Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.705
Filter
1.
Can Vet J ; 65(8): 813-816, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091477

ABSTRACT

Objective: Our objective was to determine whether equine herpesviruses 1 (EHV-1) viral nucleic acids could be detected immediately after foaling from nasal and vaginal swabs, whole blood, and placental tissue of healthy mares. Animals procedure and results: Nasal and vaginal swabs, EDTA blood, and placental tissue (296 samples) were collected from 74 clinically healthy postpartum broodmares within 24 h after giving birth to live, clinically healthy foals. All samples were tested (PCR) for nucleic acids of neuropathogenic and non-neuropathogenic strains of EHV-1, and all were negative. Conclusion and clinical relevance: As EHV-1 was not detected in the immediate postpartum period in healthy mares with uncomplicated foaling, we inferred that EHV-1-positive samples from aborting mares and/or EHV-1 detection in fetal membranes indicate EHV-1-associated abortion.


Tests moléculaires pour l'herpèsvirus équin 1 (EHV-1) chez des juments poulinières post-partum en bonne santé. Objectif: Notre objectif était de déterminer si les acides nucléiques viraux de l'herpèsvirus équin 1 (EHV-1) pouvaient être détectés immédiatement après la mise bas à partir de prélèvements nasaux et vaginaux, de sang total et de tissus placentaires de juments saines. Animaux procédure et résultats: Des écouvillons nasaux et vaginaux, du sang EDTA et du tissu placentaire (296 échantillons) ont été prélevés sur 74 juments poulinières post-partum cliniquement saines dans les 24 heures suivant la naissance de poulains vivants et cliniquement sains. Tous les échantillons ont été testés (PCR) pour les acides nucléiques des souches neuropathogènes et non-neuropathogènes de l'EHV-1, et tous se sont révélés négatifs. Conclusion et pertinence clinique: Comme l'EHV-1 n'a pas été détecté dans la période post-partum immédiate chez des juments en bonne santé avec un poulinage sans complication, nous avons déduit que les échantillons positifs pour l'EHV-1 provenant de juments qui ont avorté et/ou la détection de l'EHV-1 dans les membranes foetales indiquent un avortement associé à l'EHV-1.(Traduit par Dr Serge Messier).


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Postpartum Period , Animals , Horses , Herpesvirus 1, Equid/isolation & purification , Female , Horse Diseases/virology , Horse Diseases/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Pregnancy , Placenta/virology , Vagina/virology , Abortion, Veterinary/virology , DNA, Viral/analysis , DNA, Viral/isolation & purification , Polymerase Chain Reaction/veterinary
2.
PLoS One ; 19(7): e0301987, 2024.
Article in English | MEDLINE | ID: mdl-38995916

ABSTRACT

Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.


Subject(s)
Antibodies, Viral , Herpesvirus 1, Equid , Horse Diseases , Viral Envelope Proteins , Animals , Horses/immunology , Herpesvirus 1, Equid/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Envelope Proteins/immunology , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , Herpesvirus 4, Equid/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Protein Domains/immunology
3.
Vet Microbiol ; 295: 110167, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38954881

ABSTRACT

Hendra virus (HeV) is lethal to horses and a zoonotic threat to humans in Australia, causing severe neurological and/or respiratory disease with high mortality. An equine vaccine has been available since 2012. Foals acquire antibodies from their dams by ingesting colostrum after parturition, therefore it is assumed that foals of mares vaccinated against HeV will have passive HeV antibodies circulating during the first several months of life until they are actively vaccinated. However, no studies have yet examined passive or active immunity against HeV in foals. Here, we investigated anti-HeV antibody levels in vaccinated mares and their foals. Testing for HeV neutralising antibodies is cumbersome due to the requirement for Biosafety level 4 (BSL-4) containment to conduct virus neutralisation tests (VNT). For this study, a subset of samples was tested for HeV G-specific antibodies by both an authentic VNT with infectious HeV and a microsphere-based immunoassay (MIA), revealing a strong correlation. An indicative neutralising level was then applied to the results of a larger sample set tested using the MIA. Mares had high levels of HeV-specific neutralising antibodies at the time of parturition. Foals acquired high levels of maternal antibodies which then waned to below predictive protective levels in most foals by 6 months old when vaccination commenced. Foals showed a suboptimal response to vaccination, suggesting maternal antibodies may interfere with active vaccination. The correlation analysis between the authentic HeV VNT and HeV MIA will enable further high throughput serological studies to inform optimal vaccination protocols for both broodmares and foals.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Hendra Virus , Henipavirus Infections , Horse Diseases , Vaccination , Viral Vaccines , Animals , Horses , Hendra Virus/immunology , Horse Diseases/prevention & control , Horse Diseases/virology , Horse Diseases/immunology , Antibodies, Viral/blood , Henipavirus Infections/prevention & control , Henipavirus Infections/veterinary , Henipavirus Infections/immunology , Henipavirus Infections/virology , Female , Vaccination/veterinary , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Immunity, Maternally-Acquired , Animals, Newborn/immunology , Pregnancy , Neutralization Tests/veterinary , Australia , Colostrum/immunology
4.
Front Immunol ; 15: 1408510, 2024.
Article in English | MEDLINE | ID: mdl-39021566

ABSTRACT

Equid alphaherpesvirus 1 (EqAHV1) is a viral pathogen known to cause respiratory disease, neurologic syndromes, and abortion storms in horses. Currently, there are no vaccines that provide complete protection against EqAHV1. Marker vaccines and the differentiation of infected and vaccinated animals (DIVA) strategy are effective for preventing and controlling outbreaks but have not been used for the prevention of EqAHV1 infection. Glycoprotein 2 (gp2), located on the envelope of viruses (EqAHV1), exhibits high antigenicity and functions as a molecular marker for DIVA. In this study, a series of EqAHV1 mutants with deletion of gp2 along with other virulence genes (TK, UL24/TK, gI/gE) were engineered. The mutant viruses were studied in vitro and then in an in vivo experiment using Golden Syrian hamsters to assess the extent of viral attenuation and the immune response elicited by the mutant viruses in comparison to the wild-type (WT) virus. Compared with the WT strain, the YM2019 Δgp2, ΔTK/gp2, and ΔUL24/TK/gp2 strains exhibited reduced growth in RK-13 cells, while the ΔgI/gE/gp2 strain exhibited significantly impaired proliferation. The YM2019 Δgp2 strain induced clinical signs and mortality in hamsters. In contrast, the YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 variants displayed diminished pathogenicity, causing no observable clinical signs or fatalities. Immunization with nasal vaccines containing YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 elicited a robust immune response in hamsters. In particular, compared with the vaccine containing the ΔTK/gp2 strain, the vaccine containing the ΔUL24/TK/gp2 strain demonstrated enhanced immune protection upon challenge with the WT virus. Furthermore, an ELISA for gp2 was established and refined to accurately differentiate between infected and vaccinated animals. These results confirm that the ΔUL24/TK/gp2 strain is a safe and effective live attenuated vaccine candidate for controlling EqAHV1 infection.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Vaccines, Attenuated , Animals , Vaccines, Attenuated/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/immunology , Herpesvirus 1, Equid/genetics , Horses , Mesocricetus , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Cricetinae , Horse Diseases/prevention & control , Horse Diseases/immunology , Horse Diseases/virology , Viral Vaccines/immunology , Viral Vaccines/genetics , Cell Line , Mutation
5.
BMC Vet Res ; 20(1): 287, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961400

ABSTRACT

BACKGROUND: Equine herpesvirus 4 (EHV-4) causes respiratory disease in horses, and the virus is considered endemic in the global equine population. However, outbreaks can occur when several horses are gathered in relation to shows, competitions, breeding units and at hospitals. In the spring year 2022, an EHV-4 outbreak occurred at the Large Animal Teaching Hospital, University of Copenhagen, Denmark. Nine horses were tested EHV-4 positive during the outbreak, which lasted approx. seven weeks. In addition, a tenth horse "Eq10" tested EHV-4 positive almost three weeks after the last of the outbreak horses tested positive. Detailed clinical registrations were obtained from all ten horses as well as their location and movement during hospitalization. Nasal swabs were obtained throughout the outbreak and tested by qPCR for EHV-4. Additionally, pre- and post-infection sera were tested for the presence of EHV-4 antibodies. Selected samples were characterized by partial and full genome sequencing. RESULTS: The most common clinical signs of the EHV-4 infected horses during this outbreak were pyrexia, nasal discharge, mandibular lymphadenopathy and increased lung sounds upon auscultation. Based on the locations of the horses, EHV-4 detection and antibody responses the most likely "patient zero" was identified as being "Eq1". Partial genome sequencing revealed that Eq10 was infected by another wild type EHV-4 strain, suggesting that the hospital was able to eliminate the outbreak by testing and reinforcing biosecurity measures. The complete genome sequence of the outbreak strain was obtained and revealed a closer relation to Australian and Japanese EHV-4 strains rather than to other European EHV-4 strains, however, very limited sequence data are available from Europe. CONCLUSION: The study illustrated the transmission of EHV-4 within an equine facility/hospital and provided new insights into the viral shedding, antibody responses and clinical signs related to EHV-4 infections. Finally, sequencing proved a useful tool in understanding the transmission within the hospital, and in characterizing of the outbreak strain.


Subject(s)
Disease Outbreaks , Herpesviridae Infections , Herpesvirus 4, Equid , Horse Diseases , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Disease Outbreaks/veterinary , Denmark/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 4, Equid/isolation & purification , Male , Female , Antibodies, Viral/blood , Hospitals, Animal
6.
Viruses ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39066232

ABSTRACT

In populations of healthy show horses, the subclinical transmission and circulation of respiratory pathogens can lead to disease outbreaks. Due to recent outbreaks of equine herpesvirus-1 myeloencephalopathy (EHM) in the USA and Europe, many show organizers have instituted various biosecurity protocols such as individual horse testing, monitoring for early clinical disease and increasing hygiene and cleanliness protocols. The aim of this study was to determine the accuracy of detecting EHV-1 in the various environmental samples collected from the stalls of subclinical shedders. Four healthy adult horses were vaccinated intranasally with a modified-live EHV-1 vaccine in order to mimic subclinical shedding. Three additional horses served as non-vaccinated controls. All the horses were stabled in the same barn in individual stalls. Each vaccinated horse had nose-to-nose contact with at least one other horse. Prior to the vaccine administration, and daily thereafter for 10 days, various samples were collected, including a 6" rayon-tipped nasal swab, an environmental sponge, a cloth strip placed above the automatic waterer and an air sample. The various samples were processed for nucleic acid purification and analyzed for the presence of EHV-1 via quantitative PCR (qPCR). EHV-1 in nasal secretions was only detected in the vaccinated horses for 1-2 days post-vaccine administration. The environmental sponges tested EHV-1 qPCR-positive for 2-5 days (median 3.5 days) in the vaccinated horses and 1 day for a single control horse. EHV-1 was detected by qPCR in stall strips from three out of four vaccinated horses and from two out of three controls for only one day. EHV-1 qPCR-positive air samples were only detected in three out of four vaccinated horses for one single day. For the vaccinated horses, a total of 25% of the nasal swabs, 35% of the environmental stall sponges, 7.5% of the strips and 7.5% of the air samples tested qPCR positive for EHV-1 during the 10 study days. When monitoring the subclinical EHV-1 shedders, the collection and testing of the environmental sponges were able to detect EHV-1 in the environment with greater frequency as compared to nasal swabs, stationary strips and air samples.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/virology , Horse Diseases/diagnosis , Horse Diseases/prevention & control , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Herpesviridae Infections/prevention & control , Virus Shedding , Environmental Microbiology
7.
Viruses ; 16(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39066254

ABSTRACT

BACKGROUND: Equid alphaherpesvirus 1 (EHV-1) is a highly contagious respiratory tract pathogen of horses, and infection may be followed by myeloencephalopathy or abortion. Surveillance and early detection have focused on PCR assays using less tolerated nasal swabs. Here, we assess non-invasive non-contact sampling techniques as surveillance tools in naturally equid gammaherpesvirus 2-shedding horses as surrogates for EHV-1. METHODS: Horses were individually housed for 10 h periods on 2 consecutive days. Sampling included nasal swabs, nostril wipes, environmental swabs, droplet-catching devices, and air sampling. The latter was completed via two strategies: a combined air sample collected while going from horse to horse and a collective air sample collected at a stationary central point for 6 h. Samples were screened through quantitative PCR and digital PCR. RESULTS: Nine horses on day 1 and 11 horses on day 2 were positive for EHV-1; overall, 90.9% of the nostril wipes, 81.8% of the environmental surfaces, and 90.9% of the droplet-catching devices were found to be positive. Quantitative analysis showed that the mean DNA copies detection per cm2 of nostril wipe sampled concentration (4.3 × 105 per day) was significantly (p < 0.05) comparable to that of nasal swabs (3.6 × 105 per day) followed by environmental swabs (4.3 × 105 per day) and droplet catchers (3.5 × 103 per day), respectively. Overall, 100% of the air samples collected were positive on both qPCR and dPCR. In individual air samples, a mean concentration of 1.0 × 104 copies of DNA were detected in per m3 air sampled per day, while in the collective air samples, the mean concentration was 1.1 × 103. CONCLUSIONS: Environmental samples look promising in replacing direct contact sampling. Environmental and air sampling could become efficient surveillance tools at equestrian events; however, it needs threshold calculations for minimum detection levels.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses/virology , Horse Diseases/virology , Horse Diseases/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Herpesvirus 1, Equid/isolation & purification , Herpesvirus 1, Equid/genetics , Specimen Handling/methods , Female , Virus Shedding
8.
Virology ; 597: 110164, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959722

ABSTRACT

In this review, we explore how pseudotyped viruses (PVs) are being applied to the study of viruses affecting both humans and horses. For the purposes of this review, we define PVs as non-replicative viruses with the core of one virus and the surface protein(s) of another and encapsulating a reporter gene such as luciferase. These 'reporter' PVs enable receptor-mediated entry into host cells to be quantified, and thus can be applied to study the initial stages of viral replication. They can also be used to test antiviral activity of compounds and measure envelope protein-specific antibodies in neutralisation tests.


Subject(s)
Horse Diseases , Virus Diseases , Horses , Animals , Humans , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/veterinary , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/epidemiology , Viruses/immunology , Viruses/genetics , Viruses/pathogenicity , Viruses/classification , Virus Replication , Virus Internalization , Antibodies, Viral/immunology
10.
Microb Pathog ; 193: 106755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897362

ABSTRACT

Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Horse Diseases/virology
11.
J Vet Intern Med ; 38(4): 2373-2379, 2024.
Article in English | MEDLINE | ID: mdl-38899610

ABSTRACT

BACKGROUND: Equine parvovirus hepatitis (EqPV-H) can cause Theiler's disease and subclinical hepatitis in horses. OBJECTIVES: Assess the frequency of subclinical EqPV-H infection in hospitalized horses and to study viral transmission by investigating potential shedding routes. ANIMALS: One hundred sixteen equids, that presented to the University Equine Hospital of the University of Veterinary Medicine Vienna between February 2021 and March 2022, for causes other than hepatopathy. METHODS: In this cross-sectional study, samples (serum, feces, nasal, and buccal swabs) of hospitalized horses were collected. Sera were screened for the presence of anti-EqPV-H antibodies by a luciferase immunoprecipitation system assay. Quantitative PCR was used for the detection of EqPV-H DNA in the samples and a nested PCR was used for further validation. RESULTS: Seroprevalence was 10.3% (12/116) and viremia occurred in 12.9% (15/116) of the serologically positive horses. The detected viral load in serum varied from non-quantifiable amount to 1.3 × 106 genome equivalents per milliliter of serum. A low viral load of EqPV-H DNA was detected in 2 nasal swabs and 1 fecal sample. CONCLUSION AND CLINICAL IMPORTANCE: EqPV-H DNA was detected in nasal secretions and feces of viremic horses, which could pose a risk to naive hospitalized horses. It is advisable to screen hospitalized horses that are potential donors of blood or plasma to reduce the risk of iatrogenic EqPV-H transmission.


Subject(s)
Hepatitis, Viral, Animal , Horse Diseases , Parvoviridae Infections , Parvovirus , Virus Shedding , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Austria/epidemiology , Cross-Sectional Studies , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/epidemiology , Male , Female , Parvovirus/isolation & purification , Feces/virology , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , Seroepidemiologic Studies , Viremia/veterinary , DNA, Viral , Viral Load/veterinary
12.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932133

ABSTRACT

Equine influenza is a viral disease caused by the equine influenza virus (EIV), and according to the WOAH, it is mandatory to report these infections. In Latin America and Colombia, EIV risk factors have not been analyzed. The objective of this research is to perform an epidemiological and molecular analysis of the EIV in horses with respiratory symptoms from 2020 to 2023 in Colombia. Molecular EIV detection was performed using RT-qPCR and nanopore sequencing. A risk analysis was also performed via the GEE method. A total of 188 equines with EIV respiratory symptoms were recruited. The positivity rate was 33.5%. The descriptive analysis showed that only 12.8% of the horses were vaccinated, and measures such as the quarantine and isolation of symptomatic animals accounted for 91.5% and 88.8%, respectively. The variables associated with the EIV were the non-isolation of positive individuals (OR = 8.16, 95% CI (1.52-43.67), p = 0.014) and sharing space with poultry (OR = 2.16, 95% CI (1.09-4.26), p = 0.027). In conclusion, this is the first EIV investigation in symptomatic horses in Colombia, highlighting the presence of the virus in the country and the need to improve preventive and control measures.


Subject(s)
Horse Diseases , Influenza A Virus, H3N8 Subtype , Orthomyxoviridae Infections , Horses , Animals , Colombia/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Horse Diseases/virology , Horse Diseases/epidemiology , Influenza A Virus, H3N8 Subtype/isolation & purification , Influenza A Virus, H3N8 Subtype/genetics , Female , Male , Phylogeny , Nanopore Sequencing/methods , Risk Factors
13.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932156

ABSTRACT

Reports of newly discovered equine hepatotropic flavi- and parvoviruses have emerged throughout the last decade in many countries, the discovery of which has stimulated a great deal of interest and clinical research. Although commonly detected in horses without signs of disease, equine parvovirus hepatitis (EqPV-H) and equine hepacivirus (EqHV) have been associated with liver disease, including following the administration of contaminated anti-toxin. Our aim was to determine whether EqPV-H and EqHV are present in Australian horses and whether EqPV-H was present in French horses and to examine sequence diversity between strains of both viruses amongst infected horses on either side of the globe. Sera from 188 Australian horses and 256 French horses from horses with and without clinical signs of disease were collected. Twelve out of 256 (4.7%) and 6 out of 188 (3.2%) French and Australian horses, respectively, were positive for the molecular detection of EqPV-H. Five out of 256 (1.9%) and 21 out of 188 (11.2%) French and Australian horses, respectively, were positive for the molecular detection of EqHV. Australian strains for both viruses were genomically clustered, in contrast to strains from French horses, which were more broadly distributed. The findings of this preliminary survey, with the molecular detection of EqHV and EqPV-H in Australia and the latter in France, adds to the growing body of awareness regarding these recently discovered hepatotropic viruses. It has provided valuable information not just in terms of geographic endemicity but will guide equine clinicians, carers, and authorities regarding infectious agents and potential impacts of allogenic tissue contamination. Although we have filled many gaps in the world map regarding equine hepatotropic viruses, further prospective studies in this emerging field may be useful in terms of elucidating risk factors and pathogenesis of these pathogens and management of cases in terms of prevention and diagnosis.


Subject(s)
Hepacivirus , Hepatitis, Viral, Animal , Horse Diseases , Parvoviridae Infections , Parvovirus , Phylogeny , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Horse Diseases/blood , Australia/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Parvoviridae Infections/blood , France/epidemiology , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/epidemiology , Hepatitis, Viral, Animal/blood , Parvovirus/genetics , Parvovirus/isolation & purification , Parvovirus/classification , Parvovirus/immunology , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepacivirus/immunology , Hepatitis C/veterinary , Hepatitis C/virology , Hepatitis C/epidemiology
14.
BMC Vet Res ; 20(1): 270, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909196

ABSTRACT

Equid alphaherpesvirus 1 (EHV-1) is a ubiquitous and significant viral pathogen in horses worldwide, causing a range of conditions, including fever, respiratory disease, abortion in pregnant mares and the severe neurological disease called equine herpes myeloencephalopathy (EHM). Despite that EHV-1 is a notifiable animal disease in Sweden, there is limited knowledge about the circulating strains. This study aimed to analyze the genetic diversity of EHV-1 strains in equine samples from different Swedish outbreaks by partial genome sequencing. Genotyping based on three selected open reading frames ORF11, ORF30, and ORF34 in the viral genome was conducted for 55 outbreaks of EHV-1 spanning from the years 2012 to 2021. The analysis revealed 14 different genovariants, with one prominent genovariant identified in 49% of the outbreaks. Additionally, the study identified seven mutations not previously described. Three new mutations were demonstrated in ORF11, all synonymous, and four new mutations in ORF34, two synonymous, and two non-synonymous. Notably, different EHV-1 genovariants were found in five out of six studied EHM outbreaks, but clonal spreading was shown within the outbreaks. Moreover, the study demonstrated that healthy (recovered) horses that returned from an EHM outbreak at an international meeting in Valencia, Spain (2021), were positive for the virus clone responsible for the severe disease outbreak despite several weeks of quarantine. These findings shed light on the genetic diversity and transmission dynamics of the virus and significantly contribute to better understanding of the epidemiology of EHV-1 in Sweden and globally.


Subject(s)
Disease Outbreaks , Genetic Variation , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Sweden/epidemiology , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/virology , Horse Diseases/epidemiology , Disease Outbreaks/veterinary , Herpesviridae Infections/veterinary , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Genome, Viral , Genotype , Open Reading Frames
15.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793627

ABSTRACT

Equid herpesvirus 4 (EHV-4) is a common respiratory pathogen in horses. It sporadically induces abortion or neonatal death. Although its contribution in neurological disorders is not clearly demonstrated, there is a strong suspicion of its involvement. Despite preventive treatments using vaccines against EHV-1/EHV-4, the resurgence of alpha-EHV infection still constitutes an important threat to the horse industry. Yet very few studies have been conducted on the search for antiviral molecules against EHV-4. A screening of 42 antiviral compounds was performed in vitro on equine fibroblast cells infected with the EHV-4 405/76 reference strain (VR2230). The formation of cytopathic effects was monitored by real-time cell analysis (RTCA), and the viral load was quantified by quantitative PCR. Aciclovir, the most widely used antiviral against alpha-herpesviruses in vivo, does not appear to be effective against EHV-4 in vitro. Potential antiviral activities were confirmed for eight molecules (idoxuridine, vidarabine, pritelivir, cidofovir, valganciclovir, ganciclovir, aphidicolin, and decitabine). Decitabine demonstrates the highest efficacy against EHV-4 in vitro. Transcriptomic analysis revealed the up-regulation of various genes implicated in interferon (IFN) response, suggesting that decitabine triggers the immune antiviral pathway.


Subject(s)
Antiviral Agents , Decitabine , Herpesvirus 4, Equid , Immunity, Innate , Animals , Antiviral Agents/pharmacology , Horses , Decitabine/pharmacology , Immunity, Innate/drug effects , Herpesvirus 4, Equid/drug effects , Fibroblasts/drug effects , Fibroblasts/virology , Herpesviridae Infections/drug therapy , Herpesviridae Infections/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Horse Diseases/virology , Horse Diseases/drug therapy , Horse Diseases/immunology , Viral Load/drug effects , Cell Line , Virus Replication/drug effects , Drug Evaluation, Preclinical
16.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793662

ABSTRACT

Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.


Subject(s)
Horse Diseases , Vaccination , West Nile Fever , West Nile Virus Vaccines , West Nile virus , West Nile Fever/immunology , West Nile Fever/prevention & control , West Nile Fever/virology , West Nile Fever/epidemiology , West Nile Fever/transmission , Horses , Animals , West Nile virus/immunology , Humans , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , West Nile Virus Vaccines/immunology , Vaccination/veterinary , One Health , United States/epidemiology
17.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38767608

ABSTRACT

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Subject(s)
Cytokines , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Herpesvirus 1, Equid/immunology , Female , Horse Diseases/virology , Horse Diseases/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Cytokines/blood , Cytokines/immunology , Antibodies, Viral/blood , Virus Shedding , Viremia/immunology , Viremia/veterinary , Immunoglobulin G/blood
18.
J Virol ; 98(6): e0025024, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38742875

ABSTRACT

Equine herpesvirus type 1 (EHV-1) is a contagious respiratory pathogen that infects the mucosa of the upper respiratory tract (URT). Mucosal immune responses at the URT provide the first line of defense against EHV-1 and are crucial for orchestrating immunity. To define host-pathogen interactions, we characterized B-cell responses, antibody isotype functions, and EHV-1 replication of susceptible (non-immune) and clinically protected (immune) horses after experimental EHV-1 infection. Nasal secretion and nasal wash samples were collected and used for the isolation of DNA, RNA, and mucosal antibodies. Shedding of infectious virus, EHV-1 copy numbers, viral RNA expression, and host B-cell activation in the URT were compared based on host immune status. Mucosal EHV-1-specific antibody responses were associated with EHV-1 shedding and viral RNA transcription. Finally, mucosal immunoglobulin G (IgG) and IgA isotypes were purified and tested for neutralizing capabilities. IgG1 and IgG4/7 neutralized EHV-1, while IgG3/5, IgG6, and IgA did not. Immune horses secreted high amounts of mucosal EHV-1-specific IgG4/7 antibodies and quickly upregulated B-cell pathway genes, while EHV-1 was undetected by virus isolation and PCR. RNA transcription analysis reinforced incomplete viral replication in immune horses. In contrast, complete viral replication with high viral copy numbers and shedding of infectious viruses was characteristic for non-immune horses, together with low or absent EHV-1-specific neutralizing antibodies during viral replication. These data confirm that pre-existing mucosal IgG1 and IgG4/7 and rapid B-cell activation upon EHV-1 infection are essential for virus neutralization, regulation of viral replication, and mucosal immunity against EHV-1.IMPORTANCEEquine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion storms, and neurologic outbreaks known as equine herpes myeloencephalopathy (EHM). EHV-1 is transmitted with respiratory secretions by nose-to-nose contact or via fomites. The virus initially infects the epithelium of the upper respiratory tract (URT). Host-pathogen interactions and mucosal immunity at the viral entry site provide the first line of defense against the EHV-1. Robust mucosal immunity can be essential in protecting against EHV-1 and to reduce EHM outbreaks. It has previously been shown that immune horses do not establish cell-associated viremia, the prerequisite for EHM. Here, we demonstrate how mucosal antibodies can prevent the replication of EHV-1 at the epithelium of the URT and, thereby, the progression of the virus to the peripheral blood. The findings improve the mechanistic understanding of mucosal immunity against EHV-1 and can support the development of enhanced diagnostic tools, vaccines against EHM, and the management of EHV-1 outbreaks.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Immunoglobulin G , Virus Replication , Animals , Herpesvirus 1, Equid/immunology , Horses , Herpesviridae Infections/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Horse Diseases/virology , Horse Diseases/immunology , Immunoglobulin G/immunology , Immunity, Mucosal , Virus Shedding/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Host-Pathogen Interactions/immunology
19.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734647

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Subject(s)
Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
20.
J Equine Vet Sci ; 136: 105063, 2024 May.
Article in English | MEDLINE | ID: mdl-38608970

ABSTRACT

A 17-year-old mare presenting with acute fever, weakness and bladder dysfunction was diagnosed with equine herpesvirus myeloencephalopathy (EHM). The mare become transiently recumbent, underwent parenteral fluid therapy, plasma infusion, steroidal/nonsteroidal anti-inflammatory drugs (SAID/NSAIDs) and bladder catheterization. After 10 days the mare was hospitalized. Neurological evaluation revealed ataxia and proprioceptive deficits mainly in the hind limbs. The mare was able to stand but unable to rise from recumbency or walk. Secondary complications included Escherichia coli cystitis, corneal ulcers and pressure sores. A full-body support sling was used for 21 days. Medical treatment included systemic antimicrobials, NSAIDs, gradual discontinuation of SAIDs, parenteral fluid therapy and bladder lavage. The mare tested positive for Varicellovirus equidalpha 1 (EHV-1) DNA in nasal swab and blood samples on day 13 and in urine samples on days 13 and 25 after the onset of fever. Neurological signs improved over a period of 34 days and the mare was discharged with mild hind limb weakness/ataxia. Secondary complications resolved within 2 weeks. At the eight-month follow-up, marked improvement in locomotory function had been achieved.


Subject(s)
Herpesviridae Infections , Horse Diseases , Horses , Animals , Female , Horse Diseases/virology , Horse Diseases/drug therapy , Herpesviridae Infections/drug therapy , Herpesviridae Infections/veterinary , Herpesviridae Infections/complications , Herpesvirus 1, Equid/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL