Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.973
Filter
1.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Article in English | MEDLINE | ID: mdl-38975331

ABSTRACT

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Subject(s)
Angiotensin-Converting Enzyme 2 , Autopsy , COVID-19 , SARS-CoV-2 , Serine Endopeptidases , Tongue , Viral Tropism , Humans , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , Tongue/virology , Tongue/pathology , Male , Angiotensin-Converting Enzyme 2/metabolism , Female , Middle Aged , Serine Endopeptidases/metabolism , Salivary Glands/virology , Salivary Glands/pathology , Aged , Taste Buds/virology , Taste Buds/pathology , Receptors, Virus/metabolism
2.
Front Immunol ; 15: 1375508, 2024.
Article in English | MEDLINE | ID: mdl-38895117

ABSTRACT

Introduction: Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods: In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results: Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion: Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.


Subject(s)
Animals, Newborn , Gene Expression Profiling , Thymus Gland , Transcriptome , Viral Tropism , Thymus Gland/virology , Thymus Gland/immunology , Animals , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Mice, Inbred C57BL , Humans
3.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932120

ABSTRACT

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Subject(s)
Genetic Vectors , HN Protein , Lentivirus , Sendai virus , Transduction, Genetic , Viral Envelope Proteins , Animals , Humans , Genetic Vectors/genetics , Lentivirus/genetics , Sendai virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Mice , HN Protein/genetics , HN Protein/metabolism , Cell Line , Macaca fascicularis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Viral Tropism , HEK293 Cells , Gene Transfer Techniques , Genetic Therapy/methods
4.
Sci Adv ; 10(23): eadj4735, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838150

ABSTRACT

Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.


Subject(s)
Brain , COVID-19 , Choroid Plexus , Down Syndrome , Organoids , SARS-CoV-2 , Serine Endopeptidases , Choroid Plexus/virology , Choroid Plexus/metabolism , Choroid Plexus/pathology , Organoids/virology , Organoids/metabolism , Organoids/pathology , Humans , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/pathology , COVID-19/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Down Syndrome/genetics , Brain/virology , Brain/pathology , Brain/metabolism , Neurons/metabolism , Neurons/virology , Neurons/pathology , Virus Replication , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/virology , Furin/metabolism , Furin/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Viral Tropism
5.
J Med Virol ; 96(6): e29707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932451

ABSTRACT

Coxsackievirus B1 (CVB1), an enterovirus with multiple clinical presentations, has been associated with potential long-term consequences, including hand, foot, and mouth disease (HFMD), in some patients. However, the related animal models, transmission dynamics, and long-term tissue tropism of CVB1 have not been systematically characterized. In this study, we established a model of CVB1 respiratory infection in rhesus macaques and evaluated the clinical symptoms, viral load, and immune levels during the acute phase (0-14 days) and long-term recovery phase (15-30 days). We also investigated the distribution, viral clearance, and pathology during the long-term recovery period using 35 postmortem rhesus macaque tissue samples collected at 30 days postinfection (d.p.i.). The results showed that the infected rhesus macaques were susceptible to CVB1 and exhibited HFMD symptoms, viral clearance, altered cytokine levels, and the presence of neutralizing antibodies. Autopsy revealed positive viral loads in the heart, spleen, pancreas, soft palate, and olfactory bulb tissues. HE staining demonstrated pathological damage to the liver, spleen, lung, soft palate, and tracheal epithelium. At 30 d.p.i., viral antigens were detected in visceral, immune, respiratory, and muscle tissues but not in intestinal or neural tissues. Brain tissue examination revealed viral meningitis-like changes, and CVB1 antigen expression was detected in occipital, pontine, cerebellar, and spinal cord tissues at 30 d.p.i. This study provides the first insights into CVB1 pathogenesis in a nonhuman primate model of HFMD and confirms that CVB1 exhibits tissue tropism following long-term infection.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Viral Load , Viral Tropism , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/physiology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Animals, Newborn , Cytokines/metabolism
6.
Viruses ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932271

ABSTRACT

Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.


Subject(s)
Capsid Proteins , Genotype , Mutation , Rotavirus Infections , Rotavirus , Serial Passage , Rotavirus/genetics , Rotavirus/classification , Humans , Capsid Proteins/genetics , Animals , Rotavirus Infections/virology , Cell Line , Virus Replication , High-Throughput Nucleotide Sequencing , Viral Tropism
7.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932275

ABSTRACT

Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.


Subject(s)
Peptide Hydrolases , Respiratory Tract Infections , SARS-CoV-2 , Humans , Respiratory Tract Infections/virology , Respiratory Tract Infections/drug therapy , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/enzymology , Peptide Hydrolases/metabolism , Viral Tropism , COVID-19/virology , Virus Diseases/drug therapy , Virus Diseases/virology , Antiviral Agents/pharmacology , Host-Pathogen Interactions , Protease Inhibitors/pharmacology
8.
Microbiol Spectr ; 12(7): e0389523, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809042

ABSTRACT

The susceptibility of genetically divergent HIV-1 strains (HIV-1 non-M) from groups O, N, and P to the CCR5 co-receptor antagonist, maraviroc (MVC), was investigated among a large panel of 45 clinical strains, representative of the viral genetic diversity. The results were compared to the reference strains of HIV-1 group M (HIV-1/M) with known tropism. Among the non-M strains, a wide range of phenotypic susceptibilities to MVC were observed. The large majority of HIV-1/O strains (40/42) displayed a high susceptibility to MVC, with median and mean IC50 values of 1.23 and 1.33 nM, respectively, similar to the HIV-1/M R5 strain (1.89 nM). However, the two remaining HIV-1/O strains exhibited a lower susceptibility (IC50 at 482 and 496 nM), in accordance with their dual/mixed (DM) tropism. Interestingly, the two HIV-1/N strains demonstrated varying susceptibility patterns, despite always having relatively low IC50 values (2.87 and 47.5 nM). This emphasized the complexity of determining susceptibility solely based on IC50 values. Our study examined the susceptibility of all HIV-1 non-M groups to MVC and correlated these findings with virus tropism (X4, R5, or DM). The results confirm the critical significance of tropism determination before initiating MVC treatment in patients infected with HIV-1 non-M. Furthermore, we advocate for the consideration of additional parameters, such as the slope of inhibition curves, to provide a more thorough characterization of phenotypic susceptibility profiles. IMPORTANCE: Unlike HIV-1 group M, the scarcity of studies on HIV-1 non-M groups (O, N, and P) presents challenges in understanding their susceptibility to antiretroviral treatments, particularly due to their natural resistance to non-nucleoside reverse transcriptase inhibitors. The TROPI-CO study logically complements our prior investigations into integrase inhibitors and anti-gp120 efficacy. The largest panel of 45 non-M strains existing so far yielded valuable results on maraviroc (MVC) susceptibility. The significant variations in MVC IC50 reveal a spectrum of susceptibilities, with most strains displaying R5 tropism. Notably, the absence of MVC-resistant strains suggests a potential therapeutic avenue. The study also employs a robust novel cell-based phenotropism assay and identifies distinct groups of susceptibilities based on inhibition curve slopes. Our findings emphasize the importance of determining tropism before initiating MVC and provide crucial insights for selecting effective therapeutic strategies in the delicate context of HIV-1 non-M infections.


Subject(s)
CCR5 Receptor Antagonists , HIV Infections , HIV-1 , Maraviroc , Viral Tropism , HIV-1/drug effects , HIV-1/genetics , HIV-1/physiology , Maraviroc/pharmacology , Humans , CCR5 Receptor Antagonists/pharmacology , HIV Infections/virology , HIV Infections/drug therapy , Inhibitory Concentration 50 , Triazoles/pharmacology , Phenotype , Microbial Sensitivity Tests , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , Anti-HIV Agents/pharmacology , Cyclohexanes/pharmacology , Drug Resistance, Viral/genetics , HIV Fusion Inhibitors/pharmacology
9.
J Nanobiotechnology ; 22(1): 223, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702815

ABSTRACT

Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.


Subject(s)
Dependovirus , Genetic Vectors , Myocardium , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Dependovirus/genetics , Animals , Nanoparticles/chemistry , Mice , Myocardium/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Mice, Inbred C57BL , Heart , Genetic Therapy/methods , Gene Transfer Techniques , Liver/metabolism , Viral Tropism , HEK293 Cells
10.
Virus Res ; 346: 199394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735439

ABSTRACT

Hantaan virus (HTNV) is a major public health concern due to its ability to cause hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Symptoms of HFRS include fever, hemorrhage, immune dysfunction and renal impairment, and severe cases can be fatal. T cell-mediated adaptive immune responses play a pivotal role in countering HTNV infection. However, our understanding of HTNV and T cell interactions in the disease progression is limited. In this study, we found that human CD4+ T cells can be directly infected with HTNV, thereby facilitating viral replication and production. Additionally, T-cell immunoglobulin and mucin 1 (TIM-1) participated in the process of HTNV infection of Jurkat T cells, and further observed that HTNV enters Jurkat T cells via the clathrin-dependent endocytosis pathway. These findings not only affirm the susceptibility of human CD4+ T lymphocytes to HTNV but also shed light on the viral tropism. Our research elucidates a mode of the interaction between the virus infection process and the immune system. Critically, this study provides new insights into the pathogenesis of HTNV and the implications for antiviral research.


Subject(s)
CD4-Positive T-Lymphocytes , Hantaan virus , Hepatitis A Virus Cellular Receptor 1 , Humans , Hantaan virus/immunology , Hantaan virus/physiology , Jurkat Cells , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Virus Replication , Endocytosis , Hemorrhagic Fever with Renal Syndrome/virology , Hemorrhagic Fever with Renal Syndrome/immunology , Host-Pathogen Interactions/immunology , Viral Tropism
11.
J Virol ; 98(6): e0010824, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38742874

ABSTRACT

Numerous studies have demonstrated the presence of covert viral infections in insects. These infections can be transmitted in insect populations via two main routes: vertical from parents to offspring, or horizontal between nonrelated individuals. Thirteen covert RNA viruses have been described in the Mediterranean fruit fly (medfly). Some of these viruses are established in different laboratory-reared and wild medfly populations, although variations in the viral repertoire and viral levels have been observed at different time points. To better understand these viral dynamics, we characterized the prevalence and levels of covert RNA viruses in two medfly strains, assessed the route of transmission of these viruses, and explored their distribution in medfly adult tissues. Altogether, our results indicated that the different RNA viruses found in medflies vary in their preferred route of transmission. Two iflaviruses and a narnavirus are predominantly transmitted through vertical transmission via the female, while a nodavirus and a nora virus exhibited a preference for horizontal transmission. Overall, our results give valuable insights into the viral tropism and transmission of RNA viruses in the medfly, contributing to the understanding of viral dynamics in insect populations. IMPORTANCE: The presence of RNA viruses in insects has been extensively covered. However, the study of host-virus interaction has focused on viruses that cause detrimental effects to the host. In this manuscript, we uncovered which tissues are infected with covert RNA viruses in the agricultural pest Ceratitis capitata, and which is the preferred transmission route of these viruses. Our results showed that vertical and horizontal transmission can occur simultaneously, although each virus is transmitted more efficiently following one of these routes. Additionally, our results indicated an association between the tropism of the RNA virus and the preferred route of transmission. Overall, these results set the basis for understanding how viruses are established and maintained in medfly populations.


Subject(s)
Ceratitis capitata , RNA Viruses , Viral Tropism , Animals , RNA Viruses/genetics , RNA Viruses/physiology , Female , Ceratitis capitata/virology , Male , RNA Virus Infections/transmission , RNA Virus Infections/virology
12.
Vet Microbiol ; 294: 110134, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820725

ABSTRACT

Infectious bronchitis virus (IBV) restricts cell tropism. Except for the Beaudette strain, other IBVs cannot infect mammalian cell lines. The limited cell tropism of other IBVs has hindered IBV vaccine development and research on the mechanisms of IBV infection. A novel Vero cell-adapted strain, HV80, has been previously reported. In this study, we constructed recombinants expressing the chimeric S glycoprotein, S1 or S2 subunit of strain H120 and demonstrated that mutations on S2 subunit are associated with the strain HV80 Vero cell adaptation. R687P or P687R substitution recombinants were constructed with the genome backbone of strains HV80 or H120. We found that the RRRR690/S motif at the S2' cleavage site is crucial to the Vero cell adaptation of strain HV80. Another six amino acid substitutions in the S2 subunit of the recombinants showed that the Q855H mutation induced syncytium formation. A transient transfection assay demonstrated the S glycoprotein with the PRRR690/S motif at the S2' cleavage site induced low-level cell-cell fusion, while H855Q substitution hindered cell-cell fusion and blocked cleavage event with S20 product. This study provides a basis for the construction of IBV recombinants capable of replicating in Vero cells, thus contributing to the advancement in the development of genetically engineered cell-based IBV vaccines.


Subject(s)
Infectious bronchitis virus , Mutation , Viral Tropism , Animals , Infectious bronchitis virus/genetics , Infectious bronchitis virus/physiology , Chlorocebus aethiops , Vero Cells , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Coronavirus Infections/virology , Coronavirus Infections/veterinary
13.
Dev Comp Immunol ; 157: 105189, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38692524

ABSTRACT

Grass carp, one of the major freshwater aquaculture species in China, is susceptible to grass carp reovirus (GCRV). GCRV is a non-enveloped RNA virus and has a double-layered capsid, causing hemorrhagic disease and high mortalities in infected fish. However, the tropism of GCRV infection has not been investigated. In this study, monoclonal antibodies against recombinant VP35 protein were generated in mice and characterized. The antibodies exhibited specific binding to the N terminal region (1-155 aa) of the recombinant VP35 protein expressed in the HEK293 cells, and native VP35 protein in the GCRV-II infected CIK cells. Immunofluorescent staining revealed that viruses aggregated in the cytoplasm of infected cells. In vivo challenge experiments showed that high levels of GCRV-II viruses were present in the gills, intestine, spleen and liver, indicating that they are the major sites for virus infection. Our study showed that the VP35 antibodies generated in this study exhibited high specificity, and are valuable for the development of diagnostic tools for GCRV-II infection.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Carps , Fish Diseases , Reoviridae Infections , Reoviridae , Animals , Carps/immunology , Carps/virology , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae/immunology , Reoviridae/physiology , Fish Diseases/immunology , Fish Diseases/virology , Mice , Humans , HEK293 Cells , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Viral Tropism , Capsid Proteins/immunology , Capsid Proteins/metabolism , Mice, Inbred BALB C , China
14.
J Integr Neurosci ; 23(5): 90, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38812392

ABSTRACT

The genome of the Nipah virus (NiV) encodes a variety of structural proteins linked to a diverse array of symptoms, including fevers, headaches, somnolence, and respiratory impairment. In instances of heightened severity, it can also invade the central nervous system (CNS), resulting in more pronounced problems. This work investigates the effects of NiV on the blood-brain barrier (BBB), the vital physiological layer responsible for safeguarding the CNS by regulating the passage of chemicals into the brain selectively. To achieve this, the researchers (MMJAO, AM and MNMD) searched a variety of databases for relevant articles on NiV and BBB disruption, looking for evidence of work on inflammation, immune response (cytokines and chemokines), tight junctions (TJs), and basement membranes related to NiV and BBB. Based on these works, it appears that the affinity of NiV for various receptors, including Ephrin-B2 and Ephrin-B3, has seen many NiV infections begin in the respiratory epithelium, resulting in the development of acute respiratory distress syndrome. The virus then gains entry into the circulatory system, offering it the potential to invade brain endothelial cells (ECs). NiV also has the ability to infect the leukocytes and the olfactory pathway, offering it a "Trojan horse" strategy. When NiV causes encephalitis, the CNS generates a strong inflammatory response, which makes the blood vessels more permeable. Chemokines and cytokines all have a substantial influence on BBB disruption, and NiV also has the ability to affect TJs, leading to disturbances in the structural integrity of the BBB. The pathogen's versatility is also shown by its capacity to impact multiple organ systems, despite particular emphasis on the CNS. It is of the utmost importance to comprehend the mechanisms by which NiV impacts the integrity of the BBB, as such comprehension has the potential to inform treatment approaches for NiV and other developing viral diseases. Nevertheless, the complicated pathophysiology and molecular pathways implicated in this phenomenon have offered several difficult challenges to researchers to date, underscoring the need for sustained scientific investigation and collaboration in the ongoing battle against this powerful virus.


Subject(s)
Blood-Brain Barrier , Henipavirus Infections , Nipah Virus , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Nipah Virus/physiology , Humans , Henipavirus Infections/metabolism , Henipavirus Infections/virology , Henipavirus Infections/physiopathology , Animals , Viral Tropism/physiology
15.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793594

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.


Subject(s)
Amino Acid Substitution , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Swine , Cell Line , Porcine Reproductive and Respiratory Syndrome/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Mutation , Genotype , Amino Acids/metabolism
16.
Vet Pathol ; 61(4): 550-561, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619093

ABSTRACT

Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.


Subject(s)
Chiroptera , Gammaherpesvirinae , Herpesviridae Infections , Animals , Chiroptera/virology , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/genetics , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/pathology , Lung/virology , Lung/pathology , Macrophages, Alveolar/virology , DNA, Viral/genetics , Female , Viral Tropism , Male , Genome, Viral
17.
Viruses ; 16(4)2024 03 27.
Article in English | MEDLINE | ID: mdl-38675855

ABSTRACT

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Subject(s)
Amino Acid Substitution , Capsid Proteins , Foot-and-Mouth Disease Virus , Viral Tropism , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cell Culture Techniques , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Receptors, Virus/metabolism , Receptors, Virus/genetics , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
18.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Article in English | MEDLINE | ID: mdl-38622380

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Epithelial Cells , Nasal Mucosa , SARS-CoV-2 , Serine Endopeptidases , Humans , COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Adult , Middle Aged , Aged , Epithelial Cells/virology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nasal Mucosa/virology , Child , Age Factors , Virus Replication , Child, Preschool , Viral Tropism , Male , Female , Aged, 80 and over , Cells, Cultured , Adolescent , Infant
19.
Genes (Basel) ; 15(4)2024 04 08.
Article in English | MEDLINE | ID: mdl-38674401

ABSTRACT

The variable domain of a heavy-chain antibody (VHH) has the potential to be used to redirect the cell tropism of adenoviral vectors. Here, we attempted to establish platforms to simplify the screening of VHHs for their specific targeting function when being incorporated into the fiber of adenovirus. Both fowl adenovirus 4 (FAdV-4) and simian adenovirus 1 (SAdV-1) have two types of fiber, one of which is dispensable for virus propagation and is a proper site for VHH display. An intermediate plasmid, pMD-FAV4Fs, was constructed as the start plasmid for FAdV-4 fiber2 modification. Foldon from phage T4 fibritin, a trigger for trimerization, was employed to bridge the tail/shaft domain of fiber2 and VHHs against human CD16A, a key membrane marker of natural killer (NK) cells. Through one step of restriction-assembly, the modified fiber2 was transferred to the adenoviral plasmid, which was linearized and transfected to packaging cells. Five FAdV-4 viruses carrying the GFP gene were finally rescued and amplified, with three VHHs being displayed. One recombinant virus, FAdV4FC21-EG, could hardly transduce human 293 or Jurkat cells. In contrast, when it was used at a multiplicity of infection of 1000 viral particles per cell, the transduction efficiency reached 51% or 34% for 293 or Jurkat cells expressing exogenous CD16A. Such a strategy of fiber modification was transplanted to the SAdV-1 vector to construct SAdV1FC28H-EG, which moderately transduced primary human NK cells while the parental virus transduced none. Collectively, we reformed the strategy of integrating VHH to fiber and established novel platforms for screening VHHs to construct adenoviral vectors with a specific tropism.


Subject(s)
Genetic Vectors , Viral Tropism , Humans , Genetic Vectors/genetics , HEK293 Cells , Immunoglobulin Heavy Chains/genetics , Aviadenovirus/genetics , Aviadenovirus/immunology , Animals , Capsid Proteins/genetics , Capsid Proteins/immunology , Capsid Proteins/metabolism
20.
Curr Opin Microbiol ; 79: 102474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615394

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Tropism , Humans , COVID-19/virology , COVID-19/pathology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Central Nervous System/virology , Central Nervous System/pathology , Animals , Nervous System Diseases/virology , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...