Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.418
Filter
1.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994995

ABSTRACT

Huntington's disease (HD) is a rare but progressive and devastating neurodegenerative disease characterized by involuntary movements, cognitive decline, executive dysfunction, and neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a 50% chance of developing the disease. Since the HTT protein is involved in many critical cellular processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting glial-neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM), both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in detail the interactions of iron, manganese, and copper with glial-neuron communication and GM and indicate how this knowledge may pave the way for the development of a new generation of disease-modifying therapies in HD.


Subject(s)
Gastrointestinal Microbiome , Huntington Disease , Metals, Heavy , Neuroglia , Huntington Disease/microbiology , Huntington Disease/metabolism , Huntington Disease/pathology , Humans , Neuroglia/metabolism , Neuroglia/pathology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Animals
2.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39054288

ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out Htt with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.


Subject(s)
Disease Models, Animal , Huntingtin Protein , Huntington Disease , Mice, Knockout , Pancreas , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mice , Pancreas/pathology , Pancreas/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Huntington Disease/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Male , Calcinosis/genetics , Calcinosis/pathology , Phenotype , Female
3.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062952

ABSTRACT

Gastrodin (GAS) is the main chemical component of the traditional Chinese herb Gastrodia elata (called "Tianma" in Chinese), which has been used to treat neurological conditions, including headaches, epilepsy, stroke, and memory loss. To our knowledge, it is unclear whether GAS has a therapeutic effect on Huntington's disease (HD). In the present study, we evaluated the effect of GAS on the degradation of mutant huntingtin protein (mHtt) by using PC12 cells transfected with N-terminal mHtt Q74. We found that 0.1-100 µM GAS had no effect on the survival rate of Q23 and Q74 PC12 cells after 24-48 h of incubation. The ubiquitin-proteasome system (UPS) is the main system that clears misfolded proteins in eukaryotic cells. Mutated Htt significantly upregulated total ubiquitinated protein (Ub) expression, decreased chymotrypsin-like, trypsin-like and caspase-like peptidase activity, and reduced the colocalization of the 20S proteasome with mHtt. GAS (25 µM) attenuated all of the abovementioned pathological changes, and the regulatory effect of GAS on mHtt was found to be abolished by MG132, a proteasome inhibitor. The autophagy-lysosome pathway (ALP) is another system for misfolded protein degradation. Although GAS downregulated the expression of autophagy markers (LC3II and P62), it increased the colocalization of LC3II with lysosomal associated membrane protein 1 (LAMP1), which indicates that ALP was activated. Moreover, GAS prevented mHtt-induced neuronal damage in PC12 cells. GAS has a selective effect on mHtt in Q74 PC12 cells and has no effect on Q23 and proteins encoded by other genes containing long CAGs, such as Rbm33 (10 CAG repeats) and Hcn1 (>30 CAG repeats). Furthermore, oral administration of 100 mg/kg GAS increased grip strength and attenuated mHtt aggregates in B6-hHTT130-N transgenic mice. This is a high dose (100 mg/kg GAS) when compared with experiments on HD mice with other small molecules. We will design more doses to evaluate the dose-response relationship of the inhibition effect of GAS on mHtt in our next study. In summary, GAS can promote the degradation of mHtt by activating the UPS and ALP, making it a potential therapeutic agent for HD.


Subject(s)
Autophagy , Benzyl Alcohols , Glucosides , Huntingtin Protein , Lysosomes , Proteasome Endopeptidase Complex , Ubiquitin , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Rats , Proteasome Endopeptidase Complex/metabolism , PC12 Cells , Autophagy/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Ubiquitin/metabolism , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Mice , Huntington Disease/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Proteolysis/drug effects , Mutation
4.
Sci Adv ; 10(29): eado5264, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028820

ABSTRACT

Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.


Subject(s)
Huntingtin Protein , Huntington Disease , RNA, Long Noncoding , RNA-Binding Proteins , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Protein Binding , Fibroblasts/metabolism , Mutation
5.
Pharmacol Rep ; 76(4): 693-713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982016

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expansion in CAG repeat on huntington (Htt) gene, leading to a degeneration of GABAergic medium spiny neurons (MSNs) in the striatum, resulting in the generation of reactive oxygen species, and decrease antioxidant activity. These pathophysiological alterations impair mitochondrial functions, leading to an increase in involuntary hyperkinetic movement. However, researchers investigated the neuroprotective effect of antioxidants using various animal models. Still, their impact is strictly limited to curtailing oxidative stress and increasing the antioxidant enzyme in the brain, which is less effective in HD. Meanwhile, researchers discovered Mitochondria-targeted antioxidants (MTAXs) that can improve mitochondrial functions and antioxidant activity through the modulation of mitochondrial signaling pathways, including peroxisome proliferator-activated receptor (PPAR)-coactivator 1 (PGC-1α), dynamin-related protein 1 (Drp1), mitochondrial fission protein 1 (Fis1), and Silent mating type information regulation 2 homolog 1 (SIRT-1), showing neuroprotective effects in HD. The present review discusses the clinical and preclinical studies that investigate the neuroprotective effect of MTAXs (SS31, XJB-5-131, MitoQ, bezafibrate, rosiglitazone, meldonium, coenzyme Q10, etc.) in HD. This brief literature review will help to understand the relevance of MTAXs in HD and enlighten the importance of MTAXs in future drug discovery and development.


Subject(s)
Antioxidants , Huntington Disease , Mitochondria , Neuroprotective Agents , Huntington Disease/drug therapy , Huntington Disease/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/therapeutic use , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects
6.
Proc Natl Acad Sci U S A ; 121(32): e2319091121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074279

ABSTRACT

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.


Subject(s)
Huntingtin Protein , Lysosomes , Mitochondria , RNA-Binding Proteins , Ubiquitin , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Lysosomes/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Ubiquitin/metabolism , Mitochondria/metabolism , Autophagy , Animals , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice , Protein Binding , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Peptides/metabolism
7.
PLoS One ; 19(7): e0305358, 2024.
Article in English | MEDLINE | ID: mdl-39008492

ABSTRACT

BACKGROUND: Huntington's disease (HD) is an extremely harmful autosomal inherited neurodegenerative disease. Motor dysfunction, mental disorder, and cognitive deficits are the characteristic features of this disease. The current study examined whether 6-shogaol has a protective effect against 3-Nitropropionic Acid (3-NPA)-induced HD in rats. METHODS: A total of thirty male Wistar rats received 6-shogaol (10 and 20 mg/kg, per oral) an hour before injection of 3-NPA (10 mg/kg i.p.) for 15 days. Behavioral tests were performed, including narrow beam walk, rotarod test, and grip strength test. Biochemical tests promoting oxidative stress were evaluated [superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and malondialdehyde (MDA)], including changes to neurotransmitters serotonin (5-HT), dopamine (DA), norepinephrine (NE), homovanillic acid (HVA), (3,4-dihydroxyphenylacetic acid (DOPAC), γ-aminobutyric acid (GABA), and 5-hydroxy indole acetic acid (5-HIAA), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interleukins-1ß (IL-1ß), IL-6, brain-derived neurotrophic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2). The 6-shogaol was docked to the active site of TNF-α (2AZ5), NF-κB (1SVC), BDNF) [1B8M], and Nrf2 [5FZN] proteins using AutoDock tools. RESULTS: The 6-shogaol group significantly improved behavioral activity over the 3-NPA-injected control rats. Moreover, 3-NPA-induced significantly altered neurotransmitters, biochemical and neuroinflammatory indices, which could efficiently be reversed by 6-shogaol. The 6-shogaol showed favorable negative binding energies at -9.271 (BDNF) kcal/mol. CONCLUSIONS: The present investigation demonstrated the neuroprotective effects of 6-shogaol in an experimental animal paradigm against 3-NPA-induced HD in rats. The suggested mechanism is supported by immunohistochemical analysis and western blots, although more research is necessary for definite confirmation.


Subject(s)
Brain-Derived Neurotrophic Factor , Catechols , Cytokines , Huntington Disease , Molecular Docking Simulation , NF-E2-Related Factor 2 , NF-kappa B , Nitro Compounds , Propionates , Rats, Wistar , Animals , Huntington Disease/metabolism , Huntington Disease/chemically induced , Huntington Disease/drug therapy , Propionates/pharmacology , Male , Brain-Derived Neurotrophic Factor/metabolism , Rats , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Catechols/pharmacology , Catechols/chemistry , Cytokines/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Behavior, Animal/drug effects , Neuroprotective Agents/pharmacology
8.
Acta Neuropathol Commun ; 12(1): 88, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38840253

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the coding sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the corpus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganization, cavities and abnormally large matrix granules.


Subject(s)
Disease Models, Animal , Huntington Disease , Imaging, Three-Dimensional , Mitochondria , Animals , Huntington Disease/pathology , Huntington Disease/genetics , Huntington Disease/metabolism , Mitochondria/ultrastructure , Mitochondria/pathology , Mitochondria/metabolism , Imaging, Three-Dimensional/methods , Mice , Mice, Transgenic , Brain/pathology , Brain/ultrastructure , Brain/metabolism , Microscopy, Electron/methods , Male , Neurons/pathology , Neurons/ultrastructure , Neurons/metabolism
10.
Cell Commun Signal ; 22(1): 321, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863004

ABSTRACT

Huntington's disease (HD) is a neurological disorder caused by a CAG expansion in the Huntingtin gene (HTT). HD pathology mostly affects striatal medium-sized spiny neurons and results in an altered cortico-striatal function. Recent studies report that motor skill learning, and cortico-striatal stimulation attenuate the neuropathology in HD, resulting in an amelioration of some motor and cognitive functions. During physical training, extracellular vesicles (EVs) are released in many tissues, including the brain, as a potential means for inter-tissue communication. To investigate how motor skill learning, involving acute physical training, modulates EVs crosstalk between cells in the striatum, we trained wild-type (WT) and R6/1 mice, the latter with motor and cognitive deficits, on the accelerating rotarod test, and we isolated their striatal EVs. EVs from R6/1 mice presented alterations in the small exosome population when compared to WT. Proteomic analyses revealed that striatal R6/1 EVs recapitulated signaling and energy deficiencies present in HD. Motor skill learning in R6/1 mice restored the amount of EVs and their protein content in comparison to naïve R6/1 mice. Furthermore, motor skill learning modulated crucial pathways in metabolism and neurodegeneration. All these data provide new insights into the pathogenesis of HD and put striatal EVs in the spotlight to understand the signaling and metabolic alterations in neurodegenerative diseases. Moreover, our results suggest that motor learning is a crucial modulator of cell-to-cell communication in the striatum.


Subject(s)
Corpus Striatum , Disease Models, Animal , Extracellular Vesicles , Huntington Disease , Learning , Motor Skills , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Animals , Extracellular Vesicles/metabolism , Motor Skills/physiology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Learning/physiology , Mice , Male , Mice, Transgenic , Mice, Inbred C57BL
11.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844243

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Subject(s)
Astrocytes , Cell Proliferation , Huntington Disease , Microglia , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Microglia/metabolism , Microglia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Male , Female , Middle Aged , Cell Proliferation/physiology , Adult , Aged , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Calcium-Binding Proteins/metabolism , Gliosis/metabolism , Gliosis/pathology , Glial Fibrillary Acidic Protein/metabolism , Membrane Proteins , Microfilament Proteins
12.
BMC Genomics ; 25(1): 633, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918688

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder featured by abnormal movements, arising from the extensive neuronal loss and glial dysfunction in the striatum. Although the causes and pathogenetic mechanisms of HD are well established, the development of disease-modifying pharmacological therapies for HD remains a formidable challenge. Laduviglusib has demonstrated neuroprotective effects through the enhancement of mitochondrial function in the striatum of HD animal models. Ferroptosis is a nonapoptotic form of cell death that occurs as a consequence of lethal iron-dependent lipid peroxidation and mitochondrial dysfunction. However, the ferroptosis-related mechanisms underlying the neuroprotective effects of laduviglusib in the striatum of HD patients remain largely uncharted. In this study, we leveraged single-nucleus RNA sequencing data obtained from the striatum of HD patients in stages 2-4 to identify differentially expressed genes within distinct cell-type. We subsequently integrated these differentially expressed genes of HD, laduviglusib target genes and ferroptosis-related genes to predict the ferroptosis-related mechanisms underpinning the neuroprotective effects of laduviglusib in HD patients. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses unveiled that the effects of laduviglusib on direct pathway striatal projection neurons (dSPNs) is mainly associated with Th17 cell differentiation pathways. Conversely, its impact on indirect pathway striatal projection neurons (iSPNs) extends to the Neurotrophin signaling pathway, FoxO signaling pathway, and reactive oxygen species pathway. In microglia, laduviglusib appears to contribute to HD pathology via mechanisms related to Th17 cell differentiation and the FoxO signaling pathway. Further, molecular docking results indicated favorable binding of laduviglusib with PARP1 (associated with dSPNs and iSPNs), SCD (associated with astrocytes), ALOX5 (associated with microglia), and HIF1A (associated with dSPNs, iSPNs, and microglia). In addition, the KEGG results suggest that laduviglusib may enhance mitochondrial function and protect against neuronal loss by targeting ferroptosis-related signaling pathways, particularly mediated by ALOX5 in microglia. These findings provide valuable insights into the potential mechanisms through which laduviglusib exerts its effects on distinct cell-types within the HD striatum.


Subject(s)
Corpus Striatum , Ferroptosis , Huntington Disease , Ferroptosis/drug effects , Ferroptosis/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Humans , Corpus Striatum/metabolism , Corpus Striatum/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
13.
Neurosci Lett ; 836: 137882, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38909839

ABSTRACT

Huntington's disease (HD) is an autosomal inherited progressive neurodegenerative disorder which is caused by the CAG trinucleotide repeat in the huntingtin gene. The mutation induces mitochondrial dysfunction in neurons, which leads to striatal neuronal loss. The efficacy of the available therapies is limited, thus acquisition of more data about the pathomechanism of HD and development of new strategies is urgent. Sirtuins (Sirt1-7) belong to the histone deacetylase family, and interestingly they have been associated with HD, however, their role in HD is still not fully understood. To clarify the role of sirtuins in HD, we utilized a 3-nitropropionic acid (3-NP) induced HD model and assessed alterations in gene expression using RT-PCR. Moreover, we studied the extension of neurodegeneration in the striatum, and behavioural changes. Furthermore, we involved Sirt3 knockout (Sirt3KO) mice to investigate the impact of Sirt3 deficiency in the expression of the other sirtuins. Our results showed that with 3-NP treatment, the mRNA level of Sirt2,5,7 changed significantly in wild-type (WT) mice, whereas in Sirt3KO animals there was no change. Interestingly, Sirt3 deficiency did not exacerbate 3-NP-mediated striatal neuronal loss, while Sirt3KO animals showed higher mortality than WT littermates. However, the absence of Sirt3 did not affect the behaviour of animals. Finally, we demonstrated that the changes in the expression of sirtuins are age- and sex- dependent. According to our findings, there is evidence that Sirt3 has a major impact on the regulation of other sirtuin isoforms, survival and neuroprotection. However, this neuroprotective effect does not manifest in the behaviour.


Subject(s)
Corpus Striatum , Huntington Disease , Mice, Knockout , Nitro Compounds , Propionates , Sirtuin 3 , Animals , Nitro Compounds/toxicity , Propionates/pharmacology , Propionates/toxicity , Sirtuin 3/genetics , Sirtuin 3/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/chemically induced , Male , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Female , Sirtuins/genetics , Sirtuins/metabolism , Mice , Mice, Inbred C57BL , Gene Expression/drug effects
14.
Neurobiol Dis ; 199: 106574, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38914172

ABSTRACT

Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.


Subject(s)
Disease Progression , Huntington Disease , Proton Magnetic Resonance Spectroscopy , Huntington Disease/metabolism , Huntington Disease/genetics , Humans , Proton Magnetic Resonance Spectroscopy/methods , Creatine/metabolism , Inositol/metabolism , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain/metabolism , Brain/diagnostic imaging
15.
Brain Behav Immun ; 120: 413-429, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925413

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.


Subject(s)
Disease Models, Animal , Disease Progression , Huntington Disease , Microglia , Nucleoside Transport Proteins , Animals , Humans , Male , Mice , Brain/metabolism , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Nucleoside Transport Proteins/metabolism , Nucleoside Transport Proteins/genetics
16.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38913026

ABSTRACT

The double-stranded RNA-binding protein Staufen1 (STAU1) regulates a variety of physiological and pathological events via mediating RNA metabolism. STAU1 overabundance was observed in tissues from mouse models and fibroblasts from patients with neurodegenerative diseases, accompanied by enhanced mTOR signaling and impaired autophagic flux, while the underlying mechanism remains elusive. Here, we find that endogenous STAU1 forms dynamic cytoplasmic condensate in normal and tumor cell lines, as well as in mouse Huntington's disease knockin striatal cells. STAU1 condensate recruits target mRNA MTOR at its 5'UTR and promotes its translation both in vitro and in vivo, and thus enhanced formation of STAU1 condensate leads to mTOR hyperactivation and autophagy-lysosome dysfunction. Interference of STAU1 condensate normalizes mTOR levels, ameliorates autophagy-lysosome function, and reduces aggregation of pathological proteins in cellular models of neurodegenerative diseases. These findings highlight the importance of balanced phase separation in physiological processes, suggesting that modulating STAU1 condensate may be a strategy to mitigate the progression of neurodegenerative diseases with STAU1 overabundance.


Subject(s)
Autophagy , Protein Biosynthesis , RNA-Binding Proteins , TOR Serine-Threonine Kinases , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Animals , Humans , Autophagy/genetics , Mice , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Lysosomes/metabolism , Lysosomes/genetics , Signal Transduction , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics
17.
Neurobiol Dis ; 198: 106542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810948

ABSTRACT

A number of post-mortem studies conducted in transplanted Huntington's disease (HD) patients from various trials have reported the presence of pathological and misfolded proteins, in particular mutant huntingtin (mHtt) and phosphorylated tau neuropil threads, in the healthy grafted tissue. Here, we extended these observations with histological analysis of post-mortem tissue from three additional HD patients who had received similar striatal allografts from the fetal tissue transplantation trial conducted in Los Angeles in 1998. Immunohistochemical staining was performed using anti-mHtt antibodies, EM48 and MW7, as well as anti-hyperphosphorylated tau antibodies, AT8 and CP13. Immunofluorescence was used to assess the colocalization of EM48+ mHtt aggregates with the neuronal marker MAP2 and/or the extracellular matrix protein phosphacan in both the host and grafts. We confirmed the presence of mHtt aggregates within grafts of all three cases as well as tau neuropil threads in the grafts of two of the three transplanted HD patients. Phosphorylated tau was also variably expressed in the host cerebral cortex of all three subjects. While mHtt inclusions were present within neurons (immunofluorescence co-localization of MAP2 and EM48) as well as within the extracellular matrix of the host (immunofluorescence co-localization of phosphacan and EM48), their localization was limited to the extracellular matrix in the grafted tissue. This study corroborates previous findings that both mHtt and tau pathology can be found in the host and grafts of HD patients years post-grafting.


Subject(s)
Huntingtin Protein , Huntington Disease , Neurons , tau Proteins , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Huntington Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Male , Middle Aged , Female , Neurons/metabolism , Neurons/pathology , Adult , Fetal Tissue Transplantation/methods , Aged , Brain Tissue Transplantation/methods
18.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744826

ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Subject(s)
Huntingtin Protein , Huntington Disease , Animals , Humans , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Mice, Transgenic , Mutation , Neurons/metabolism , Neurons/pathology , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Ubiquitination , Intracellular Signaling Peptides and Proteins/metabolism
19.
J Mol Biol ; 436(12): 168607, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38734203

ABSTRACT

Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-ß core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.


Subject(s)
Amyloid , Exons , Huntingtin Protein , Protein Multimerization , Humans , Amyloid/chemistry , Amyloid/metabolism , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Aggregates
20.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758800

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Subject(s)
Corpus Striatum , Huntingtin Protein , Huntington Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Humans , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Neurons/metabolism , Neurons/pathology , Primates , Proteolysis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Macaca fascicularis
SELECTION OF CITATIONS
SEARCH DETAIL