Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.052
Filter
1.
BMC Genomics ; 25(1): 657, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956453

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in plant growth and development as well as in response to environmental changes, by dynamically regulating gene acetylation levels. Although there have been numerous reports on the identification and function of HDAC and HAT in herbaceous plants, there are fewer report related genes in woody plants under drought stress. RESULTS: In this study, we performed a genome-wide analysis of the HDAC and HAT families in Populus trichocarpa, including phylogenetic analysis, gene structure, conserved domains, and expression analysis. A total of 16 PtrHDACs and 12 PtrHATs were identified in P. trichocarpa genome. Analysis of cis-elements in the promoters of PtrHDACs and PtrHATs revealed that both gene families could respond to a variety of environmental signals, including hormones and drought. Furthermore, real time quantitative PCR indicated that PtrHDA906 and PtrHAG3 were significantly responsive to drought. PtrHDA906, PtrHAC1, PtrHAC3, PtrHAG2, PtrHAG6 and PtrHAF1 consistently responded to abscisic acid, methyl jasmonate and salicylic acid under drought conditions. CONCLUSIONS: Our study demonstrates that PtrHDACs and PtrHATs may respond to drought through hormone signaling pathways, which helps to reveal the hub of acetylation modification in hormone regulation of abiotic stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Histone Acetyltransferases , Histone Deacetylases , Phylogeny , Populus , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Populus/genetics , Populus/enzymology , Stress, Physiological/genetics , Gene Expression Profiling , Promoter Regions, Genetic , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
FASEB J ; 38(13): e23794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967258

ABSTRACT

Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.


Subject(s)
Adipocytes , Diet, High-Fat , Histone Deacetylases , Inflammation , Insulin Resistance , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , RNA, Long Noncoding , Repressor Proteins , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Inflammation/metabolism , Inflammation/genetics , Adipocytes/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diet, High-Fat/adverse effects , Male , Obesity/metabolism , Obesity/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Macrophages/metabolism
3.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
4.
Plant Physiol Biochem ; 213: 108841, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879987

ABSTRACT

Epigenetic modifications, such as histone alterations, play crucial roles in regulating the flowering process in Arabidopsis, a typical long-day model plant. Histone modifications are notably involved in the intricate regulation of FLC, a key inhibitor of flowering. Although sirtuin-like protein and NAD+-dependent deacetylases play an important role in regulating energy metabolism, plant stress responses, and hormonal signal transduction, the mechanisms underlying their developmental transitions remain unclear. Thus, this study aimed to reveal how Arabidopsis NAD + -dependent deacetylase AtSRT1 affects flowering by regulating the expression of flowering integrators. Genetic and molecular evidence demonstrated that AtSRT1 mediates histone deacetylation by directly binding near the transcriptional start sites (TSS) of the flowering integrator genes FT and SOC1 and negatively regulating their expression by modulating the expression of the downstream gene LFY to inhibit flowering. Additionally, AtSRT1 directly down-regulates the expression of TOR, a glucose-driven central hub of energy signaling, which controls cell metabolism and growth in response to nutritional and environmental factors. This down-regulation occurs through binding near the TSS of TOR, facilitating the addition of H3K27me3 marks on FLC via the TOR-FIE-PRC2 pathway, further repressing flowering. These results uncover a multi-pathway regulatory network involving deacetylase AtSRT1 during the flowering process, highlighting its interaction with TOR as a hub for the coordinated regulation of energy metabolism and flowering initiation. These findings significantly enhance understanding of the complexity of histone modifications in the regulation of flowering.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Signal Transduction , MADS Domain Proteins/metabolism , MADS Domain Proteins/genetics , Histones/metabolism , Energy Metabolism/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics
5.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892038

ABSTRACT

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Subject(s)
B7-H1 Antigen , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone Deacetylases , Melanoma, Experimental , Melanoma , N-Acetylgalactosamine-4-Sulfatase , Animals , Humans , Mice , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Cell Line, Tumor , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Galectin 3/metabolism , Galectin 3/genetics , Promoter Regions, Genetic , Blood Proteins , Galectins
6.
Front Immunol ; 15: 1369406, 2024.
Article in English | MEDLINE | ID: mdl-38835760

ABSTRACT

Epigenetic mechanisms are involved in several cellular functions, and their role in the immune system is of prime importance. Histone deacetylases (HDACs) are an important set of enzymes that regulate and catalyze the deacetylation process. HDACs have been proven beneficial targets for improving the efficacy of immunotherapies. HDAC11 is an enzyme involved in the negative regulation of T cell functions. Here, we investigated the potential of HDAC11 downregulation using RNA interference in CAR-T cells to improve immunotherapeutic outcomes against prostate cancer. We designed and tested four distinct short hairpin RNA (shRNA) sequences targeting HDAC11 to identify the most effective one for subsequent analyses. HDAC11-deficient CAR-T cells (shD-NKG2D-CAR-T) displayed better cytotoxicity than wild-type CAR-T cells against prostate cancer cell lines. This effect was attributed to enhanced activation, degranulation, and cytokine release ability of shD-NKG2D-CAR-T when co-cultured with prostate cancer cell lines. Our findings reveal that HDAC11 interference significantly enhances CAR-T cell proliferation, diminishes exhaustion markers PD-1 and TIM3, and promotes the formation of T central memory TCM populations. Further exploration into the underlying molecular mechanisms reveals increased expression of transcription factor Eomes, providing insight into the regulation of CAR-T cell differentiation. Finally, the shD-NKG2D-CAR-T cells provided efficient tumor control leading to improved survival of tumor-bearing mice in vivo as compared to their wild-type counterparts. The current study highlights the potential of HDAC11 downregulation in improving CAR-T cell therapy. The study will pave the way for further investigations focused on understanding and exploiting epigenetic mechanisms for immunotherapeutic outcomes.


Subject(s)
Histone Deacetylases , Immunotherapy, Adoptive , Prostatic Neoplasms , RNA, Small Interfering , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/immunology , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Mice , RNA, Small Interfering/genetics , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Silencing , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
7.
FASEB J ; 38(12): e23736, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865202

ABSTRACT

Subclinical hypothyroidism (SCH) in pregnancy is the most common form of thyroid dysfunction in pregnancy, which can affect fetal nervous system development and increase the risk of neurodevelopmental disorders after birth. However, the mechanism of the effect of maternal subclinical hypothyroidism on fetal brain development and behavioral phenotypes is still unclear and requires further study. In this study, we constructed a mouse model of maternal subclinical hypothyroidism by exposing dams to drinking water containing 50 ppm propylthiouracil (PTU) during pregnancy and found that its offspring were accompanied by severe cognitive deficits by behavioral testing. Mechanistically, gestational SCH resulted in the upregulation of protein expression and activity of HDAC1/2/3 in the hippocampus of the offspring. ChIP analysis revealed that H3K9ac on the neurogranin (Ng) promoter was reduced in the hippocampus of the offspring of SCH, with a significant reduction in Ng protein, leading to reduced expression levels of synaptic plasticity markers PSD95 (a membrane-associated protein in the postsynaptic density) and SYN (synaptophysin, a specific marker for presynaptic terminals), and impaired synaptic plasticity. In addition, administration of MS-275 (an HDAC1/2/3-specific inhibitor) to SCH offspring alleviated impaired synaptic plasticity and cognitive dysfunction in offspring. Thus, our study suggests that maternal subclinical hypothyroidism may mediate offspring cognitive dysfunction through the HDAC1/2/3-H3K9ac-Ng pathway. Our study contributes to the understanding of the signaling mechanisms underlying maternal subclinical hypothyroidism-mediated cognitive impairment in the offspring.


Subject(s)
Cognitive Dysfunction , Histone Deacetylase 1 , Histone Deacetylase 2 , Hypothyroidism , Neurogranin , Prenatal Exposure Delayed Effects , Animals , Neurogranin/metabolism , Neurogranin/genetics , Hypothyroidism/metabolism , Female , Pregnancy , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Prenatal Exposure Delayed Effects/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Down-Regulation , Hippocampus/metabolism , Male , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice, Inbred C57BL , Neuronal Plasticity
8.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892016

ABSTRACT

Transforming growth factor beta (TGF-ß) is ubiquitously found in bone and plays a key role in bone turnover. Mice expressing constitutively active TGF-ß receptor type I (Mx1;TßRICA mice) are osteopenic. Here, we identified the candidate genes involved in bone turnover in Mx1;TßRICA mice using RNA sequencing analysis. A total of 285 genes, including 87 upregulated and 198 downregulated genes, were differentially expressed. According to the KEGG analysis, some genes were involved in osteoclast differentiation (Fcgr4, Lilrb4a), B cell receptor signaling (Cd72, Lilrb4a), and neutrophil extracellular trap formation (Hdac7, Padi4). Lilrb4 is related to osteoclast inhibition protein, whereas Hdac7 is a Runx2 corepressor that regulates osteoblast differentiation. Silencing Lilrb4 increased the number of osteoclasts and osteoclast marker genes. The knocking down of Hdac7 increased alkaline phosphatase activity, mineralization, and osteoblast marker genes. Therefore, our present study may provide an innovative idea for potential therapeutic targets and pathways in TßRI-associated bone loss.


Subject(s)
Bone Remodeling , Osteoclasts , Animals , Mice , Bone Remodeling/genetics , Osteoclasts/metabolism , Osteoclasts/cytology , Osteoblasts/metabolism , Gene Expression Regulation , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Cell Differentiation/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Gene Expression Profiling
9.
Int J Med Sci ; 21(8): 1385-1398, 2024.
Article in English | MEDLINE | ID: mdl-38903915

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease, characterized by dysregulated immune response. HDAC3 is reported to be an epigenetic brake in inflammation, playing critical roles in macrophages. However, its role in IBD is unclear. In our study, we found HDAC3 was upregulated in CX3CR1-positive cells in the mucosa from IBD mice. Conditional knockout (cKO) of Hdac3 in CX3CR1 positive cells attenuated the disease severity of Dextran Sulfate Sodium (DSS)-induced colitis. In addition, inhibition of HDAC3 with RGFP966 could also alleviate the DSS-induced tissue injury and inflammation in IBD. The RNA sequencing results revealed that Hdac3 cKO restrained DSS-induced upregulation of genes in the pathways of cytokine-cytokine receptor interaction, complement and coagulation cascades, chemokine signaling, and extracellular matrix receptor interaction. We also identified that Guanylate-Binding Protein 5 (GBP5) was transcriptionally regulated by HDAC3 in monocytes by RNA sequencing. Inhibition of HDAC3 resulted in decreased transcriptional activity of interferon-gamma-induced expression of GBP5 in CX3CR1-positive cells, such as macrophages and microglia. Overexpression of HDAC3 upregulated the transcriptional activity of GBP5 reporter. Lastly, conditional knockout of Hdac3 in macrophages (Hdac3 mKO) attenuated the disease severity of DSS-induced colitis. In conclusion, inhibition of HDAC3 in macrophages could ameliorate the disease severity and inflammatory response in colitis by regulating GBP5-NLRP3 axis, identifying a new therapeutic avenue for the treatment of colitis.


Subject(s)
Colitis , Dextran Sulfate , Histone Deacetylases , Macrophages , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Animals , Dextran Sulfate/toxicity , Dextran Sulfate/adverse effects , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colitis/metabolism , Humans , Signal Transduction/drug effects , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/antagonists & inhibitors , Disease Models, Animal , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Mice, Inbred C57BL , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Acrylamides , Phenylenediamines
10.
Clin Epigenetics ; 16(1): 78, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862980

ABSTRACT

Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the ß-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting ß-cells and reducing T2DM-associated complications, among others.


Subject(s)
Diabetes Mellitus, Type 2 , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Epigenesis, Genetic/drug effects , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Animals , Oxidative Stress/drug effects , Insulin/metabolism
11.
Sci Adv ; 10(23): eadn8963, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838144

ABSTRACT

Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.


Subject(s)
Cell Differentiation , Histone Deacetylases , Mice, Knockout , Nuclear Pore Complex Proteins , Animals , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Mice , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/cytology , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/cytology , Myeloid Cells/metabolism , Myeloid Cells/cytology , Sumoylation , Myelopoiesis/genetics
12.
BMC Musculoskelet Disord ; 25(1): 467, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879481

ABSTRACT

BACKGROUND: The present study evaluated whether the lack of histone deacetylase 4 (HDAC4) increases endoplasmic reticulum stress-induced chondrocyte apoptosis by releasing activating transcription factor 4 (ATF4) in human osteoarthritis (OA) cartilage degeneration. METHODS: Articular cartilage from the tibial plateau was obtained from patients with OA during total knee replacement. Cartilage extracted from severely damaged regions was classified as degraded cartilage, and cartilage extracted from a relatively smooth region was classified as preserved cartilage. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to detect chondrocyte apoptosis. HDAC4, ATF4, and C/EBP homologous protein (CHOP) expression levels were measured using immunohistochemistry staining and real-time quantitative PCR. Chondrocytes were transfected with HDAC4 or HDAC4 siRNA for 24 h and stimulated with 300 µM H2O2 for 12 h. The chondrocyte apoptosis was measured using flow cytometry. ATF4, CHOP, and caspase 12 expression levels were measured using real-time quantitative PCR and western blotting. Male Sprague-Dawley rats (n = 15) were randomly divided into three groups and transduced with different vectors: ACLT + Ad-GFP, ACLT + Ad-HDAC4-GFP, and sham + Ad-GFP. All rats received intra-articular injections 48 h after the operation and every three weeks thereafter. Cartilage damage was assessed using Safranin O staining and quantified using the Osteoarthritis Research Society International score. ATF4, CHOP, and collagen II expression were detected using immunohistochemistry, and chondrocyte apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. RESULTS: The chondrocyte apoptosis was higher in degraded cartilage than in preserved cartilage. HDAC4 expression was lower in degraded cartilage than in preserved cartilage. ATF4 and CHOP expression was increased in degraded cartilage. Upregulation of HDAC4 in chondrocytes decreased the expression of ATF4, while the expression of ATF4 was increased after downregulation of HDAC4. Upregulation of HDAC4 decreased the chondrocyte apoptosis under endoplasmic reticulum stress, and chondrocyte apoptosis was increased after downregulation of HDAC4. In a rat anterior cruciate ligament transection OA model, adenovirus-mediated transduction of HDAC4 was administered by intra-articular injection. We detected a stronger Safranin O staining with lower Osteoarthritis Research Society International scores, lower ATF4 and CHOP production, stronger collagen II expression, and lower chondrocyte apoptosis in rats treated with Ad-HDAC4. CONCLUSION: The lack of HDAC4 expression partially contributes to increased ATF4, CHOP, and endoplasmic reticulum stress-induced chondrocyte apoptosis in OA pathogenesis. HDAC4 attenuates cartilage damage by repressing ATF4-CHOP signaling-induced chondrocyte apoptosis in a rat model of OA.


Subject(s)
Activating Transcription Factor 4 , Apoptosis , Cartilage, Articular , Chondrocytes , Disease Models, Animal , Endoplasmic Reticulum Stress , Histone Deacetylases , Rats, Sprague-Dawley , Animals , Apoptosis/physiology , Apoptosis/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Male , Rats , Endoplasmic Reticulum Stress/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Humans , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/metabolism , Female , Middle Aged , Aged , Transcription Factor CHOP/metabolism , Cells, Cultured , Osteoarthritis/pathology , Osteoarthritis/metabolism , Repressor Proteins
13.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928274

ABSTRACT

Epigenetic modulation, including histone modification, alters gene expression and controls cell fate. Histone deacetylases (HDACs) are identified as important regulators of dental pulp cell (DPC) mineralisation processes. Currently, there is a paucity of information regarding the nature of histone modification and HDAC expression in the dentine-pulp complex during dentinogenesis. The aim of this study was to investigate post-translational histone modulation and HDAC expression during DPC mineralisation and the expression of Class I/II HDACs during tooth development and in adult teeth. HDAC expression (isoforms -1 to -6) was analysed in mineralising primary rat DPCs using qRT-PCR and Western blot with mass spectrometry being used to analyse post-translational histone modifications. Maxillary molar teeth from postnatal and adult rats were analysed using immunohistochemical (IHC) staining for HDACs (1-6). HDAC-1, -2, and -4 protein expression increased until days 7 and 11, but decreased at days 14 and 21, while other HDAC expression increased continuously for 21 days. The Class II mineralisation-associated HDAC-4 was strongly expressed in postnatal sample odontoblasts and DPCs, but weakly in adult teeth, while other Class II HDACs (-5, -6) were relatively strongly expressed in postnatal DPCs and adult odontoblasts. Among Class I HDACs, HDAC-1 showed high expression in postnatal teeth, notably in ameloblasts and odontoblasts. HDAC-2 and -3 had extremely low expression in the rat dentine-pulp complex. Significant increases in acetylation were noted during DPC mineralisation processes, while trimethylation H3K9 and H3K27 marks decreased, and the HDAC-inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced H3K27me3. These results highlight a dynamic alteration in histone acetylation during mineralisation and indicate the relevance of Class II HDAC expression in tooth development and regenerative processes.


Subject(s)
Dental Pulp , Dentin , Dentinogenesis , Histone Deacetylases , Animals , Acetylation , Rats , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Dentin/metabolism , Dental Pulp/metabolism , Dental Pulp/cytology , Dental Pulp/growth & development , Protein Processing, Post-Translational , Histones/metabolism , Molar/metabolism , Molar/growth & development , Odontoblasts/metabolism , Male
14.
Sheng Li Xue Bao ; 76(3): 438-446, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939938

ABSTRACT

Oocyte maturation and early embryonic development are key steps in the reproductive physiology of female mammals, and any error in this process can adversely affect reproductive development. Recent studies have shown that epigenetic modifications of histones play important roles in the regulation of oocyte meiosis and quality assurance of early embryonic development. Histone deacetylase 11 (HDAC11) is the smallest known member of the histone deacetylases (HDACs) family, and inhibition of HDAC11 activity significantly suppresses the rate of oocyte maturation, as well as the development of 8-cell and blastocyst embryos at the embryonic stage. This paper focuses on recent progress on the important role of HDAC11 in the regulation of mammalian oocyte maturation and early embryonic development, hoping to gain insights into the key roles played by epitope-modifying proteins represented by HDAC11 in the regulation of mammalian reproduction and their molecular mechanisms.


Subject(s)
Embryonic Development , Histone Deacetylases , Oocytes , Animals , Oocytes/physiology , Embryonic Development/physiology , Histone Deacetylases/metabolism , Histone Deacetylases/physiology , Histone Deacetylases/genetics , Female , Humans , Oogenesis/physiology , Mammals/embryology , Meiosis/physiology
15.
Genes Genomics ; 46(7): 871-879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805168

ABSTRACT

BACKGROUND: Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE: We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS: RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS: In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION: TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Histone Deacetylases , Lysine Acetyltransferase 5 , Humans , Lysine Acetyltransferase 5/genetics , Lysine Acetyltransferase 5/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Cell Proliferation/genetics , HCT116 Cells , Apoptosis/genetics , Promoter Regions, Genetic
16.
FASEB J ; 38(10): e23659, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38733301

ABSTRACT

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Histone Deacetylases , Animals , Mice , Acrylamides , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Phenylenediamines/pharmacology
17.
Biol Direct ; 19(1): 37, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734627

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (RCC) is the most common kidney tumor. The analysis from medical database showed that Scm-like with four MBT domains protein 2 (SFMBT2) was decreased in advanced clear cell RCC cases, and its downregulation was associated with the poor prognosis. This study aims to investigate the role of SFMBT2 in clear cell RCC. METHODS: The expression of SFMBT2 in clear cell RCC specimens were determined by immunohistochemistry staining and western blot. The overexpression and knockdown of SFMBT2 was realized by infection of lentivirus loaded with SFMBT2 coding sequence or silencing fragment in 786-O and 769-P cells, and its effects on proliferation and metastasis were assessed by MTT, colony formation, flow cytometry, wound healing, transwell assay, xenograft and metastasis experiments in nude mice. The interaction of SFMBT2 with histone deacetylase 3 (HDAC3) and seven in absentia homolog 1 (SIAH1) was confirmed by co-immunoprecipitation. RESULTS: In our study, SFMBT2 exhibited lower expression in clear cell RCC specimens with advanced stages than those with early stages. Overexpression of SFMBT2 inhibited the growth and metastasis of clear cell RCC cells, 786-O and 769-P, in vitro and in vivo, and its silencing displayed opposites effects. HDAC3 led to deacetylation of SFMBT2, and the HDAC3 inhibitor-induced acetylation prevented SFMBT2 from SIAH1-mediated ubiquitination modification and proteasome degradation. K687 in SFMBT2 protein molecule may be the key site for acetylation and ubiquitination. CONCLUSIONS: SFMBT2 exerted an anti-tumor role in clear cell RCC cells, and HDAC3-mediated deacetylation promoted SIAH1-controlled ubiquitination of SFMBT2. SFMBT2 may be considered as a novel clinical diagnostic marker and/or therapeutic target of clear cell RCC, and crosstalk between its post-translational modifications may provide novel insights for agent development.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Repressor Proteins , Ubiquitination , Animals , Humans , Mice , Acetylation , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice, Nude , Repressor Proteins/metabolism
18.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 40-47, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814236

ABSTRACT

Periodontal ligament stem cells (PDLSCs) show plasticity towards the adipogenic lineage; however, little has been done on the participation of epigenetic mechanisms. Histone acetylation is a dynamic process, though balanced by histone acetyltransferases (HATs) and histone deacetylases (HDACs) activities. This process can be halted by HDACs inhibitors, such as trichostatin A (TSA) and valproic acid (VPA). This study aimed to determine the role of HDACs class I in adipogenic differentiation of PDL cells. PDLSCs were treated with TSA at concentrations of 100, 200, and 250 nM, or VPA at 1, 4 and 8 mM. Cell viability was assessed using MTT assays. Gene expression of pluripotency markers (NANOG, OCT4, SOX2), HAT genes (p300, GCN5), and HDACs genes (HDAC1-3) was analyzed by RT-qPCR. Adipogenic differentiation was evaluated via oil red O staining, and acetylation of histone H3 lysine 9 (H3K9ac) was examined by Western blot. VPA treatment resulted in a 60% reduction in cell proliferation, compared to a 50% when using TSA. Cell viability was not affected by either inhibitor. Furthermore, both TSA and VPA induced adipogenic differentiation, through an increase in the deposition of lipid droplets and in GCN5 and p300 expression were observed. Western blot analysis showed that TSA increased H3K9ac levels on adipogenic differentiation of PDLSCs. These findings highlight the potential of HDAC inhibitors as a tool for modulating H3K9 acetylation status and thus influencing adipogenic differentiation of PDLCs.


Subject(s)
Adipogenesis , Cell Differentiation , Cell Survival , Histone Deacetylase Inhibitors , Periodontal Ligament , Valproic Acid , Humans , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Histone Deacetylase Inhibitors/pharmacology , Adipogenesis/drug effects , Adipogenesis/genetics , Valproic Acid/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Acetylation/drug effects , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Hydroxamic Acids/pharmacology , Cells, Cultured , Histones/metabolism , Cell Proliferation/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism
19.
Environ Pollut ; 355: 124194, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782158

ABSTRACT

Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.


Subject(s)
Fibrosis , Histone Deacetylases , Scleroderma, Systemic , Silicon Dioxide , Skin , Smad2 Protein , Smad3 Protein , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/chemically induced , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Animals , Mice , Humans , Smad3 Protein/metabolism , Skin/metabolism , Smad2 Protein/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction/drug effects
20.
Biochem Pharmacol ; 225: 116312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788962

ABSTRACT

Histone deacetylase 11 (HDAC11), a member of the HDAC family, has emerged as a critical regulator in numerous physiological as well as pathological processes. Due to its diverse roles, HDAC11 has been a focal point of research in recent times. Different non-selective inhibitors are already approved, and research is going on to find selective HDAC11 inhibitors. The objective of this review is to comprehensively explore the role of HDAC11 as a pivotal regulator in a multitude of physiological and pathological processes. It aims to delve into the intricate details of HDAC11's structural and functional aspects, elucidating its molecular interactions and implications in different disease contexts. With a primary focus on elucidating the structure-activity relationships (SARs) of HDAC11 inhibitors, this review also aims to provide a holistic understanding of how its molecular architecture influences its inhibition. Additionally, by integrating both established knowledge and recent research, the review seeks to contribute novel insights into the potential therapeutic applications of HDAC11 inhibitors. Overall, the scope of this review spans from fundamental research elucidating the complexities of HDAC11 biology to the potential of targeting HDAC11 in therapeutic interventions.


Subject(s)
Drug Design , Epigenesis, Genetic , Histone Deacetylase Inhibitors , Histone Deacetylases , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Animals , Epigenesis, Genetic/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...