Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.351
Filter
1.
Sci Rep ; 14(1): 21519, 2024 09 14.
Article in English | MEDLINE | ID: mdl-39277622

ABSTRACT

The common housefly, Musca domestica, known for transmitting over 100 infections, was studied using green-synthesized Cadmium Sulfide nanoparticles (CdS NPs) from Agaricus bisporus. These CdS NPs were tested on third-instar larvae under laboratory conditions using dipping and feeding methods with concentrations (75, 100, 125, 150, 175, and 200 µg/mL). The toxicity, measured by LC50, was found to be 138 µg/mL for dipping treatment and 123 µg/mL for feeding treatment. Analysis with an energy-dispersive X-ray microanalyzer confirmed Cd accumulation in the larval midgut, indicating penetration of CdS NPs into the organism, which may potentially increase their toxicity. CdS NPs caused disruptions in Heat Shock Protein 70, cell apoptosis, and various biochemical components. Scanning electron microscopy revealed morphological abnormalities in larvae, pupae, and adults exposed to CdS NPs. Ultrastructural examination showed significant midgut tissue abnormalities in larvae treated with 123 µg/mL of CdS NPs. Our study demonstrated that green-synthesized CdS NPs from A. bisporus can effectively control the development of M. domestica larvae.


Subject(s)
Agaricus , Cadmium Compounds , Houseflies , Larva , Sulfides , Animals , Houseflies/drug effects , Sulfides/chemistry , Sulfides/pharmacology , Cadmium Compounds/toxicity , Larva/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/chemistry , Models, Biological
2.
Acta Trop ; 259: 107358, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39181291

ABSTRACT

Fly control for any species is most effectively implemented in the immature stages when insects can be eliminated before emerging as adults capable of transmitting pathogens or becoming nuisance pests. Yet a limited number of insecticide classes are available for treating larval development sites for dipteran pest species. The most recently introduced class of insecticides in the United States (US) is the isoxazolines, including fluralaner. In the US, fluralaner is currently exclusively labeled for use against ectoparasites in companion animals. However, research has shown that it has a wider effective target range beyond ectoparasites and could be developed as an insecticide for vector control. Here we tested a novel, proprietary, yeast microencapsulated (YME) formulation of fluralaner against the larvae of three pest species: Musca domestica L. (Diptera: Muscidae), Aedes albopictus Skuse (Diptera: Culicidae), and Culicoides sonorensis Wirth and Jones (Diptera: Ceratopogonidae). These species all naturally consume microorganisms as larvae, including yeasts. Fluralaner was successfully microencapsulated in Saccharomyces cerevisiae yeast. YME fluralaner was reconstituted in water at concentrations of 0.00001-0.1 mg/mL (Aedes and Culicoides) or 1-50 mg/mL (Musca) for use in dose-response assays. For each species, the LC50 at 24 h was estimated using probit analyses. YME fluralaner was highly effective against all species tested (Ae. albopictus LC50 = 0.000077 mg/mL; C. sonorensis LC50 = 0.00067 mg/mL; M. domestica LC50 = 2.58 mg/mL). Additionally, laboratory assays were conducted to determine product reapplication rates using LC50 rates. Reapplication rates to maintain <50 % emergence were five weeks (Ae. albopictus) and greater than eight weeks (C. sonorensis). The results presented here indicate YME fluralaner is a promising candidate for controlling larval insects that naturally feed on detritus, thereby bypassing cuticular penetration barriers and safely delivering the active ingredient to the target species.


Subject(s)
Drug Compounding , Insecticides , Isoxazoles , Larva , Animals , Isoxazoles/pharmacology , Larva/drug effects , Larva/growth & development , Insecticides/pharmacology , Aedes/drug effects , Aedes/growth & development , Aedes/microbiology , Saccharomyces cerevisiae , Houseflies/microbiology , Houseflies/growth & development , Houseflies/drug effects , Insect Control/methods
3.
Environ Sci Pollut Res Int ; 31(40): 53135-53139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39174827

ABSTRACT

Musca domestica L., a common housefly, and Culex quinquefasciatus mosquito are quite well-known pests that can transfer a wide range of diseases to humans as well as animals. In this study, various isoborneol derivatives including esters, ethers, and thioethers were synthesized from isoborneol under mild conditions. These derivatives were evaluated for inhibition of house-fly M. domestica adults and Cx. quinquefasciatus larvae. Two of the synthesized isoborneol ester derivatives (2 and 3) showed good activity against both insect species. Additional two derivatives (6 and 9) were active against M. domestica L., and the derivatives (1-3, 8) were active against Cx. quinquefasciatus larvae.


Subject(s)
Culex , Houseflies , Insecticides , Larva , Animals , Houseflies/drug effects , Culex/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Larva/drug effects
4.
Rev Peru Med Exp Salud Publica ; 41(2): 164-170, 2024 Aug 19.
Article in Spanish, English | MEDLINE | ID: mdl-39166639

ABSTRACT

Motivation for the study. The presence of antibiotic resistance genes in bacteria isolated from common flies is a potential public health hazard because it facilitates the presence and spread of antibiotic resistance genes in the environment. Main findings. Thirty-eight bacterial strains identified in 14 species were isolated from within the fly bodies, of which 31 strains showed resistance to carbapenems and 26 strains showed resistance to colistin. Seven bacterial strains showed carbapenem resistance genes and one Escherichia coli strain had resistance to KPC, OXA-48 and mcr-1. Implications. This is the first report of antibiotic resistance genes in bacteria carried by common flies in Peru. The objective was to determine the presence of carbapenem resistance genes and plasmid resistance to colistin (mcr-1) in bacteria isolated from Musca domestica in a garbage dump near a hospital in Lima, Peru. Bacteria with phenotypic resistance to carbapenemics were isolated on CHROMagar mSuperCARBATM medium and colistin resistance profiling was performed using the colistin disk elution method. Detection of blaKPC, blaNDM, blaIMP, blaOXA-48, blaVIM and mcr-1 genes was performed by conventional PCR. The antimicrobial susceptibility profile was determined using the automated MicroScan system. We found that 31/38 strains had phenotypic resistance to carbapenemics and 26/38 strains had phenotypic resistance to colistin with a minimum inhibitory concentration ≥ 4 µg/ml. Finally, we identified seven bacterial strains with carbapenem resistance genes (OXA-48 and KPC) and one bacterial strain with plasmid resistance to colistin (mcr-1). One Escherichia coli strain had three resistance genes: KPC, OXA-48 and mcr-1.


El objetivo fue determinar la presencia de genes de resistencia a carbapenémicos y resistencia plasmídica a colistina (mcr-1) en bacterias aisladas de Musca domestica en un basural cercano a un hospital de Lima, Perú. Las bacterias con resistencia fenotípica a los carbapénemicos se aislaron en medio CHROMagar mSuperCARBATM y el perfil de resistencia a colistina se realizó mediante el método de elución de discos de colistina. La detección de genes blaKPC, blaNDM, blaIMP, blaOXA-48, blaVIM y mcr-1 se realizó mediante PCR convencional. El perfil de susceptibilidad antimicrobiana se determinó mediante el sistema automatizado MicroScan. Las bacterias con resistencia fenotípica a carbapenémicos fueron 31/38 cepas y a colistina fueron 26/38 cepas con una concentración inhibitoria mínima ≥ 4 µg/ml. Finalmente, se identificaron siete cepas bacterianas con genes de resistencia a carbapenémicos (OXA-48 Y KPC) y una cepa bacteriana con resistencia plasmídica a colistina (mcr-1). Una cepa de Escherichia coli presentó tres genes de resistencia: KPC, OXA-48 y mcr-1. Motivación para realizar el estudio. La presencia de genes de resistencia a antibióticos en bacterias aisladas de moscas comunes es un peligro potencial para la salud pública debido a que facilita la presencia y dispersión de genes de resistencia a antibióticos en el medio ambiente. Principales hallazgos. Se aislaron 38 cepas bacterianas identificadas en 14 especies dentro del cuerpo de las moscas, de las cuales 31 cepas mostraron resistencia a los carbapenémicos y 26 cepas mostraron resistencia a colistina. Siete cepas bacterianas presentaron genes de resistencia a carbapenémicos y una cepa de Escherichia coli con resistencia a KPC, OXA-48 y mcr-1. Implicancias. Se realiza el primer reporte en el Perú de genes de resistencia a antibióticos en bacterias movilizadas por moscas comunes.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Colistin , Drug Resistance, Bacterial , Houseflies , Colistin/pharmacology , Houseflies/genetics , Houseflies/microbiology , Animals , Peru , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Hospitals , Microbial Sensitivity Tests , Genes, Bacterial
5.
Nat Commun ; 15(1): 5984, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013946

ABSTRACT

Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII) and the Y (MY) share MIII-like architecture, but with fewer repeats. MY additionally shares MV-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity.


Subject(s)
Evolution, Molecular , Houseflies , Animals , Male , Houseflies/genetics , Y Chromosome/genetics , Sex Determination Processes/genetics , Chromosomes, Insect/genetics , Genetic Loci , Female
6.
Toxins (Basel) ; 16(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057942

ABSTRACT

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Subject(s)
Aflatoxins , Aspergillus , Dairying , Fusarium , Houseflies , Seasons , Zearalenone , Animals , Fusarium/metabolism , Mexico , Aspergillus/metabolism , Aspergillus/isolation & purification , Aflatoxins/biosynthesis , Houseflies/microbiology , Food Contamination/analysis , Farms
7.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893470

ABSTRACT

With the global population on the rise, an escalating interest exists in environmentally sustainable and friendly protein sources. Insects have emerged as multifaceted resources, viewed not only as potential food items, but also as sources of traditional medicines and proteins. This study utilized response surface methodology (RSM) to ascertain the optimal extraction conditions for proteins from Musca domestica used in toad feeding, denoted as MDPs-T. The yield of MDPs-T was elevated to 18.3% ± 0.2% under these optimized conditions. Subsequently, the particle size, ζ-potentials, and structures of MDPs-T were analyzed and compared with the proteins derived from Musca domestica fed on a normal diet (MDPs-ND). This comparative analysis utilized a range of advanced techniques, involving UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-performance gel permeation chromatography (HPGPC), and scanning electron microscopy (SEM). The outcomes have revealed a marginal disparity in the physical and chemical properties between MDPs-T and MDPs-ND. Derosination led to a reduction in the particle size of the MDPs by 10.98% to 62.81%. MDPs-T exhibited a higher proportion of low-molecular-weight components relative to MDPs-ND. Additionally, in a comparative analysis of amino acids, MDPs-T displayed a greater abundance of essential and total amino acids relative to MDPs-ND. Consequently, MDPs-T holds potential as a valuable food supplement for human consumption or as a nutrient-rich feed supplement for animals.


Subject(s)
Houseflies , Insect Proteins , Larva , Animals , Houseflies/chemistry , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Larva/chemistry , Spectroscopy, Fourier Transform Infrared , Bufonidae , X-Ray Diffraction , Particle Size , Animal Feed/analysis
8.
J Med Entomol ; 61(4): 1009-1015, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38829822

ABSTRACT

House flies (Musca domestica L.) (Diptera: Muscidae) are challenging pests to control. Biological control using Carcinops pumilio beetles may help to reduce house fly populations. However, it is unknown if C. pumilio beetles are compatible with Beauveria bassiana, another house fly biological control option. Five strains of commercially available (GHA, HF23, and L90) and newly discovered (NFH10 and PSU1) strains of B. bassiana were used to test the comparative susceptibility of adult house flies and adult C. pumilio using different laboratory exposure methods. Adult house flies were susceptible to B. bassiana in contact filter paper assays (89%-98% mortality) and immersion assays (100% mortality) at the same 108 conidia suspension using 0.1% CapSil as an aqueous surfactant. Carcinops pumilio were less susceptible than flies to B. bassiana infection using the contact and immersion assays at the same 108 conidial concentration, with 4.4%-12.2% and 8.3%-24.6% mortality, respectively. Immersion in an aqueous conidial suspension resulted in higher mortality compared to contact with treated filter papers at the same 108 concentration with house flies and beetles. We conclude that C. pumilio can safely be used as a biological control agent for house flies with B. bassiana in animal production systems.


Subject(s)
Beauveria , Coleoptera , Houseflies , Pest Control, Biological , Animals , Beauveria/physiology , Coleoptera/microbiology , Houseflies/microbiology
9.
Colloids Surf B Biointerfaces ; 241: 114040, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917668

ABSTRACT

The synthesized pyrazolopyrimidine derivatives conjugated with selenium nanoparticles were prepared via a reaction of pyrazolone 1 with aryl-aldehyde and malononitrile or 3-oxo-3-phenylpropanenitrile in the presence ammonium acetate or pipridine using an ultrasonic bath as a modified method in the organic synthesis for such materials. The structure of the synthesized compounds was elucidated through various techniques. All the synthesized pyrazolopyrimidines were used in the synthesis of selenium nanoparticles (SeNPs). These nanoparticles were confirmed using UV-spectra, Dynamic Light scattering and (TEM) techniques. The larvicidal efficiency;of the synthesized;compounds; was investigated against some strains such as Culex pipiens;and Musca domestica larvae. Bioassay test showed pyrazolopyrimide derivatives to exhibit an acceptable larvicidal;bio-efficacy. The derivative (3) exhibited;the highest;efficiency for more than; lab strains of both species. Moreover, C. pipiens larvae were more sensitive towards the examined compounds than M. domestica. The field;strain displayed lower affinity for the 2 folds compounds. Some biochemical changes were tracked through analysis of insect main metabolites (protein, lipid and carbohydrate), in addition to measuring the changes in seven enzymes after treatment. Generally, there was a reduction in the protein, lipids and carbohydrates after treatment with all tested compounds. Moreover, a decrement was noticed for acetylcholine esterase and glutathione;S-transferase; enzymes. There was an increment in the acid;phosphatase; and alkaline phosphatase. In addition, there was elevation in Phenoloxidase level but it noticed the declination in both Cytochrome P450 and Ascorbate peroxidase activity after treatment both flies with derivatives of selenium-nanoparticles in both lab and field strain. Generally, the experiments carried out indicate that antioxidant and detoxification enzymes may play a significant role in mechanism of action of our novel nanocompounds. The cytotoxicity of the synthesized compounds and conjugated with SeNPs showed enhanced compatibility with human normal fibroblast cell line (BJ1) with no toxic effect.


Subject(s)
Culex , Houseflies , Insecticides , Larva , Metal Nanoparticles , Pyrimidines , Selenium , Animals , Culex/drug effects , Culex/growth & development , Larva/drug effects , Houseflies/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Selenium/chemistry , Selenium/pharmacology , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Metal Nanoparticles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Nanoparticles/chemistry
10.
Genome ; 67(9): 316-326, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.


Subject(s)
Defensins , Houseflies , Animals , Defensins/genetics , Houseflies/genetics , Evolution, Molecular , Phylogeny , Larva/genetics , Immune System , Amino Acid Sequence , Multigene Family
11.
Neotrop Entomol ; 53(4): 972-983, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38724884

ABSTRACT

The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.


Subject(s)
Benzoates , Houseflies , Insecticides , Larva , Pupa , Houseflies/drug effects , Animals , Pupa/drug effects , Larva/drug effects , Muscle Relaxation/drug effects , Acetylcholinesterase/metabolism
12.
J Med Entomol ; 61(4): 845-860, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38795384

ABSTRACT

Musca flies (Diptera: Muscidae) have been found culpable in the mechanical transmission of several infectious agents, including viruses, bacteria, protozoans, and helminths, particularly in low-income settings in tropical regions. In large numbers, these flies can negatively impact the health of communities and their livestock through the transmission of pathogens. In some parts of the world, Musca sorbens is of particular importance because it has been linked with the transmission of trachoma, a leading cause of preventable and irreversible blindness or visual impairment caused by Chlamydia trachomatis, but the contribution these flies make to trachoma transmission has not been quantified and even less is known for other pathogens. Current tools for control and monitoring of house flies remain fairly rudimentary and have focused on the use of environmental management, insecticides, traps, and sticky papers. Given that the behaviors of flies are triggered by chemical cues from their environment, monitoring approaches may be improved by focusing on those activities that are associated with nuisance behaviors or with potential pathogen transmission, and there are opportunities to improve fly control by exploiting behaviors toward semiochemicals that act as attractants or repellents. We review current knowledge on the odor and visual cues that affect the behavior of M. sorbens and Musca domestica, with the aim of better understanding how these can be exploited to support disease monitoring and guide the development of more effective control strategies.


Subject(s)
Behavior, Animal , Cues , Houseflies , Behavior, Animal/drug effects , Behavior, Animal/physiology , Muscidae/drug effects , Muscidae/physiology , Houseflies/drug effects , Houseflies/physiology , Insect Repellents/pharmacology , Pheromones/pharmacology , Insect Control/instrumentation , Insect Control/methods , Insect Vectors/drug effects , Insect Vectors/physiology , Visual Perception , Environment
13.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759532

ABSTRACT

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Subject(s)
Aflatoxin B1 , Animal Feed , Biotransformation , Diptera , Houseflies , Larva , Animals , Aflatoxin B1/metabolism , Houseflies/metabolism , Animal Feed/analysis , Tandem Mass Spectrometry
14.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757770

ABSTRACT

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Subject(s)
Aedes , Drug Design , Houseflies , Insecticides , Molecular Docking Simulation , Pyrazoles , Animals , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Aedes/drug effects , Aedes/growth & development , Structure-Activity Relationship , Houseflies/drug effects , Houseflies/growth & development , Aphids/drug effects , Aphids/growth & development , Moths/drug effects , Moths/growth & development , Molecular Structure , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Zebrafish/embryology
15.
PLoS Negl Trop Dis ; 18(5): e0012194, 2024 May.
Article in English | MEDLINE | ID: mdl-38814945

ABSTRACT

Haemophilus ducreyi was historically known as the causative agent of chancroid, a sexually-transmitted disease causing painful genital ulcers endemic in many low/middle-income nations. In recent years the species has been implicated as the causative agent of nongenital cutaneous ulcers affecting children of the South Pacific Islands and West African countries. Much is still unknown about the mechanism of H. ducreyi transmission in these areas, and recent studies have identified local insect species, namely flies, as potential transmission vectors. H. ducreyi DNA has been detected on the surface and in homogenates of fly species sampled from Lihir Island, Papua New Guinea. The current study develops a model system using Musca domestica, the common house fly, as a model organism to demonstrate proof of concept that flies are a potential vector for the transmission of viable H. ducreyi. Utilizing a green fluorescent protein (GFP)-tagged strain of H. ducreyi and three separate exposure methods, we detected the transmission of viable H. ducreyi by 86.11% ± 22.53% of flies sampled. Additionally, the duration of H. ducreyi viability was found to be directly related to the bacterial concentration, and transmission of H. ducreyi was largely undetectable within one hour of initial exposure. Push testing, Gram staining, and PCR were used to confirm the identity and presence of GFP colonies as H. ducreyi. This study confirms that flies are capable of mechanically transmitting viable H. ducreyi, illuminating the importance of investigating insects as vectors of cutaneous ulcerative diseases.


Subject(s)
Chancroid , Haemophilus ducreyi , Houseflies , Animals , Houseflies/microbiology , Haemophilus ducreyi/genetics , Haemophilus ducreyi/isolation & purification , Chancroid/transmission , Chancroid/microbiology , Papua New Guinea , Insect Vectors/microbiology , Female , Male
16.
Pestic Biochem Physiol ; 201: 105880, 2024 May.
Article in English | MEDLINE | ID: mdl-38685246

ABSTRACT

Controlling housefly populations relies on the use of insecticides, which inevitably leads to the development of resistance. A better and more comprehensive understanding of the spatial and temporal distribution of resistance could guide the control of houseflies. However, most studies on housefly resistance in China are scattered and poorly coordinated. We collected resistance data from houseflies in the published literature and from the vector biomonitoring system of the Chinese Center for Disease Control and Prevention. A 5- or 10-year resolution was used to study the temporal dynamics of resistance to five commonly used insecticides: deltamethrin, permethrin, beta-cypermethrin, dichlorvos, and propoxur. ArcGIS was used to visualize their spatial distributions. The correlation between year and resistance coefficient was determined using SPSS 26.0 and RStudio to explore the changes in resistance over the years. A total of 2128 data were included in this study, ranging from 1982 to 2022, based on which we found significant increases in resistance over the past forty years for the five studied insecticides. Among them, pyrethroids had the most strikingly elevated resistance level and were mainly distributed in the northern and southeastern coastal areas. Dichlorvos and propoxur had intermediate increases in resistance, and most of these increases were identified in North China and the Yangtze River. Housefly resistance to commonly used insecticides in China is increasing and spatially heterogeneous. This finding also highlights the necessity of continuous routine surveillance of housefly resistance, which could guide future housefly control operations and slow the development of resistance.


Subject(s)
Houseflies , Insecticide Resistance , Insecticides , Pyrethrins , Houseflies/drug effects , Animals , China , Insecticides/pharmacology , Nitriles , Permethrin/pharmacology , Propoxur
17.
Pestic Biochem Physiol ; 201: 105898, 2024 May.
Article in English | MEDLINE | ID: mdl-38685256

ABSTRACT

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.


Subject(s)
Houseflies , Marine Toxins , Mutation , Oxocins , Polyether Toxins , Animals , Oxocins/pharmacology , Houseflies/genetics , Houseflies/drug effects , Larva/drug effects , Larva/genetics , Dinoflagellida/genetics , Dinoflagellida/drug effects
18.
Parasitol Res ; 123(4): 183, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622363

ABSTRACT

Dientamoeba fragilis and Blastocystis sp. are single-celled protozoan parasites of humans and animals. Although they are found in the intestines of healthy hosts, the pathogenicity of them is still unclear. To date, there is no report on D. fragilis and only two studies (without subtyping) on the occurrence of Blastocystis sp. in Musca domestica. In this study, fly samples were collected from livestock farms and their surroundings in the Kirsehir province (Central Anatolia Region) of Türkiye from May to August 2023. A total of 150 microscopically identified M. domestica samples were analyzed for the detection of D. fragilis and Blastocystis sp. molecularly. The overall prevalence of Blastocystis sp. and D. fragilis in M. domestica was determined to be 3.3% (5/150) and 8.0% (12/150), respectively. The SSU rRNA gene sequences of the isolates indicated genotype 1 of D. fragilis. Eleven isolates were identical and represented a single isolate (KAU-Dfrag1). BLAST analysis of KAU-Dfrag1 indicated identity with the isolates reported from humans, cattle, sheep, and budgerigars. The other isolate (KAU-Dfrag2) was polymorphic at two nucleotides from KAU-Dfrag1 and three nucleotides from known genotypes from GenBank and represented a variant of genotype 1. The Blastocystis sp. isolates were found to be identical and represent a single genotype (KAU-Blast1). BLAST analysis revealed that the KAU-Blast1 genotype belonged to the potentially zoonotic subtype 5 (ST5) and exhibited the highest genetic identity (ranging from 99.4 to 99.6%) with pigs, cattle, and sheep from different countries. Our study provides the first data on the molecular prevalence, epidemiology, and genotypic characterization of D. fragilis and Blastocystis sp. in M. domestica.


Subject(s)
Blastocystis Infections , Blastocystis , Houseflies , Muscidae , Humans , Animals , Sheep , Cattle , Swine , Dientamoeba , Blastocystis Infections/epidemiology , Blastocystis Infections/veterinary , Blastocystis Infections/parasitology , Genotype , Feces/parasitology , Prevalence , Nucleotides
19.
PLoS One ; 19(3): e0300922, 2024.
Article in English | MEDLINE | ID: mdl-38517921

ABSTRACT

Musca domestica L. (Muscidae: Diptera) is a human and livestock pest especially in tropical and sub-tropical areas. Different insecticides have been used to control this pest that pose serious harmful effects on humans and the environment. The current study was planned to investigate the effects of two concentrations (LC25 and LC50) of pyriproxyfen on biological and population parameters of a field strain of M. domestica. The exposed parents (F0) and their progeny (F1) were studied to examine the transgenerational effects. The results indicated that preadult duration was higher in control (13.68 days) compared to LC50 treated individuals (12.44 days). The male and female longevity was relatively lower in the LC25 treated population i.e. 24.62 and 26.62 days, respectively. The adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) values were higher in the LC25 treated individuals than those of control. Moreover, oviposition days and fecundity were reduced in the treated individuals as compared to the control treatment. A gradual decrease in the net reproductive rate (R0) was observed (8.46-14.07 per day) while the value of R0 was significantly higher in control. The results suggested that pyriproxyfen can be effectively utilized and incorporated in the management programs of M. domestica.


Subject(s)
Houseflies , Insecticides , Muscidae , Animals , Male , Female , Humans , Pyridines/pharmacology , Reproduction , Insecticides/pharmacology
20.
Parasitol Res ; 123(3): 157, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459281

ABSTRACT

Musca domestica Linnaeus is a devastating insect pest of medical and veterinary importance with reports of resistance development to commonly used insecticides worldwide. Rearing substrates usually play a crucial role in determining susceptibility to insecticides and control of insect pests. The aim of the present study was to investigate the effect of five rearing substrates of M. domestica on its susceptibility to different insecticides and activities of metabolic enzymes. After 30 generations of rearing, susceptibility of M. domestica to tested insecticides, viz., malathion, pirimiphos-methyl, alpha-cypermethrin, deltamethrin, methomyl, propoxur, spinetoram, and chlorfenapyr had evident differences. Musca domestica reared on hen liver exhibited reduced susceptibility to all insecticides followed by the strain reared on poultry manure. However, M. domestica reared on milk-based diet showed the highest susceptibility to tested insecticides followed by the strain reared on manures of buffalo and horse. In addition, M. domestica reared on different substrates exhibited significant differences (p < 0.01) in the activities of glutathione S-transferase (GST), cytochrome P450-dependent monooxygenase, and carboxylesterase (CarE). Overall, hen liver and poultry manure strains exhibited higher activities of metabolic enzymes than those of the milk-based diet, buffalo, and horse manure strains. In conclusion, the data of the present study exhibited a significant effect of rearing substrates on the susceptibility to insecticides and activities of metabolic enzymes in M. domestica. These results could be helpful for the sustainable management of M. domestica on different hosts by selecting appropriate insecticides.


Subject(s)
Houseflies , Insecticides , Animals , Female , Horses , Insecticides/pharmacology , Manure , Buffaloes , Chickens , Insecticide Resistance
SELECTION OF CITATIONS
SEARCH DETAIL