Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.607
Filter
1.
Int J Med Sci ; 21(9): 1681-1688, 2024.
Article in English | MEDLINE | ID: mdl-39006850

ABSTRACT

Hypertension affects a large number of individuals globally and is a common cause of nephropathy, stroke, ischaemic heart disease and other vascular diseases. While many anti-hypertensive medications are used safely and effectively in clinic practice, controlling hypertensive complications solely by reducing blood pressure (BP) can be challenging. α-Mangostin, a xanthone molecule extracted from the pericarp of Garcinia mangostana L., has shown various beneficial effects such as anti-tumor, anti-hyperuricemia, and anti-inflammatory properties. However, the effects of α-Mangostin on hypertension remain unknown. In this study, we observed that α-Mangostin significantly decreased systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR), possibly through the down-regulation of angiotensin II (Ang II). We also identified early markers of hypertensive nephropathy, including urinary N-acetyl-ß-D-glucosaminidase (NAG) and ß2-microglobulin (ß2-MG), which were reduced by α-Mangostin treatment. Mechanistic studies suggested that α-Mangostin may inhibit renal tubular epithelial-to-mesenchymal transformation (EMT) by down-regulating the TGF-ß signaling pathway, thus potentially offering a new therapeutic approach for hypertension and hypertensive nephropathy.


Subject(s)
Angiotensin II , Blood Pressure , Epithelial-Mesenchymal Transition , Hypertension , Rats, Inbred SHR , Xanthones , Animals , Xanthones/pharmacology , Xanthones/therapeutic use , Rats , Epithelial-Mesenchymal Transition/drug effects , Humans , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/pathology , Fibrosis/drug therapy , Male , Cell Line , Garcinia mangostana/chemistry , Signal Transduction/drug effects , Hypertension, Renal/drug therapy , Hypertension, Renal/pathology , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Nephritis
2.
Kidney Blood Press Res ; 49(1): 588-604, 2024.
Article in English | MEDLINE | ID: mdl-38972305

ABSTRACT

INTRODUCTION: Hypertension (HTN) is a major cardiovascular disease that can cause and be worsened by renal damage and inflammation. We previously reported that renal lymphatic endothelial cells (LECs) increase in response to HTN and that augmenting lymphangiogenesis in the kidneys reduces blood pressure and renal pro-inflammatory immune cells in mice with various forms of HTN. Our aim was to evaluate the specific changes that renal LECs undergo in HTN. METHODS: We performed single-cell RNA sequencing. Using the angiotensin II-induced and salt-sensitive mouse models of HTN, we isolated renal CD31+ and podoplanin+ cells. RESULTS: Sequencing of these cells revealed three distinct cell types with unique expression profiles, including LECs. The number and transcriptional diversity of LECs increased in samples from mice with HTN, as demonstrated by 597 differentially expressed genes (p < 0.01), 274 significantly enriched pathways (p < 0.01), and 331 regulons with specific enrichment in HTN LECs. These changes demonstrate a profound inflammatory response in renal LECs in HTN, leading to an increase in genes and pathways associated with inflammation-driven growth and immune checkpoint activity in LECs. CONCLUSION: These results reinforce and help to further explain the benefits of renal LECs and lymphangiogenesis in HTN.


Subject(s)
Disease Models, Animal , Endothelial Cells , Hypertension , Inflammation , Kidney , Animals , Mice , Hypertension/genetics , Hypertension/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Kidney/pathology , Kidney/metabolism , Gene Expression , Lymphangiogenesis/genetics
3.
Sci Rep ; 14(1): 16904, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043832

ABSTRACT

Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Cell Proliferation , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Oxidative Stress , Rats, Inbred SHR , Vascular Remodeling , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Cell Proliferation/genetics , Vascular Remodeling/genetics , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Rats, Inbred WKY , Male , Humans , Hypertension/metabolism , Hypertension/genetics , Hypertension/pathology , Gene Expression Regulation
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928134

ABSTRACT

Wnt/ß-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3ß, and ß-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3ß, and ß-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3ß, and ß-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3ß, and ß-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3ß, and ß-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3ß, and ß-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/ß-catenin pathway in the functioning of the heart.


Subject(s)
Glycogen Synthase Kinase 3 beta , Hypertension , Myocardium , Wnt Signaling Pathway , beta Catenin , Animals , Hypertension/metabolism , Hypertension/etiology , Hypertension/chemically induced , Hypertension/pathology , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Male , Myocardium/metabolism , Myocardium/pathology , beta Catenin/metabolism , beta Catenin/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Rats, Inbred SHR , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Desoxycorticosterone Acetate
5.
Sci Rep ; 14(1): 14664, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918570

ABSTRACT

Aim of this study was to analyse the associations of cardiovascular health and adrenal gland volume as a rather new imaging biomarker of chronic hypothalamic-pituitary-adrenal (HPA) axis activation. The study population originates from the KORA population-based cross-sectional prospective cohort. 400 participants without known cardiovascular disease underwent a whole-body MRI. Manual segmentation of adrenal glands was performed on VIBE-Dixon gradient-echo sequence. MRI based evaluation of cardiac parameters was achieved semi-automatically. Cardiometabolic risk factors were obtained through standardized interviews and medical examination. Univariate and multivariate associations were derived. Bi-directional causal mediation analysis was performed. 351 participants were eligible for analysis (56 ± 9.1 years, male 58.7%). In multivariate analysis, significant associations were observed between adrenal gland volume and hypertension (outcome hypertension: Odds Ratio = 1.11, 95% CI [1.01, 1.21], p = 0.028), left ventricular remodelling index (LVRI) (outcome LVRI: ß = 0.01, 95% CI [0.00, 0.02], p = 0.011), and left ventricular (LV) wall thickness (outcome LV wall thickness: ß = 0.06, 95% CI [0.02, 0.09], p = 0.005). In bi-directional causal mediation analysis adrenal gland volume had a borderline significant mediating effect on the association between hypertension and LVRI (p = 0.052) as well as wall thickness (p = 0.054). MRI-based assessment of adrenal gland enlargement is associated with hypertension and LV remodelling. Adrenal gland volume may serve as an indirect cardiovascular imaging biomarker.


Subject(s)
Adrenal Glands , Cardiovascular Diseases , Magnetic Resonance Imaging , Humans , Male , Middle Aged , Adrenal Glands/diagnostic imaging , Adrenal Glands/pathology , Magnetic Resonance Imaging/methods , Female , Cardiovascular Diseases/diagnostic imaging , Cross-Sectional Studies , Aged , Prospective Studies , Hypertension/diagnostic imaging , Hypertension/pathology , Ventricular Remodeling , Organ Size , Hypothalamo-Hypophyseal System/diagnostic imaging , Pituitary-Adrenal System/diagnostic imaging
6.
Arterioscler Thromb Vasc Biol ; 44(8): 1748-1763, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38934115

ABSTRACT

BACKGROUND: Vascular smooth muscle cells (VSMCs) are highly plastic. Vessel injury induces a phenotypic transformation from differentiated to dedifferentiated VSMCs, which involves reduced expression of contractile proteins and increased production of extracellular matrix and inflammatory cytokines. This transition plays an important role in several cardiovascular diseases such as atherosclerosis, hypertension, and aortic aneurysm. TGF-ß (transforming growth factor-ß) is critical for VSMC differentiation and to counterbalance the effect of dedifferentiating factors. However, the mechanisms controlling TGF-ß activity and VSMC phenotypic regulation under in vivo conditions are poorly understood. The extracellular matrix protein TN-X (tenascin-X) has recently been shown to bind TGF-ß and to prevent it from activating its receptor. METHODS: We studied the role of TN-X in VSMCs in various murine disease models using tamoxifen-inducible SMC-specific knockout and adeno-associated virus-mediated knockdown. RESULTS: In hypertensive and high-fat diet-fed mice, after carotid artery ligation as well as in human aneurysmal aortae, expression of Tnxb, the gene encoding TN-X, was increased in VSMCs. Mice with smooth muscle cell-specific loss of TN-X (SMC-Tnxb-KO) showed increased TGF-ß signaling in VSMCs, as well as upregulated expression of VSMC differentiation marker genes during vascular remodeling compared with controls. SMC-specific TN-X deficiency decreased neointima formation after carotid artery ligation and reduced vessel wall thickening during Ang II (angiotensin II)-induced hypertension. SMC-Tnxb-KO mice lacking ApoE showed reduced atherosclerosis and Ang II-induced aneurysm formation under high-fat diet. Adeno-associated virus-mediated SMC-specific expression of short hairpin RNA against Tnxb showed similar beneficial effects. Treatment with an anti-TGF-ß antibody or additional SMC-specific loss of the TGF-ß receptor reverted the effects of SMC-specific TN-X deficiency. CONCLUSIONS: In summary, TN-X critically regulates VSMC plasticity during vascular injury by inhibiting TGF-ß signaling. Our data indicate that inhibition of vascular smooth muscle TN-X may represent a strategy to prevent and treat pathological vascular remodeling.


Subject(s)
Disease Models, Animal , Mice, Inbred C57BL , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Signal Transduction , Tenascin , Transforming Growth Factor beta , Vascular Remodeling , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Tenascin/metabolism , Tenascin/genetics , Tenascin/deficiency , Humans , Transforming Growth Factor beta/metabolism , Cells, Cultured , Male , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Hypertension/genetics , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/prevention & control , Neointima , Mice, Knockout , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/genetics , Diet, High-Fat , Angiotensin II , Phenotype , Mice , Mice, Knockout, ApoE
7.
Mol Biol (Mosk) ; 58(1): 78-87, 2024.
Article in Russian | MEDLINE | ID: mdl-38943581

ABSTRACT

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic-pituitary-adrenocortical and sympathetic-adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic-pituitary-adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.


Subject(s)
Gene Expression Regulation , Hypertension , Hypothalamus , Animals , Hypertension/metabolism , Hypertension/genetics , Hypertension/pathology , Rats , Hypothalamus/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Restraint, Physical , Stress, Psychological/metabolism , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Blood Pressure/genetics , Stress, Physiological/genetics , Neurons/metabolism , Neurons/pathology
8.
Transl Vis Sci Technol ; 13(6): 8, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38874974

ABSTRACT

Purpose: Both hypertension and diabetes are known to increase the wall-to-lumen ratio (WLR) of retinal arterioles, but the differential effects are unknown. Here, we study the timing and relative impact of hypertension versus diabetes on the WLR in diabetic retinopathy (DR) to address this unresolved question. Methods: This prospective cross-sectional study compared the retinal arteriolar WLR in 17 healthy eyes, 15 with diabetes but no apparent DR (DM no DR), and 8 with diabetic macular edema (DME) and either nonproliferative or proliferative DR. We imaged each arteriole using adaptive optics scanning laser ophthalmoscopy and measured the WLR using ImageJ. Multiple linear regression (MLR) was performed to estimate the effects of hypertension, diabetes, and age on the WLR. Results: Both subjects with DM no DR and subjects with DME had significantly higher WLR than healthy subjects (0.36 ± 0.08 and 0.42 ± 0.08 vs. 0.29 ± 0.07, 1-way ANOVA P = 0.0009). MLR in healthy subjects and subjects with DM no DR showed hypertension had the strongest effect (regression coefficient = 0.08, P = 0.009), whereas age and diabetes were not significantly correlated with WLR. MLR in all three groups together (healthy, DM no DR, and DME) showed diabetes had the strongest effect (regression coefficient = 0.05, P = 0.02), whereas age and hypertension were not significantly correlated with WLR. Conclusions: Hypertension may be an early driver of retinal arteriolar wall thickening in preclinical DR, independent of age or diabetes, whereas changes specific to DR may drive wall thickening in DME and later DR stages. Translational Relevance: We offer a framework for understanding the relative contributions of hypertension and diabetes on the vascular wall, and emphasize the importance of hypertension control early in diabetes even before DR onset.


Subject(s)
Diabetic Retinopathy , Hypertension , Ophthalmoscopy , Humans , Cross-Sectional Studies , Male , Diabetic Retinopathy/pathology , Female , Middle Aged , Prospective Studies , Arterioles/pathology , Arterioles/diagnostic imaging , Hypertension/complications , Hypertension/pathology , Aged , Adult , Retinal Artery/pathology , Retinal Artery/diagnostic imaging , Macular Edema/pathology , Macular Edema/diagnostic imaging , Macular Edema/etiology
9.
Biochem Biophys Res Commun ; 722: 150147, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38788356

ABSTRACT

We used an animal model of salt-sensitive hypertension (SSH) in which ovariectomized (oVx) rats developed hypertension with high salt (HS) intake. Hypertension is accompanied by changes in the percentage of CD4+ T lymphocytes, immune CD45+ cell infiltration into renal tissue, and changes in Na+, K+- ATPase (NKA) expression in both renal tissue and peripheral blood mononuclear cells (PBMCs). To determine whether the observed changes resulted from HS intake, high blood pressure, or both, hydralazine (HDZ) was used to lower blood pressure. The oVx HS rats received two HDZ schedules either to prevent or to treat hypertension. NKA was overexpressed in the kidneys of all oVx groups and in PBMCs of oVx HS rats. This pattern was not altered with HDZ treatment. Changes in CD4+ T lymphocytes and renal infiltration of CD45+ cells were not reversed either. High salt, but not high blood pressure, induces immune cell activation and renal infiltration. Overexpressed NKA is the primary event, and HS is the perturbation to the system in this model of SSH, which resembles the postmenopausal state.


Subject(s)
Hypertension , Kidney , Ovariectomy , Rats, Wistar , Animals , Female , Rats , Kidney/pathology , Kidney/metabolism , Kidney/immunology , Hypertension/immunology , Hypertension/pathology , Hypertension/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium Chloride, Dietary/adverse effects , Blood Pressure/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Hydralazine/pharmacology
10.
Wiad Lek ; 77(3): 393-401, 2024.
Article in English | MEDLINE | ID: mdl-38691778

ABSTRACT

OBJECTIVE: Aim: To investigate and analyze homeostatic disorders in patients with a combination of Chronic Pancreatitis(CP) and Arterial Hypertension (AH) and to develop correcting ways of the detected changes. PATIENTS AND METHODS: Materials and Methods: General clinical, laboratory-instrumental examination of 121 patients, who were undergoing inpatient treatment with a diagnosis of Chronic Pancreatitis in combination with Arterial Hypertension of the II stage during 2021-2022. RESULTS: Results: In the majority of cases of patients signs the increasing in IL-1,6 and Cortisol levels were found. A decrease in Ca to the lower limit of the norm was observed (2.18 ± 0.26 mmol/l to the data of control group patients (2.32 ± 0.12 mmol/l, p= 0.01 ), the levels of trace elements Zn and Se were determined within the reference values. The Atherogenic Index was increased 1.8 times and was significantly different from the control group date. During the FE-1 study, a decrease in the level of this indicator was revealed by 151.71±13.91 mg/g of feces, both to the values of reference values and a significant difference to the data of the control group (241.28±29.17 mg/g of feces, p<0 .05). CONCLUSION: Conclusions: Based on the multivariate linear regression analysis of the obtained data, formulas have been developed that can be used to predict the dynamics of the dependent variable (FE-1, IL-1, Selenium level, Glutathione Peroxidase, blood pressure) according to changes in the studied influencing factors.


Subject(s)
Hypertension , Multivariate Analysis , Pancreatitis, Chronic , Pancreatitis, Chronic/blood , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/pathology , Hypertension/blood , Hypertension/diagnosis , Hypertension/pathology , Humans , Adult , Middle Aged , Gastrointestinal Diseases/diagnosis
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795836

ABSTRACT

Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.


Subject(s)
Apelin Receptors , Protein Multimerization , Humans , Apelin Receptors/metabolism , Apelin Receptors/genetics , Apelin Receptors/chemistry , Animals , Signal Transduction , Atherosclerosis/metabolism , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Hypertension/metabolism , Hypertension/pathology
13.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38719452

ABSTRACT

The corpus callosum is composed of several subregions, distinct in cellular and functional organization. This organization scheme may render these subregions differentially vulnerable to the aging process. Callosal integrity may be further compromised by cardiovascular risk factors, which negatively influence white matter health. Here, we test for heterochronicity of aging, hypothesizing an anteroposterior gradient of vulnerability to aging that may be altered by the effects of cardiovascular health. In 174 healthy adults across the adult lifespan (mean age = 53.56 ± 18.90; range, 20-94 years old, 58.62% women), pulse pressure (calculated as participant's systolic minus diastolic blood pressure) was assessed to determine cardiovascular risk. A deterministic tractography approach via diffusion-weighted imaging was utilized to extract fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) from each of five callosal subregions, serving as estimates of microstructural health. General linear models tested the effects of age, hypertension, and pulse pressure on these cross-sectional metrics. We observed no significant effect of hypertensive diagnosis on callosal microstructure. We found a significant main effect of age and an age-pulse pressure interaction whereby older age and elevated pulse pressure were associated with poorer FA, AD, and RD. Age effects revealed nonlinear components and occurred along an anteroposterior gradient of severity in the callosum. This gradient disappeared when pulse pressure was considered. These results indicate that age-related deterioration across the callosum is regionally variable and that pulse pressure, a proxy of arterial stiffness, exacerbates this aging pattern in a large lifespan cohort.


Subject(s)
Aging , Blood Pressure , Corpus Callosum , Humans , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiology , Female , Middle Aged , Aged , Adult , Male , Aging/physiology , Aging/pathology , Aged, 80 and over , Young Adult , Blood Pressure/physiology , Diffusion Tensor Imaging , Hypertension/physiopathology , Hypertension/pathology , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging
14.
Cells ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727287

ABSTRACT

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Subject(s)
Disease Progression , Renal Insufficiency, Chronic , Renin-Angiotensin System , Humans , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renin-Angiotensin System/physiology , Animals , Hypertension/physiopathology , Hypertension/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/physiopathology , Transforming Growth Factor beta1/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/physiopathology
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732158

ABSTRACT

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Subject(s)
Cell Membrane , Endocytosis , Epithelial Sodium Channels , Hypertension , Neutrophils , Epithelial Sodium Channels/metabolism , Humans , Neutrophils/metabolism , Hypertension/metabolism , Hypertension/pathology , Cell Membrane/metabolism , Membrane Lipids/metabolism , Protein Serine-Threonine Kinases/metabolism , Male , Female , Immediate-Early Proteins/metabolism , Middle Aged , Membrane Microdomains/metabolism
16.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691302

ABSTRACT

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Subject(s)
Apoptosis , Cell Proliferation , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Hypertension , Janus Kinases , Metabolic Syndrome , Oxidative Stress , Signal Transduction , Ubiquitin Thiolesterase , Animals , Humans , Male , Rats , Apoptosis/drug effects , Blood Pressure/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Progression , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/pathology , Hypertension/enzymology , Janus Kinases/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/enzymology , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/enzymology , Oxidative Stress/drug effects , Rats, Sprague-Dawley , STAT Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Vascular Remodeling/drug effects
17.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Article in English | MEDLINE | ID: mdl-38715976

ABSTRACT

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Subject(s)
Macrophages , Receptors, Calcium-Sensing , Ventricular Remodeling , Animals , Male , Mice , Rats , Blood Pressure , Fibrosis/metabolism , Hypertension/metabolism , Hypertension/pathology , Macrophages/metabolism , Myocardium/pathology , Myocardium/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Inbred SHR , Receptors, Calcium-Sensing/metabolism , Ventricular Remodeling/physiology
18.
Br J Pharmacol ; 181(17): 3098-3117, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.


Subject(s)
Angiotensin II , Fibrosis , Hypertension , Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Vimentin , Animals , Angiotensin II/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Fibrosis/chemically induced , Mice , Humans , Vimentin/metabolism , Male , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Mice, Knockout , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics
19.
Biochem Biophys Res Commun ; 715: 149997, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678782

ABSTRACT

The immune system is involved in hypertension development with different immune cells reported to have either pro or anti-hypertensive effects. In hypertension, immune cells have been thought to infiltrate blood pressure-regulating organs, resulting in either elevation or reduction of blood pressure. There is controversy over whether macrophages play a detrimental or beneficial role in the development of hypertension, and the few existing studies have yielded conflicting results. This study aimed to determine the effects of angiotensin II (Ang II) salt-induced hypertension on renal immune cells and to determine whether renal macrophages are involved in the induction of hypertension. Hypertension was induced by administration of Ang II and saline for two weeks. The effects of hypertension on kidney immune cells were assessed using flow cytometry. Macrophage infiltration in the kidney was assessed by immunohistochemistry and kidney fibrosis was assessed using trichrome stain and kidney real time-qPCR. Liposome encapsulated clodronate was used to deplete macrophages in C57BL/6J mice and investigate the direct role of macrophages in hypertension induction. Ang II saline mice group developed hypertension, had increased renal macrophages, and had increased expression of Acta2 and Col1a1 and kidney fibrotic areas. Macrophage depletion blunted hypertension development and reduced the expression of Acta2 and Col1a1 in the kidney and kidney fibrotic areas in Ang II saline group. The results of this study demonstrate that macrophages infiltrate the kidneys and increase kidney fibrosis in Ang II salt-induced hypertension, and depletion of macrophages suppresses the development of hypertension and decreases kidney fibrosis. This indicates that macrophages play a direct role in hypertension development. Hence macrophages have a potential to be considered as therapeutic target in hypertension management.


Subject(s)
Angiotensin II , Disease Models, Animal , Fibrosis , Hypertension , Kidney , Macrophages , Animals , Mice , Angiotensin II/pharmacology , Blood Pressure/drug effects , Hypertension/chemically induced , Hypertension/pathology , Hypertension/metabolism , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/etiology , Macrophages/metabolism , Macrophages/pathology , Macrophages/drug effects , Mice, Inbred C57BL , Sodium Chloride, Dietary/adverse effects
20.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673987

ABSTRACT

Sodium chloride (NaCl) activates Th17 and dendritic cells in hypertension by stimulating serum/glucocorticoid kinase 1 (SGK1), a sodium sensor. Memory T cells also play a role in hypertension by infiltrating target organs and releasing proinflammatory cytokines. We tested the hypothesis that the role of T cell SGK1 extends to memory T cells. We employed mice with a T cell deletion of SGK1, SGK1fl/fl × tgCD4cre mice, and used SGK1fl/fl mice as controls. We treated the mice with L-NAME (0.5 mg/mL) for 2 weeks and allowed a 2-week washout interval, followed by a 3-week high-salt (HS) diet (4% NaCl). L-NAME/HS significantly increased blood pressure and memory T cell accumulation in the kidneys and bone marrow of SGK1fl/fl mice compared to knockout mice on L-NAME/HS or groups on a normal diet (ND). SGK1fl/fl mice exhibited increased albuminuria, renal fibrosis, and interferon-γ levels after L-NAME/HS treatment. Myography demonstrated endothelial dysfunction in the mesenteric arterioles of SGK1fl/fl mice. Bone marrow memory T cells were adoptively transferred from either mouse strain after L-NAME/HS administration to recipient CD45.1 mice fed the HS diet for 3 weeks. Only the mice that received cells from SGK1fl/fl donors exhibited increased blood pressure and renal memory T cell infiltration. Our data suggest a new therapeutic target for decreasing hypertension-specific memory T cells and protecting against hypertension.


Subject(s)
Hypertension , Immediate-Early Proteins , NG-Nitroarginine Methyl Ester , Protein Serine-Threonine Kinases , Sodium Chloride, Dietary , Animals , Male , Mice , Blood Pressure/drug effects , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Sodium Chloride, Dietary/adverse effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL