Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.581
Filter
1.
Sci Rep ; 14(1): 15338, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961135

ABSTRACT

Blood-brain barrier (BBB) disruption may contribute to cognitive decline, but questions remain whether this association is more pronounced for certain brain regions, such as the hippocampus, or represents a whole-brain mechanism. Further, whether human BBB leakage is triggered by excessive vascular pulsatility, as suggested by animal studies, remains unknown. In a prospective cohort (N = 50; 68-84 years), we used contrast-enhanced MRI to estimate the permeability-surface area product (PS) and fractional plasma volume ( v p ), and 4D flow MRI to assess cerebral arterial pulsatility. Cognition was assessed by the Montreal Cognitive Assessment (MoCA) score. We hypothesized that high PS would be associated with high arterial pulsatility, and that links to cognition would be specific to hippocampal PS. For 15 brain regions, PS ranged from 0.38 to 0.85 (·10-3 min-1) and v p from 0.79 to 1.78%. Cognition was related to PS (·10-3 min-1) in hippocampus (ß = - 2.9; p = 0.006), basal ganglia (ß = - 2.3; p = 0.04), white matter (ß = - 2.6; p = 0.04), whole-brain (ß = - 2.7; p = 0.04) and borderline-related for cortex (ß = - 2.7; p = 0.076). Pulsatility was unrelated to PS for all regions (p > 0.19). Our findings suggest PS-cognition links mainly reflect a whole-brain phenomenon with only slightly more pronounced links for the hippocampus, and provide no evidence of excessive pulsatility as a trigger of BBB disruption.


Subject(s)
Blood-Brain Barrier , Cognition , Magnetic Resonance Imaging , Humans , Blood-Brain Barrier/diagnostic imaging , Aged , Male , Female , Cognition/physiology , Aged, 80 and over , Pulsatile Flow , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiology , Prospective Studies , Hippocampus/diagnostic imaging , Hippocampus/physiology , Brain/diagnostic imaging , Brain/physiology , Brain/blood supply , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging
2.
Sci Rep ; 14(1): 15317, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961218

ABSTRACT

The hippocampus is a critical component of the brain and is associated with many neurological disorders. It can be further subdivided into several subfields, and accurate segmentation of these subfields is of great significance for diagnosis and research. However, the structures of hippocampal subfields are irregular and have complex boundaries, and their voxel values are close to surrounding brain tissues, making the segmentation task highly challenging. Currently, many automatic segmentation tools exist for hippocampal subfield segmentation, but they suffer from high time costs and low segmentation accuracy. In this paper, we propose a new dual-branch segmentation network structure (DSnet) based on deep learning for hippocampal subfield segmentation. While traditional convolutional neural network-based methods are effective in capturing hierarchical structures, they struggle to establish long-term dependencies. The DSnet integrates the Transformer architecture and a hybrid attention mechanism, enhancing the network's global perceptual capabilities. Moreover, the dual-branch structure of DSnet leverages the segmentation results of the hippocampal region to facilitate the segmentation of its subfields. We validate the efficacy of our algorithm on the public Kulaga-Yoskovitz dataset. Experimental results indicate that our method is more effective in segmenting hippocampal subfields than conventional single-branch network structures. Compared to the classic 3D U-Net, our proposed DSnet improves the average Dice accuracy of hippocampal subfield segmentation by 0.57%.


Subject(s)
Algorithms , Deep Learning , Hippocampus , Neural Networks, Computer , Hippocampus/diagnostic imaging , Hippocampus/anatomy & histology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
3.
BMC Med Imaging ; 24(1): 166, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970025

ABSTRACT

OBJECTIVE: Accurate delineation of the hippocampal region via magnetic resonance imaging (MRI) is crucial for the prevention and early diagnosis of neurosystemic diseases. Determining how to accurately and quickly delineate the hippocampus from MRI results has become a serious issue. In this study, a pixel-level semantic segmentation method using 3D-UNet is proposed to realize the automatic segmentation of the brain hippocampus from MRI results. METHODS: Two hundred three-dimensional T1-weighted (3D-T1) nongadolinium contrast-enhanced magnetic resonance (MR) images were acquired at Hangzhou Cancer Hospital from June 2020 to December 2022. These samples were divided into two groups, containing 175 and 25 samples. In the first group, 145 cases were used to train the hippocampus segmentation model, and the remaining 30 cases were used to fine-tune the hyperparameters of the model. Images for twenty-five patients in the second group were used as the test set to evaluate the performance of the model. The training set of images was processed via rotation, scaling, grey value augmentation and transformation with a smooth dense deformation field for both image data and ground truth labels. A filling technique was introduced into the segmentation network to establish the hippocampus segmentation model. In addition, the performance of models established with the original network, such as VNet, SegResNet, UNetR and 3D-UNet, was compared with that of models constructed by combining the filling technique with the original segmentation network. RESULTS: The results showed that the performance of the segmentation model improved after the filling technique was introduced. Specifically, when the filling technique was introduced into VNet, SegResNet, 3D-UNet and UNetR, the segmentation performance of the models trained with an input image size of 48 × 48 × 48 improved. Among them, the 3D-UNet-based model with the filling technique achieved the best performance, with a Dice score (Dice score) of 0.7989 ± 0.0398 and a mean intersection over union (mIoU) of 0.6669 ± 0.0540, which were greater than those of the original 3D-UNet-based model. In addition, the oversegmentation ratio (OSR), average surface distance (ASD) and Hausdorff distance (HD) were 0.0666 ± 0.0351, 0.5733 ± 0.1018 and 5.1235 ± 1.4397, respectively, which were better than those of the other models. In addition, when the size of the input image was set to 48 × 48 × 48, 64 × 64 × 64 and 96 × 96 × 96, the model performance gradually improved, and the Dice scores of the proposed model reached 0.7989 ± 0.0398, 0.8371 ± 0.0254 and 0.8674 ± 0.0257, respectively. In addition, the mIoUs reached 0.6669 ± 0.0540, 0.7207 ± 0.0370 and 0.7668 ± 0.0392, respectively. CONCLUSION: The proposed hippocampus segmentation model constructed by introducing the filling technique into a segmentation network performed better than models built solely on the original network and can improve the efficiency of diagnostic analysis.


Subject(s)
Hippocampus , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Male , Middle Aged , Female
4.
Brain Behav ; 14(7): e3576, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970157

ABSTRACT

PURPOSE: To investigate the potential of magnetic resonance imaging (MRI)-based total and segmental hippocampus volume analysis in the assessment of cognitive status in Parkinson's disease (PD). METHODS: We divided participants into three groups Group A-Parkinson patients (Pp) with normal cognitive status (n = 25), Group B-Pp with dementia (n = 17), and Group C-healthy controls (n = 37). Three-dimensional T1W Fast Spoiled Gradient Recalled Echo images were used for Volbrain hippocampus subfield segmentation. We used the "Winterburn" protocol, which divides the hippocampus into five segments, Cornu Ammonis (CA),CA2/CA3, CA4/dentate gyrus, stratum radiatum, lacunosum, and moleculare, and subiculum. RESULTS: A total of 79 participants were included in the study, consisting of 42 individuals with PD (64.2% male) and 37 healthy controls (54.1% male). The mean age of PD was 60.9 ± 10.7 years and the mean age of control group was 59.27 ± 12.3 years. Significant differences were found in total hippocampal volumes between Group A and B (p = .047. Statistically significant group differences were found in total, right, and left CA1 volumes (analysis of variance [ANOVA]: F(2,76) = 8.098, p = .001; F(2,76) = 7.628, p = .001; F(2,76) = 5.084, p = .008, respectively), as well as in total subiculum volumes (ANOVA: F(2,76) = 4.368, p = .016). Post hoc tests showed that total subiculum volume was significantly lower in individuals with normal cognitive status (0.474 ± 0.116 cm3) compared to healthy controls (0.578 ± 0.151 cm3, p = .013). CONCLUSION: Volumetric hippocampal MRI can be used to assess the cognitive status of Pp. Longitudinal studies that evaluate Pp who progress from normal cognition to dementia are required to establish a causal relationship.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Male , Hippocampus/diagnostic imaging , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Female , Middle Aged , Aged , Dementia/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Neuropsychological Tests , Cognition
5.
Dev Psychobiol ; 66(6): e22529, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010701

ABSTRACT

Impaired cerebral inhibition is commonly observed in neurodevelopmental disorders and may represent a vulnerability factor for their development. The hippocampus plays a key role in inhibition among adults and undergoes significant and rapid changes during early brain development. Therefore, the structure represents an important candidate region for early identification of pathology that is relevant to inhibitory dysfunction. To determine whether hippocampal function corresponds to inhibition in the early postnatal period, the present study evaluated relationships between hippocampal activity and sensory gating in infants 4-20 weeks of age (N = 18). Resting-state functional magnetic resonance imaging was used to measure hippocampal activity, including the amplitude of low-frequency fluctuations (ALFFs) and fractional ALFF. Electroencephalography during a paired-stimulus paradigm was used to measure sensory gating (P50). Higher activity of the right hippocampus was associated with better sensory gating (P50 ratio), driven by a reduction in response to the second stimulus. These findings suggest that meaningful effects of hippocampal function can be detected early in infancy. Specifically, higher intrinsic hippocampal activity in the early postnatal period may support effective inhibitory processing. Future work will benefit from longitudinal analysis to clarify the trajectory of hippocampal function, alterations of which may contribute to the risk of neurodevelopmental disorders and represent an intervention target.


Subject(s)
Electroencephalography , Hippocampus , Magnetic Resonance Imaging , Sensory Gating , Humans , Hippocampus/physiology , Hippocampus/diagnostic imaging , Male , Female , Infant , Sensory Gating/physiology , Inhibition, Psychological , Child Development/physiology
6.
Hum Brain Mapp ; 45(10): e26715, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38994693

ABSTRACT

Research on the local hippocampal atrophy for early detection of dementia has gained considerable attention. However, accurately quantifying subtle atrophy remains challenging in existing morphological methods due to the lack of consistent biological correspondence with the complex curving regions like the hippocampal head. Thereby, this article presents an innovative axis-referenced morphometric model (ARMM) that follows the anatomical lamellar organization of the hippocampus, which capture its precise and consistent longitudinal curving trajectory. Specifically, we establish an "axis-referenced coordinate system" based on a 7 T ex vivo hippocampal atlas following its entire curving longitudinal axis and orthogonal distributed lamellae. We then align individual hippocampi by deforming this template coordinate system to target spaces using boundary-guided diffeomorphic transformation, while ensuring that the lamellar vectors adhere to the constraint of medial-axis geometry. Finally, we measure local thickness and curvatures based on the coordinate system and boundary surface reconstructed from vector tips. The morphometric accuracy is evaluated by comparing reconstructed surfaces with those directly extracted from 7 T and 3 T MRI hippocampi. The results demonstrate that ARMM achieves the best performance, particularly in the curving head, surpassing the state-of-the-art morphological models. Additionally, morphological measurements from ARMM exhibit higher discriminatory power in distinguishing early Alzheimer's disease from mild cognitive impairment compared to volume-based measurements. Overall, the ARMM offers a precise morphometric assessment of hippocampal morphology on MR images, and sheds light on discovering potential image markers for neurodegeneration associated with hippocampal impairment.


Subject(s)
Atrophy , Dementia , Hippocampus , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Atrophy/pathology , Dementia/diagnostic imaging , Dementia/pathology , Male , Aged , Female , Image Processing, Computer-Assisted/methods , Aged, 80 and over , Middle Aged
7.
Hum Brain Mapp ; 45(10): e26720, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38994740

ABSTRACT

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.


Subject(s)
Electroencephalography , Entropy , Magnetoencephalography , Humans , Magnetoencephalography/methods , Electroencephalography/methods , Adult , Female , Male , Computer Simulation , Young Adult , Epilepsy/physiopathology , Epilepsy/diagnostic imaging , Middle Aged , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Models, Neurological
8.
Neurobiol Aging ; 141: 182-193, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968875

ABSTRACT

Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.


Subject(s)
Aging , Hippocampus , Magnetic Resonance Imaging , Memory, Episodic , Motion Pictures , Humans , Hippocampus/physiology , Hippocampus/diagnostic imaging , Aged , Middle Aged , Aged, 80 and over , Adult , Male , Female , Young Adult , Adolescent , Aging/physiology , Aging/psychology , Longevity/physiology , Cognition/physiology
9.
Brain Behav ; 14(7): e3600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988142

ABSTRACT

OBJECTIVE: In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS: We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS: The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION: This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.


Subject(s)
Cerebrovascular Circulation , Diabetes Mellitus, Type 2 , Hippocampus , Magnetic Resonance Imaging , Humans , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/diagnostic imaging , Male , Female , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Cerebrovascular Circulation/physiology , Middle Aged , Adult , Rest/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging
10.
Hippocampus ; 34(8): 438-451, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016331

ABSTRACT

Studies of the impact of brain injury on memory processes often focus on the quantity and episodic richness of those recollections. Here, we argue that the organization of one's recollections offers critical insights into the impact of brain injury on functional memory. It is well-established in studies of word list memory that free recall of unrelated words exhibits a clear temporal organization. This temporal contiguity effect refers to the fact that the order in which word lists are recalled reflects the original presentation order. Little is known, however, about the organization of recall for semantically rich materials, nor how recall organization is impacted by hippocampal damage and memory impairment. The present research is the first study, to our knowledge, of temporal organization in semantically rich narratives in three groups: (1) Adults with bilateral hippocampal damage and severe declarative memory impairment, (2) adults with bilateral ventromedial prefrontal cortex (vmPFC) damage and no memory impairment, and (3) demographically matched non-brain-injured comparison participants. We find that although the narrative recall of adults with bilateral hippocampal damage reflected the temporal order in which those narratives were experienced above chance levels, their temporal contiguity effect was significantly attenuated relative to comparison groups. In contrast, individuals with vmPFC damage did not differ from non-brain-injured comparison participants in temporal contiguity. This pattern of group differences yields insights into the cognitive and neural systems that support the use of temporal organization in recall. These data provide evidence that the retrieval of temporal context in narrative recall is hippocampal-dependent, whereas damage to the vmPFC does not impair the temporal organization of narrative recall. This evidence of limited but demonstrable organization of memory in participants with hippocampal damage and amnesia speaks to the power of narrative structures in supporting meaningfully organized recall despite memory impairment.


Subject(s)
Amnesia , Hippocampus , Mental Recall , Humans , Hippocampus/pathology , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Mental Recall/physiology , Male , Female , Middle Aged , Amnesia/physiopathology , Amnesia/pathology , Amnesia/psychology , Adult , Narration , Aged , Neuropsychological Tests , Time Factors , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/injuries
11.
Nat Commun ; 15(1): 5996, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39013848

ABSTRACT

Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.


Subject(s)
Algorithms , Gray Matter , Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Male , Female , Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Machine Learning , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Cross-Sectional Studies , Europe , Neuroimaging , Reproducibility of Results , North America , Hippocampus/diagnostic imaging , Hippocampus/pathology
12.
Nat Commun ; 15(1): 5963, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013855

ABSTRACT

While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.


Subject(s)
Biological Evolution , Hippocampus , Animals , Hippocampus/physiology , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Humans , Male , Female , Macaca , Magnetic Resonance Imaging/methods , Primates/physiology , Primates/anatomy & histology , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Nerve Net/anatomy & histology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Neural Pathways/physiology , Neural Pathways/anatomy & histology , Macaca mulatta
13.
Transl Psychiatry ; 14(1): 292, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013880

ABSTRACT

Accumulating evidence has revealed the gut bacteria dysbiosis and brain hippocampal functional and structural alterations in major depressive disorder (MDD). However, the potential relationship between the gut microbiota and hippocampal function alterations in patients with MDD is still very limited. Data of resting-state functional magnetic resonance imaging were acquired from 44 unmedicated MDD patients and 42 demographically matched healthy controls (HCs). Severn pairs of hippocampus subregions (the bilateral cornu ammonis [CA1-CA3], dentate gyrus (DG), entorhinal cortex, hippocampal-amygdaloid transition area, and subiculum) were selected as the seeds in the functional connectivity (FC) analysis. Additionally, fecal samples of participants were collected and 16S rDNA amplicon sequencing was used to identify the altered relative abundance of gut microbiota. Then, association analysis was conducted to investigate the potential relationships between the abnormal hippocampal subregions FC and microbiome features. Also, the altered hippocampal subregion FC values and gut microbiota levels were used as features separately or together in the support vector machine models distinguishing the MDD patients and HCs. Compared with HCs, patients with MDD exhibited increased FC between the left hippocampus (CA2, CA3 and DG) and right hippocampus (CA2 and CA3), and decreased FC between the right hippocampal CA3 and bilateral posterior cingulate cortex. In addition, we found that the level of proinflammatory bacteria (i.e., Enterobacteriaceae) was significantly increased, whereas the level of short-chain fatty acids producing-bacteria (i.e., Prevotellaceae, Agathobacter and Clostridium) were significantly decreased in MDD patients. Furthermore, FC values of the left hippocampal CA3- right hippocampus (CA2 and CA3) was positively correlated with the relative abundance of Enterobacteriaceae in patients with MDD. Moreover, altered hippocampal FC patterns and gut microbiota level were considered in combination, the best discrimination was obtained (AUC = 0.92). These findings may provide insights into the potential role of gut microbiota in the underlying neuropathology of MDD patients.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Hippocampus , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/microbiology , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Hippocampus/physiopathology , Hippocampus/diagnostic imaging , Hippocampus/microbiology , Adult , Female , Dysbiosis/microbiology , Dysbiosis/physiopathology , Young Adult , Case-Control Studies , Middle Aged , Feces/microbiology
14.
Neurology ; 103(3): e209665, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39008782

ABSTRACT

BACKGROUND AND OBJECTIVES: Amyloid pathology, vascular disease pathology, and pathologies affecting the medial temporal lobe are associated with cognitive trajectories in older adults. However, only limited evidence exists on how these pathologies influence cognition in the oldest old. We evaluated whether amyloid burden, white matter hyperintensity (WMH) volume, and hippocampal volume (HV) are associated with cognitive level and decline in the oldest old. METHODS: This was a longitudinal, observational community-based cohort study. We included participants with 18F-florbetapir PET and MRI data from the 90+ Study. Amyloid load was measured using the standardized uptake value ratio in the precuneus/posterior cingulate with eroded white matter mask as reference. WMH volume was log-transformed. All imaging measures were standardized using sample means and SDs. HV and log-WMH volume were normalized by total intracranial volume using the residual approach. Global cognitive performance was measured by the Mini-Mental State Examination (MMSE) and modified MMSE (3MS) tests, repeated every 6 months. We used linear mixed-effects models with random intercepts; random slopes; and interaction between time, time squared, and imaging variables to estimate the associations of imaging variables with cognitive level and cognitive decline. Models were adjusted for demographics, APOE genotype, and health behaviors. RESULTS: The sample included 192 participants. The mean age was 92.9 years, 125 (65.1%) were female, 71 (37.0%) achieved a degree beyond college, and the median follow-up time was 3.0 years. A higher amyloid load was associated with a lower cognitive level (ßMMSE = -0.82, 95% CI -1.17 to -0.46; ß3MS = -2.77, 95% CI -3.69 to -1.84). A 1-SD decrease in HV was associated with a 0.70-point decrease in the MMSE score (95% CI -1.14 to -0.27) and a 2.27-point decrease in the 3MS score (95% CI -3.40 to -1.14). Clear nonlinear cognitive trajectories were detected. A higher amyloid burden and smaller HV were associated with faster cognitive decline. WMH volume was not significantly associated with cognitive level or decline. DISCUSSION: Amyloid burden and hippocampal atrophy are associated with both cognitive level and cognitive decline in the oldest old. Our findings shed light on how different pathologies contributed to driving cognitive function in the oldest old.


Subject(s)
Cognitive Dysfunction , Hippocampus , Magnetic Resonance Imaging , Positron-Emission Tomography , White Matter , Humans , Female , Male , White Matter/diagnostic imaging , White Matter/pathology , White Matter/metabolism , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/metabolism , Aged, 80 and over , Longitudinal Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Cognition/physiology , Cohort Studies , Organ Size , Ethylene Glycols , Aniline Compounds , Amyloid beta-Peptides/metabolism , Amyloid/metabolism
15.
JAMA Netw Open ; 7(6): e2416484, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38865127

ABSTRACT

Importance: Area deprivation index (ADI) has been shown to be associated with reduced hippocampal volume (HV) among youths. The social environment may interact with the association between ADI and HV. Objective: To investigate which aspects of ADI are uniquely associated with bilateral HV and whether school and family environments have moderating interactions in associations between ADI and HV. Design, Setting, and Participants: This cross-sectional study used data from the Adolescent Brain and Cognitive Development (ABCD) study. Participants aged 9 and 10 years were recruited from 21 sites in the US between September 2016 and August 2018. Data analysis was performed between March 2023 and April 2024. Exposures: ADI aspects were derived from participant primary home addresses provided by parents or guardians. Main Outcomes and Measures: HV was automatically segmented from structural brain images ascertained from magnetic resonance imaging. Multiple generalized linear mixed modeling tested associations between 9 indices of ADI and bilateral HV, with family groups and recruitment sites as random effects. After stepwise backward selection, models were adjusted for individual-level covariates, including age, sex, race and ethnicity, parental education, household income, and estimated intracranial volume. Results: This study included 10 114 participants aged 9 and 10 years (median [IQR] age, 9.92 [9.33-10.48] years; 5294 male [52.3%]; 200 Asian [2.0%], 1411 Black [14.0%], and 6655 White [65.8%]; 1959 Hispanic [19.4%]). After stepwise backward selection and adjusting for covariates, only the percentage of neighborhood-level single-parent households was associated with right HV (adjusted ß per 1-SD increase in single-parent households, -0.03; 95% CI, -0.06 to -0.01; P = .01). School environment interacted with neighborhood-level single-parent households in its association with right HV (adjusted ß per 1-SD increase in score, 0.02; 95% CI, 0.01 to 0.03; P = .003), such that there was an inverse association only among those at a school with the mean environment score (adjusted ß per 1% increase in single-parent households, -0.03; 95% CI, -0.05 to -0.01; P = .02) and worse (-1 SD score) school environment score (adjusted ß per 1% increase in single-parent households, -0.05; 95% CI, -0.09 to -0.01; P < .001) but not among those at better (+1 SD score) school environments. Conclusions and Relevance: In this study, an increased percentage of neighborhood-level single-parent households was associated with reduced right HV among children in schools with the mean or worse but not better environment score. These findings suggest that longitudinal research concerning the association of neighborhood-level characteristics and school environments with hippocampal development may be warranted to better understand complex interactions between various social factors and child neurodevelopment and mental health outcomes.


Subject(s)
Hippocampus , Magnetic Resonance Imaging , Humans , Child , Male , Female , Hippocampus/diagnostic imaging , Hippocampus/anatomy & histology , Cross-Sectional Studies , Organ Size , United States , Residence Characteristics/statistics & numerical data , Neighborhood Characteristics
16.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891891

ABSTRACT

This study investigated the diagnostic accuracy of plasma biomarkers-specifically, matrix metalloproteinase (MMP-9), tissue inhibitor of metalloproteinase (TIMP-1), CD147, and the MMP-/TIMP-1 ratio in patients with Alzheimer's disease (AD) dementia. The research cohort comprised patients diagnosed with probable AD dementia and a control group of cognitively unimpaired (CU) individuals. Neuroradiological assessments included brain magnetic resonance imaging (MRI) following dementia protocols, with subsequent volumetric analysis. Additionally, cerebrospinal fluid (CSF) AD biomarkers were classified using the A/T/N system, and apolipoprotein E (APOE) ε4 carrier status was determined. Findings revealed elevated plasma levels of MMP-9 and TIMP-1 in AD dementia patients compared to CU individuals. Receiver operating characteristic (ROC) curve analysis demonstrated significant differences in the areas under the curve (AUC) for MMP-9 (p < 0.001) and TIMP-1 (p < 0.001). Notably, plasma TIMP-1 levels were significantly lower in APOE ε4+ patients than in APOE ε4- patients (p = 0.041). Furthermore, APOE ε4+ patients exhibited reduced hippocampal volume, particularly in total, right, and left hippocampal measurements. TIMP-1 levels exhibited a positive correlation, while the MMP-9/TIMP-1 ratio showed a negative correlation with hippocampal volume parameters. This study sheds light on the potential use of TIMP-1 as a diagnostic marker and its association with hippocampal changes in AD.


Subject(s)
Alzheimer Disease , Biomarkers , Magnetic Resonance Imaging , Matrix Metalloproteinase 9 , Tissue Inhibitor of Metalloproteinase-1 , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Male , Biomarkers/blood , Female , Tissue Inhibitor of Metalloproteinase-1/blood , Aged , Matrix Metalloproteinase 9/blood , Magnetic Resonance Imaging/methods , Middle Aged , Apolipoprotein E4/genetics , Hippocampus/pathology , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Aged, 80 and over , ROC Curve
17.
Nat Commun ; 15(1): 4815, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844456

ABSTRACT

Our brain adeptly navigates goals across time frames, distinguishing between urgent needs and those of the past or future. The hippocampus is a region known for supporting mental time travel and organizing information along its longitudinal axis, transitioning from detailed posterior representations to generalized anterior ones. This study investigates the role of the hippocampus in distinguishing goals over time: whether the hippocampus encodes time regardless of detail or abstraction, and whether the hippocampus preferentially activates its anterior region for temporally distant goals (past and future) and its posterior region for immediate goals. We use a space-themed experiment with 7T functional MRI on 31 participants to examine how the hippocampus encodes the temporal distance of goals. During a simulated Mars mission, we find that the hippocampus tracks goals solely by temporal proximity. We show that past and future goals activate the left anterior hippocampus, while current goals engage the left posterior hippocampus. This suggests that the hippocampus maps goals using timestamps, extending its long axis system to include temporal goal organization.


Subject(s)
Brain Mapping , Goals , Hippocampus , Magnetic Resonance Imaging , Humans , Hippocampus/physiology , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Adult , Young Adult , Brain Mapping/methods
18.
Sci Rep ; 14(1): 12906, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839800

ABSTRACT

Only a third of individuals with mild cognitive impairment (MCI) progress to dementia of the Alzheimer's type (DAT). Identifying biomarkers that distinguish individuals with MCI who will progress to DAT (MCI-Converters) from those who will not (MCI-Non-Converters) remains a key challenge in the field. In our study, we evaluate whether the individual rates of loss of volumes of the Hippocampus and entorhinal cortex (EC) with age in the MCI stage can predict progression to DAT. Using data from 758 MCI patients in the Alzheimer's Disease Neuroimaging Database, we employ Linear Mixed Effects (LME) models to estimate individual trajectories of regional brain volume loss over 12 years on average. Our approach involves three key analyses: (1) mapping age-related volume loss trajectories in MCI-Converters and Non-Converters, (2) using logistic regression to predict progression to DAT based on individual rates of hippocampal and EC volume loss, and (3) examining the relationship between individual estimates of these volumetric changes and cognitive decline across different cognitive functions-episodic memory, visuospatial processing, and executive function. We find that the loss of Hippocampal volume is significantly more rapid in MCI-Converters than Non-Converters, but find no such difference in EC volumes. We also find that the rate of hippocampal volume loss in the MCI stage is a significant predictor of conversion to DAT, while the rate of volume loss in the EC and other additional regions is not. Finally, individual estimates of rates of regional volume loss in both the Hippocampus and EC, and other additional regions, correlate strongly with individual rates of cognitive decline. Across all analyses, we find significant individual variation in the initial volumes and the rates of changes in volume with age in individuals with MCI. This study highlights the importance of personalized approaches in predicting AD progression, offering insights for future research and intervention strategies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Hippocampus , Humans , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Male , Aged , Female , Hippocampus/pathology , Hippocampus/diagnostic imaging , Aged, 80 and over , Entorhinal Cortex/pathology , Entorhinal Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Organ Size , Middle Aged , Neuroimaging/methods
19.
Brain Struct Funct ; 229(6): 1471-1493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839620

ABSTRACT

Connectivity maps are now available for the 360 cortical regions in the Human Connectome Project Multimodal Parcellation atlas. Here we add function to these maps by measuring selective fMRI activations and functional connectivity increases to stationary visual stimuli of faces, scenes, body parts and tools from 956 HCP participants. Faces activate regions in the ventrolateral visual cortical stream (FFC), in the superior temporal sulcus (STS) visual stream for face and head motion; and inferior parietal visual (PGi) and somatosensory (PF) regions. Scenes activate ventromedial visual stream VMV and PHA regions in the parahippocampal scene area; medial (7m) and lateral parietal (PGp) regions; and the reward-related medial orbitofrontal cortex. Body parts activate the inferior temporal cortex object regions (TE1p, TE2p); but also visual motion regions (MT, MST, FST); and the inferior parietal visual (PGi, PGs) and somatosensory (PF) regions; and the unpleasant-related lateral orbitofrontal cortex. Tools activate an intermediate ventral stream area (VMV3, VVC, PHA3); visual motion regions (FST); somatosensory (1, 2); and auditory (A4, A5) cortical regions. The findings add function to cortical connectivity maps; and show how stationary visual stimuli activate other cortical regions related to their associations, including visual motion, somatosensory, auditory, semantic, and orbitofrontal cortex value-related, regions.


Subject(s)
Brain Mapping , Hippocampus , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Hippocampus/physiology , Hippocampus/diagnostic imaging , Young Adult , Photic Stimulation , Connectome , Face , Neural Pathways/physiology , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Visual Perception/physiology , Pattern Recognition, Visual/physiology
20.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839341

ABSTRACT

The hippocampus is a brain structure that plays key roles in a variety of cognitive processes. Critically, a wide range of neurological disorders are associated with degeneration of the hippocampal microstructure, defined as neurons, dendrites, glial cells, and more. Thus, the hippocampus is a key target for methods that are sensitive to these microscale properties. Diffusion MRI is one such method, which can noninvasively probe neural architecture. Here we review the extensive use of diffusion MRI to capture hippocampal microstructure in both health and disease. The results of these studies indicate that (1) diffusion tensor imaging is sensitive but not specific to the hippocampal microstructure; (2) biophysical modeling of diffusion MRI signals is a promising avenue to capture more specific aspects of the hippocampal microstructure; (3) use of ultra-short diffusion times have shown unique laminar-specific microstructure and response to hippocampal injury; (4) dispersion of microstructure is likely abundant in the hippocampus; and (5) the angular richness of the diffusion MRI signal can be leveraged to improve delineation of the internal hippocampal circuitry. Overall, extant findings suggest that diffusion MRI offers a promising avenue for characterizing hippocampal microstructure.


Subject(s)
Diffusion Magnetic Resonance Imaging , Hippocampus , Hippocampus/diagnostic imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...