infection may have been triggered by COVID-19 vaccination. Reactivation of herpes virus after COVID-19 vaccines was reported in both rheumatic patients and other individuals. Whether having an underlying autoimmune inflammatory disorder could be an additional risk factor is still unknown.


Subject(s)
Arthritis, Rheumatoid , COVID-19 Vaccines , COVID-19 , Herpes Simplex , Skin Diseases , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Herpes Simplex/drug therapy , Herpes Simplex/etiology , Herpes Simplex/pathology , Humans , Iran , Middle Aged , Vaccination/adverse effects
16.
J Virol ; 96(17): e0108122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35975996

ABSTRACT

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. The latency associated transcript (LAT) is the only viral gene abundantly expressed during latency. Wild-type (WT) HSV-1 reactivates more efficiently than LAT mutants because LAT promotes establishment and maintenance of latency. While sensory neurons in trigeminal ganglia (TG) are important sites for latency, brainstem is also a site for latency and reactivation from latency. The principal sensory nucleus of the spinal trigeminal tract (Pr5) likely harbors latent HSV-1 because it receives afferent inputs from TG. The locus coeruleus (LC), an adjacent brainstem region, sends axonal projections to cortical structures and is indirectly linked to Pr5. Senescent cells accumulate in the nervous system during aging and accelerate neurodegenerative processes. Generally senescent cells undergo irreversible cell cycle arrest and produce inflammatory cytokines and chemokines. Based on these observations, we hypothesized HSV-1 influences senescence and inflammation in Pr5 and LC of latently infected mice. This hypothesis was tested using a mouse model of infection. Strikingly, female but not age-matched male mice latently infected with a LAT null mutant (dLAT2903) exhibited significantly higher levels of senescence markers and inflammation in LC, including cell cycle inhibitor p16, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), IL-1α, and IL-ß. Conversely, Pr5 in female but not male mice latently infected with WT HSV-1 or dLAT2903 exhibited enhanced expression of important inflammatory markers. The predilection of HSV-1 to induce senescence and inflammation in key brainstem regions of female mice infers that enhanced neurodegeneration occurs. IMPORTANCE HSV-1 (herpes simplex virus 1), an important human pathogen, establishes lifelong latency in neurons in trigeminal ganglia and the central nervous system. In contrast to productive infection, the only viral transcript abundantly expressed in latently infected neurons is the latency associated transcript (LAT). The brainstem, including principal sensory nucleus of the spinal trigeminal tract (Pr5) and locus coeruleus (LC), may expedite HSV-1 spread from trigeminal ganglia to the brain. Enhanced senescence and expression of key inflammatory markers were detected in LC of female mice latently infected with a LAT null mutant (dLAT2903) relative to age-matched male or female mice latently infected with wild-type HSV-1. Conversely, wild-type HSV-1 and dLAT2903 induced higher levels of senescence and inflammatory markers in Pr5 of latently infected female mice. In summary, enhanced inflammation and senescence in LC and Pr5 of female mice latently infected with HSV-1 are predicted to accelerate neurodegeneration.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Neuroinflammatory Diseases , Animals , Brain Stem/virology , Cellular Senescence , Female , Herpes Simplex/pathology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Inflammation , Male , Mice , Mice, Inbred NOD , Neuroinflammatory Diseases/virology , Trigeminal Ganglion/virology , Virus Latency
17.
Rinsho Shinkeigaku ; 62(9): 697-706, 2022 Sep 28.
Article in Japanese | MEDLINE | ID: mdl-36031375

ABSTRACT

After establishing latent infection, some viruses can be reactivated by the alteration of host immunological conditions. First, we reviewed viruses that can cause neuronal damage by reactivation. Then we focused on the herpes simplex virus (HSV). The reactivation leads to neuronal damages through two possible mechanisms; "reactivation of a latent herpes virus" by which viruses can cause direct virus neurotoxicity, and "post-infectious immune inflammatory response" by which a focal reactivation of HSV leads to an inflammatory reaction. The former is radiologically characterized by cortical lesions, the latter is characterized by subcortical white matter lesions. We experienced a female, who underwent the right posterior quadrantectomy and then developed recurrent herpes encephalitis caused by herpes simplex reactivation, which pathologically demonstrated inflammation in the white matter, suggesting a post-infectious immune inflammatory response. The patient was successfully treated with immunosuppressants. The reactivation of the HSV is extremely rare in Japan. Neurologists should recognize this condition because this disorder will increase as epilepsy surgery gains more popularity.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Neurology , Female , Herpes Simplex/pathology , Humans , Immunosuppressive Agents , Virus Activation/physiology , Virus Latency/physiology
18.
J Virol ; 96(17): e0086422, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35969080

ABSTRACT

To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.


Subject(s)
Dermatitis, Atopic , Epidermis , Herpes Simplex , Herpesvirus 1, Human , Skin Diseases , Epidermis/pathology , Epidermis/virology , Herpes Simplex/pathology , Herpesvirus 1, Human/physiology , Humans , Inflammation , Interleukin-13 , Interleukin-4 , Skin/pathology , Skin/virology , Skin Diseases/virology , Tissue Culture Techniques
19.
J Clin Invest ; 132(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-35862190

ABSTRACT

BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).


Subject(s)
Herpes Simplex , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphadenitis , CD8-Positive T-Lymphocytes , Female , Herpes Simplex/pathology , Herpesvirus 2, Human , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphadenitis/diagnosis , Lymphadenitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...