Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.359
Filter
1.
J Biochem Mol Toxicol ; 38(8): e23773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030868

ABSTRACT

Despite considerable advances in interventions and treatment, there is a high mortality rate in patients with myocardial infarction (MI). This is the first study to investigate the protective effects of 3, 4-dihydroxybenzoic acid against isoproterenol induced MI in rats. MI was induced by isoproterenol (100-mg/kg body weight) in rats. Then, rats were treated with 3, 4-dihydroxybenzoic acid (16-mg/kg body weight) for 2 weeks. Serum creatine kinase-MB, cardiac troponin-T, cardiac troponin-I, and heart thiobarbituric acid reactive substances were significantly (p < 0.05) increased and heart superoxide dismutase and catalase activities were significantly (p < 0.05) reduced in isoproterenol-induced myocardial infarcted rats. Isoproterenol induction significantly (p < 0.05) elevated the plasma homocysteine and serum high sensitivity-C-reactive protein levels. Furthermore, an enzyme-linked immunosorbent assay, reverse transcription polymerase chain study, and immunohistochemical (IHC) staining revealed significantly (p < 0.05) elevated levels and expression of serum/myocardial nuclear factor-κB, tumor necrosis factor-alpha, interleukin-1 beta, and Interleukin-6 and significantly (p < 0.05) reduced levels/expression of serum/myocardial interleukin-10 in myocardial infarcted rats. Nevertheless, isoproterenol-induced rats treated with 3, 4-dihydroxybenzoic acid considerably (p < 0.05) attenuated all the biochemical, molecular, and IHC parameters investigated and inhibited oxidative stress and inflammation and protected the heart, through its antioxidant and anti-inflammatory mechanisms.


Subject(s)
Isoproterenol , Myocardial Infarction , Animals , Isoproterenol/toxicity , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Rats , Male , Troponin I/metabolism , Troponin I/blood , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Gentisates/pharmacology , Gentisates/metabolism , Myocardium/metabolism , Myocardium/pathology , Hydroxybenzoates/pharmacology
2.
Sci Rep ; 14(1): 15983, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987427

ABSTRACT

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Subject(s)
Flavonoids , Hydroxybenzoates , Molecular Docking Simulation , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Humans , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Binding , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/metabolism , HEK293 Cells
3.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3566-3573, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041128

ABSTRACT

This study established an ultra-performance liquid chromatography(UPLC) fingerprint of abandoned stems and leaves of Artemisia selengensis and quantitative analysis of multi-components by single marker(QAMS) for five phenolic acid components. Waters Acquity UPLC BEH C_(18) chromatography column(2.1 mm×100 mm, 1.7 µm) was used. The gradient elution was carried out with the mobile phase composed of 0.1% phosphoric acid water and acetonitrile at a flow rate of 0.3 mL·min~(-1) and a column temperature at 30 ℃. The detection wavelength was 330 nm, and the injection volume was 2 µL. Similarity evaluation and cluster analysis were conducted on the fingerprint data, and 15 common components in 13 batches of abandoned stems and leaves of A. selengensis were identified. The relative correction factors of ferulic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C were calculated using chlorogenic acid as the internal reference. The QAMS for determining five components in the abandoned stems and leaves of A. selengensis was established. At the same time, the content of these five components was determined using the external standard method(ESM), and the results showed that there were no significant differences in their content determined by the QAMS and the ESM. The results indicated that the content of phenolic acid components in the abandoned stems and leaves of A. selengensis from different varieties and different origins had obvious differences. In addition, the content of phenolic acid components in the abandoned stems and leaves of lignified A. selengensis was significantly higher than that of non-lignified A. selengensis. In summary, QAMS established in this study can be quickly, accurately, and economically used to determine the content of five phenolic acid components in abandoned stems and leaves of A. selengensis, laying a foundation for the resource development and utilization of abandoned stems and leaves of A. selengensis.


Subject(s)
Artemisia , Hydroxybenzoates , Plant Leaves , Plant Stems , Quality Control , Plant Leaves/chemistry , Plant Stems/chemistry , Artemisia/chemistry , Chromatography, High Pressure Liquid/methods , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis
4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2940-2946, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041153

ABSTRACT

The chemical constituents from Leucas ciliata belonging to Leucas genus in Lamiaceae were systematically explored by silica gel column chromatography, ODS column chromatography, Sephadex LH-20 gel column chromatography, and preparative high performance liquid chromatography, and seventeen phenolic acids were isolated. The chemical structures of the compounds were identified by their physicochemical properties, spectroscopic data, and literature. They were 4-hydroxyphenethyl ethyl succinate(1), 4-hydroxyphenethyl methyl succinate(2), 2-(4-hydroxyphenyl) ethyl acetate(3), p-hydroxyphenylethyl anisate(4), cassia cis-trans diphenylpropanoid(5), p-coumaric acid(6), 3,4-dihydroxybenzenepropionic acid methyl ester(7), caffeic acid(8), trans-p-hydroxyl ethyl cinnamate(9), methyl p-hydroxybenzeneacetate(10), 4-hydroxyphenethyl alcohol(11), syringic acid(12), vanillin(13), protocatechuic acid(14), salicylic acid(15), p-hydroxybenzaldehyde(16), and diorcinol(17). Among them, compound 1 was new, and compounds 2-10, 12, 14, and 16-17 were isolated from the plants belonging to Leucas genus for the first time. All compounds were obtained from L. ciliata for the first time. The anti-inflammatory activity of compounds 1-17 on NO production in lipopolysaccharide(LPS)-induced mouse leukemia cells of monocyte macrophage(RAW264. 7) cells was evaluated. The results showed that compounds 5, 7, and 9 exhibited significant anti-inflammatory activity, with IC50values of(10. 14±0. 36)-(21. 17±0. 11) µmol·L~(-1).


Subject(s)
Anti-Inflammatory Agents , Hydroxybenzoates , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Animals , Mice , RAW 264.7 Cells , Lamiaceae/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Molecular Structure , Nitric Oxide , Macrophages/drug effects
5.
J Mass Spectrom ; 59(8): e5075, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989744

ABSTRACT

Prinsepia utilis Royle, native to the Himalayas, is esteemed in Chinese and Indian folk medicine for its diverse medicinal benefits, targeting arthritis, pain relief, bone disorders, and joint discomfort. This study examined the 25% aqueous methanol extract of P. utilis leaves using UPLC-Q-TOF-MS/MS, identifying 78 metabolites, 76 of which were reported for the first time in P. utilis. These included 64 phenolics represented by 56 flavonoids, 5 phenolic acids, 3 phenolic glycosides, 4 terpenoids, 2 lignan glycosides, and 8 other compounds, expanding the knowledge of its chemical composition. These findings lay a foundation for further research, providing insights into potential bioactive compounds and opening avenues for applications in natural product drug discovery, traditional medicine, and nutraceutical development, leveraging the plant's established traditional uses.


Subject(s)
Flavonoids , Metabolomics , Plant Extracts , Plant Leaves , Tandem Mass Spectrometry , Plant Leaves/chemistry , Plant Leaves/metabolism , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Flavonoids/analysis , Phenols/analysis , Glycosides/analysis , Glycosides/metabolism , Metabolome , Terpenes/analysis , Terpenes/metabolism , Lignans/analysis , Lignans/metabolism , Hydroxybenzoates
6.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998946

ABSTRACT

Pigmented rice varieties are abundant in phenolic compounds. Antioxidant activity and bioaccessibility of phenolic compounds are modified in the gastrointestinal tract. After in vitro simulated digestion, changes in antioxidant activity and bioaccessibility of phenolic compounds (phenolic acids, flavonoids, and anthocyanins) in purple rice brans (Hom Nil and Riceberry) were compared with undigested crude extracts. The digestion method was conducted following the INFOGEST protocol. Antioxidant activity was determined using the ferric-reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assays. The bioaccessibility index (BI) was calculated from the ratio of digested to undigested soluble phenolic content. Overall results showed that the in vitro simulated digested rice brans had lower antioxidant activity and lower total phenolic, flavonoid, and anthocyanin contents. However, the concentration of sinapic acid was stable, while other phenolic acids (gallic, protocatechuic, vanillic, ρ-coumaric, and ferulic acids) degraded after the oral, gastric, and intestinal phases. The BI of sinapic, gallic, vanillic, and ferulic acids remained stable, and the BI of quercetin was resistant to digestion. Conversely, anthocyanins degraded during the intestinal phase. In conclusion, selective phenolic compounds are lost along the gastrointestinal tract, suggesting that controlled food delivery is of further interest.


Subject(s)
Anthocyanins , Antioxidants , Digestion , Flavonoids , Oryza , Phenols , Plant Extracts , Oryza/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Phenols/chemistry , Phenols/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Anthocyanins/chemistry , Hydroxybenzoates/chemistry , Biological Availability
7.
Front Immunol ; 15: 1345002, 2024.
Article in English | MEDLINE | ID: mdl-38975345

ABSTRACT

Inflammation has been shown to trigger a wide range of chronic diseases, particularly inflammatory diseases. As a result, the focus of research has been on anti-inflammatory drugs and foods. In recent years, the field of medicinal and edible homology (MEH) has developed rapidly in both medical and food sciences, with 95% of MEH being associated with plants. Phenolic acids are a crucial group of natural bioactive substances found in medicinal and edible homologous plants (MEHPs). Their anti-inflammatory activity is significant as they play a vital role in treating several inflammatory diseases. These compounds possess enormous potential for developing anti-inflammatory drugs and functional foods. However, their development is far from satisfactory due to their diverse structure and intricate anti-inflammatory mechanisms. In this review, we summarize the various types, structures, and distribution of MEHP phenolic acids that have been identified as of 2023. We also analyze their anti-inflammatory activity and molecular mechanisms in inflammatory diseases through NF-κB, MAPK, NLRP3, Nrf2, TLRs, and IL-17 pathways. Additionally, we investigate their impact on regulating the composition of the gut microbiota and immune responses. This analysis lays the groundwork for further exploration of the anti-inflammatory structure-activity relationship of MEHP phenolic acids, aiming to inspire structural optimization and deepen our understanding of their mechanism, and provides valuable insights for future research and development in this field.


Subject(s)
Anti-Inflammatory Agents , Hydroxybenzoates , Inflammation , Plants, Edible , Plants, Medicinal , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Animals , Inflammation/drug therapy , Inflammation/immunology , Plants, Edible/chemistry , Plants, Medicinal/chemistry , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects
8.
Talanta ; 277: 126344, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838562

ABSTRACT

A magnetic MXene aerogel (Fe3O4@MXene@PEI) was prepared by crosslinking amino modified MXene with polyethyleneimine using epichlorohydrin as a cross-linker. Adsorption properties of Fe3O4@MXene@PEI aerogel for phenolic acids were evaluated by adsorption kinetics and isotherms experiments, showing that the high adsorption affinity was governed by multilayer chemisorption process. An efficient MSPE/HPLC method was developed for the determination of phenolic acids with excellent selectivity, good linearity (0.025-5.0 µg mL-1), low LODs (0.007-0.017 µg mL-1), and satisfactory recoveries (80.0-120.0 %). Moreover, the antioxidant activity of the Fe3O4@MXene@PEI purified compounds was superior to that of the conventional method as demonstrated by the results of scavenging experiments on 2,2 -diphenyl-1-picrylhydrazyl radical scavenging assay. Finally, 65 organic acids were identified in the Fe3O4@MXene@PEI treated honeysuckle extracts by UHPLC-Q-Exactive Orbitrap MS/MS analysis. The proposed sorbent exhibits remarkable promise for the selective separation and purification of organic acids from herbal products.


Subject(s)
Hydroxybenzoates , Polyethyleneimine , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Hydroxybenzoates/isolation & purification , Polyethyleneimine/chemistry , Adsorption , Chromatography, High Pressure Liquid/methods , Gels/chemistry , Plants, Medicinal/chemistry , Solid Phase Extraction/methods , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/isolation & purification , Tandem Mass Spectrometry/methods
9.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930808

ABSTRACT

In this study, a beverage made from a combination of Agave sap (AS) and prickly pear juice (PPJ) was analyzed for its nutrients and bioactive and potentially health-promoting compounds. The beverage was evaluated for its ability to act as an antioxidant, regulate glycemic properties, and undergo gut bacterial fermentation in vitro. The major mono- and oligosaccharides present in the beverage were galacturonic acid (217.74 ± 13.46 mg/100 mL), rhamnose (227.00 ± 1.58 mg/100 mL), and fructose (158.16 ± 8.86 mg/mL). The main phenolic compounds identified were protocatechuic acid (440.31 ± 3.06 mg/100 mL) and catechin (359.72 ± 7.56 mg/100 mL). It was observed that the beverage had a low glycemic index (<40) and could inhibit digestive carbohydrases. The combination of ingredients also helped to reduce gas production during AS fermentation from 56.77 cm3 to 15.67 cm3. The major SCFAs produced during fermentation were butyrate, acetate, and propionate, with valerate being produced only during the late fermentation of the AS. This beverage is rich in bioactive compounds, such as polyphenols and dietary fiber, which will bring health benefits when consumed.


Subject(s)
Agave , Antioxidants , Fruit and Vegetable Juices , Agave/chemistry , Fruit and Vegetable Juices/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Fermentation , Hydroxybenzoates/analysis , Polyphenols/analysis , Polyphenols/chemistry , Pyrus/chemistry , Phenols/analysis , Phenols/chemistry , Rhamnose/analysis , Rhamnose/chemistry , Catechin/analysis , Catechin/chemistry , Catechin/analogs & derivatives , Hexuronic Acids
10.
J Mater Chem B ; 12(27): 6617-6626, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38896436

ABSTRACT

Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.


Subject(s)
Acrylic Resins , Bandages , Hydrogels , Hydroxybenzoates , Wound Healing , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Animals , Acrylic Resins/chemistry , Wound Healing/drug effects , Swine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Adhesives/chemistry , Adhesives/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
11.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891825

ABSTRACT

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Subject(s)
Anthocyanins , Mutation , Phaseolus , Polyphenols , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/chemistry , Phaseolus/genetics , Phaseolus/metabolism , Polyphenols/biosynthesis , Anthocyanins/biosynthesis , Flavonoids/biosynthesis , Flavonoids/metabolism , Genotype , Hydroxybenzoates/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
12.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893465

ABSTRACT

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Subject(s)
Antioxidants , Ilex paraguariensis , Polyphenols , Ilex paraguariensis/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Polyphenols/chemistry , Polyphenols/analysis , Tannins/analysis , Tannins/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Carotenoids/chemistry , Carotenoids/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Caffeine/analysis , Caffeine/chemistry , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Beverages/analysis
13.
Int J Biol Macromol ; 273(Pt 2): 133175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889835

ABSTRACT

The molecular and colloidal-level interactions between two major phenolic acids, gallic and caffeic acid, with a major food polysaccharide, xanthan gum, were studied in binary systems aiming to correlate the stability of the binary systems as a function of pH and xanthan-polyphenol concentrations. Global stability diagrams were built, acting as roadmaps for examining the phase separation regimes followed by the fluorimetry-based thermodynamics of the interactions. The effects of noncovalent interactions on the macroscopic behavior of the binary systems were studied, using shear and extensional rheometry. The collected data for caffeic acid - xanthan gum mixtures showed that the main interactions were pH-independent volume exclusions, while gallic acid interacts with xanthan gum, especially at pH 7 with other mechanisms as well, improving the colloidal dispersion stability. A combination of fluorimetry, extensional rheology and stability measurements highlight the effect of gallic acid-induced aggregation of xanthan gum, both in structuring and de-structuring the binary systems. The above provide a coherent framework of the physicochemical aspect of binary systems, shedding light on the role of xanthan gum in its oral functions, such as in inducing texture, in model complex systems containing phenolic acids.


Subject(s)
Polysaccharides, Bacterial , Rheology , Polysaccharides, Bacterial/chemistry , Hydroxybenzoates/chemistry , Hydrogen-Ion Concentration , Gallic Acid/chemistry , Thermodynamics
14.
PLoS One ; 19(6): e0299372, 2024.
Article in English | MEDLINE | ID: mdl-38885237

ABSTRACT

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Subject(s)
Hydroxybenzoates , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Caco-2 Cells , Cell Line, Tumor , Escherichia coli/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Gallic Acid/chemistry , Gallic Acid/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology
15.
Water Res ; 259: 121891, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38870888

ABSTRACT

The practical application of the Fe-catalyzed peracetic acid (PAA) processes is seriously restricted due to the need for narrow pH working range and poor anti-interference capacity. This study demonstrates that protocatechuic acid (PCA), a natural and eco-environmental phenolic acid, significantly enhanced the removal of sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions (6.0-8.0) by complexing Fe(III). With sulfamethoxazole (SMX) as the model contaminant, the pseudo-first-order rate constant of SMX elimination in PCA/Fe(III)/PAA process was 63.5 times higher than that in Fe(III)/PAA process at pH 7.0, surpassing most of the previously reported strategies-enhanced Fe-catalyzed PAA processes (i.e., picolinic acid and hydroxylamine etc.). Excluding the primary contribution of reactive species commonly found in Fe-catalyzed PAA processes (e.g., •OH, R-O•, Fe(IV)/Fe(V) and 1O2) to SMX removal, the Fe(III)-peroxy complex intermediate (CH3C(O)OO-Fe(III)-PCA) was proposed as the primary reactive species in PCA/Fe(III)/PAA process. DFT theoretical calculations indicate that CH3C(O)OO-Fe(III)-PCA exhibited stronger oxidation potential than CH3C(O)OO-Fe(III), thereby enhancing SMX removal. Four potential removal pathways of SMX were proposed and the toxicity of reaction solution decreased with the removal of SMX. Furthermore, PCA/Fe(III)/PAA process exhibited strong anti-interference capacity to common natural anions (HCO3-, Cl-and NO3-) and humic acid. More importantly, the PCA/Fe(III)/PAA process demonstrated high efficiency for SMX elimination in actual samples, even at a trace Fe(III) dosage (i.e., 5 µM). Overall, this study provided a highly-efficient and eco-environmental strategy to remove sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions and to strengthen its anti-interference capacity, underscoring its potential application in water treatment.


Subject(s)
Anti-Bacterial Agents , Hydroxybenzoates , Sulfonamides , Hydrogen-Ion Concentration , Hydroxybenzoates/chemistry , Sulfonamides/chemistry , Anti-Bacterial Agents/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry
16.
Hereditas ; 161(1): 19, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907290

ABSTRACT

The Balanophorae are not only traditional Chinese herbal medicines but also functional foods with diverse sources. This study aimed to distinguish pharmacognostic characteristics and secondary metabolites among different species of Balanophorae. Eight species of Balanophorae herbs were harvested, including 21 batches with 209 samples. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze secondary metabolites of Balanophorae from 21 sources. Targeted metabolomic analysis was performed to compare differences among the groups. Rhopalocnemis phalloide and B. indica can be identified by their pharmacognostic characteristics. Then, 41 secondary metabolites were identified or characterized in the mixed extracts of the 209 samples, mainly phenolic acids, flavonoids, and their derivatives. The distribution of these secondary metabolites revealed apparent differences among different species. In addition, targeted metabolomic analysis suggested that the secondary metabolite profiles of seven species of Balanophorae showed noticeable differences, and differences were also observed among different growing regions. Finally, five important metabolic markers were screened to successfully distinguish B. laxiflora, B. harlandii, and B. polyandra, including three phenolic acids and two flavonoids. This is the first study to systematically compare both the morphology and secondary metabolites among different sources of Balanophorae, which could provide effective information for identifying diverse species.


Subject(s)
Metabolomics , Metabolomics/methods , Chromatography, High Pressure Liquid , Flavonoids/metabolism , Drugs, Chinese Herbal , Pharmacognosy , Metabolome , Secondary Metabolism , Mass Spectrometry , Hydroxybenzoates/metabolism , Plant Extracts
17.
Food Res Int ; 186: 114328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729714

ABSTRACT

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Subject(s)
Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
18.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731557

ABSTRACT

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Subject(s)
Antioxidants , Phenols , Plant Extracts , Solvents , Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Green Chemistry Technology , Molecular Dynamics Simulation , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification
19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731982

ABSTRACT

Plant extracts can be a valuable source of biologically active compounds in many cosmetic preparations. Their effect depends on the phytochemicals they contain and their ability to penetrate the skin. Therefore, in this study, the possibility of skin penetration by phenolic acids contained in dogwood extracts of different fruit colors (yellow, red, and dark ruby red) prepared using different extractants was investigated. These analyses were performed using a Franz chamber and HPLC-UV chromatography. Moreover, the antioxidant properties of the tested extracts were compared and their impact on the intracellular level of free radicals in skin cells was assessed. The cytotoxicity of these extracts towards keratinocytes and fibroblasts was also analyzed and their anti-inflammatory properties were assessed using the enzyme-linked immunosorbent assay (ELISA). The analyses showed differences in the penetration of individual phenolic acids into the skin and different biological activities of the tested extracts. None of the extracts had cytotoxic effects on skin cells in vitro, and the strongest antioxidant and anti-inflammatory properties were found in dogwood extracts with dark ruby red fruits.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cornus , Plant Extracts , Skin , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cornus/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Skin/metabolism , Skin/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Fruit/chemistry , Animals , Chromatography, High Pressure Liquid
20.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786596

ABSTRACT

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Subject(s)
Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL