Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Evol Biol ; 16(1): 145, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27363593

ABSTRACT

BACKGROUND: Cave-dwelling animals evolve various traits as a consequence of life in darkness. Constructive traits (e.g., enhanced non-visual sensory systems) presumably arise under strong selective pressures. The mechanism(s) driving regression of features, however, are not well understood. Quantitative trait locus (QTL) analyses in Astyanax mexicanus Pachón cave x surface hybrids revealed phenotypic effects associated with vision and pigmentation loss. Vision QTL were uniformly associated with reductions in the homozygous cave condition, however pigmentation QTL demonstrated mixed phenotypic effects. This implied pigmentation might be lost through both selective and neutral forces. Alternatively, in this report, we examined if a pleiotropic interaction may exist between vision and pigmentation since vision loss has been shown to result in darker skin in other fish and amphibian model systems. RESULTS: We discovered that certain members of Pachón x surface pedigrees are significantly darker than surface-dwelling fish. All of these "hypermelanic" individuals demonstrated severe visual system malformations suggesting they may be blind. A vision-mediated behavioral assay revealed that these fish, in stark contrast to surface fish, behaved the same as blind cavefish. Further, hypermelanic melanophores were larger and more dendritic in morphology compared to surface fish melanophores. However, hypermelanic melanophores responded normally to melanin-concentrating hormone suggesting darkening stemmed from vision loss, rather than a defect in pigment cell function. Finally, a number of genomic regions were coordinately associated with both reduced vision and increased pigmentation. CONCLUSIONS: This work suggests hypermelanism in hybrid Astyanax results from blindness. This finding provides an alternative explanation for phenotypic effect studies of pigmentation QTL as stemming (at least in part) from environmental, rather than exclusively genetic, interactions between two regressive phenotypes. Further, this analysis reveals persistence of background adaptation in Astyanax. As the eye was lost in cave-dwelling forms, enhanced pigmentation resulted. Given the extreme cave environment, which is often devoid of nutrition, enhanced pigmentation may impose an energetic cost. Such an energetic cost would be selected against, as a means of energy conservation. Thus, the pleiotropic interaction between vision loss and pigmentation may reveal an additional selective pressure favoring the loss of pigmentation in cave-dwelling animals.


Subject(s)
Biological Evolution , Characidae/genetics , Characidae/physiology , Pigmentation , Adaptation, Physiological , Animals , Caves , Ecosystem , Eye/anatomy & histology , Hybridization, Genetic , Hypothalamic Hormones/genetics , Melanins/genetics , Pituitary Hormones/genetics , Quantitative Trait Loci , Vision, Ocular
2.
J Neuroendocrinol ; 28(5)2016 05.
Article in English | MEDLINE | ID: mdl-26919074

ABSTRACT

The role of gonadotrophin-inhibitory hormone (GnIH) in the inhibition of the reproductive axis has been well-established in birds and mammals. However, its role in other vertebrates, such as the teleost fish, remains controversial. In this context, the present study aimed to evaluate whether GnIH modulates the release of gonadotrophins and growth hormone (GH) in the cichlid fish Cichlasoma dimerus. First, we partially sequenced the precursor polypeptide for GnIH and identified three putative GnIH peptides. Next, we analysed the expression of this precursor polypeptide via a polymerase chain reaction in the reproductive axis of both sexes. We found a high expression of the polypeptide in the hypothalamus and gonads of males. Immunocytochemistry allowed the observation of GnIH-immunoreactive somata in the nucleus posterioris periventricularis and the nucleus olfacto-retinalis, with no differences between the sexes. GnIH-immunoreactive fibres were present in all brain regions, with a high density in the nucleus lateralis tuberis and at both sides of the third ventricle. Finally, we performed in vitro studies on intact pituitary cultures to evaluate the effect of two doses (10(-6)  m and 10(-8)  m) of synthetic C. dimerus (cd-) LPQRFa-1 and LPQRFa-2 on the release of gonadotrophins and GH. We observed that cd-LPQRFa-1 decreased ß-luteinising hormone (LH) and ß-follicle-stimulating hormone (FSH) and also increased GH release to the culture medium. The release of ß-FSH was increased only when it was stimulated with the higher cd-LPQRFa-2 dose. The results of the present study indicate that cd-LPQRFa-1, the cichlid fish GnIH, inhibits ß-LH and ß-FSH release and stimulates GH release in intact pituitary cultures of C. dimerus. The results also show that cd-LPQRF-2 could act as an ß-FSH-releasing factor in this fish species.


Subject(s)
Cichlids/metabolism , Fish Proteins/metabolism , Gonadotropins/metabolism , Growth Hormone/metabolism , Hypothalamic Hormones/metabolism , Animals , Cichlids/genetics , Female , Follicle Stimulating Hormone, beta Subunit/metabolism , Hypothalamic Hormones/analysis , Hypothalamic Hormones/genetics , Male , Peptide Hormones/administration & dosage , Pituitary Gland/drug effects , Pituitary Gland/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism
3.
Peptides ; 74: 9-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456505

ABSTRACT

Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8). We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus. In addition, compared to control, disturbances of the sleep-wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions. In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.


Subject(s)
Hypothalamic Hormones/cerebrospinal fluid , Hypothalamic Hormones/genetics , Hypothalamus/metabolism , Melanins/cerebrospinal fluid , Pituitary Hormones/cerebrospinal fluid , Protein Precursors/genetics , Receptors, Somatostatin/genetics , Sleep Deprivation/metabolism , Sleep, REM , Animals , Frontal Lobe/metabolism , Gene Expression , Hippocampus/metabolism , Male , Rats , Rats, Wistar
4.
Gen Comp Endocrinol ; 176(1): 102-11, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22266076

ABSTRACT

Growth hormone (GH) is the main pituitary hormone involved in somatic growth. In fish, the neuroendocrine control of GH is multifactorial due to the interaction of multiple inhibitors and stimulators. Melanin-concentrating hormone (MCH) is a cyclic peptide involved in skin color regulation of fish. In addition, MCH has been related to the regulation of food intake in both mammals and fish. There is only one report presenting evidences on the GH release stimulation by MCH in mammals in experiments in vitro, but there are no data on non-mammals. In the present work, we report for the first time the sequence of MCH and GH cDNA in Cichlasoma dimerus, a freshwater South American cichlid fish. We detected contacts between MCH fibers and GH cells in the proximal pars distalis region of the pituitary gland by double label confocal immunofluorescence indicating a possible functional relationship. Besides, we found that MCH increased GH transcript levels and stimulated GH release in pituitary cultures. Additionally, C. dimerus exposed to a white background had a greater number of MCH neurons with a larger nuclear area and higher levels of MCH transcript than those fish exposed to a black background. Furthermore, fish reared for 3 months in a white background showed a greater body weight and total length compared to those from black background suggesting that MCH might be related to somatic growth in C. dimerus. Our results report for the first time, that MCH is involved in the regulation of the synthesis and release of GH in vitro in C. dimerus, and probably in the fish growth rate.


Subject(s)
Cichlids/growth & development , Cichlids/physiology , Growth Hormone/metabolism , Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Gland/metabolism , Pituitary Hormones/metabolism , Amino Acid Sequence , Animals , Base Sequence , Color , Environment , Female , Gene Expression Regulation, Developmental/physiology , Growth Hormone/genetics , Hypothalamic Hormones/genetics , Male , Melanins/genetics , Molecular Sequence Data , Organ Culture Techniques , Pituitary Gland/growth & development , Pituitary Hormones/genetics
5.
J Chem Neuroanat ; 35(2): 188-201, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18065197

ABSTRACT

The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Pituitary Hormones/metabolism , Animals , Axonal Transport , Energy Intake , Hypothalamic Hormones/deficiency , Hypothalamic Hormones/genetics , Immunohistochemistry , In Situ Hybridization , Leptin/deficiency , Male , Melanins/deficiency , Melanins/genetics , Melanophores/metabolism , Mice , Mice, Obese , Motor Cortex/metabolism , Nerve Fibers/metabolism , Pedunculopontine Tegmental Nucleus/metabolism , Pituitary Hormones/deficiency , Pituitary Hormones/genetics , Rats , Rats, Wistar
6.
Brain Res Bull ; 74(1-3): 21-8, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17683785

ABSTRACT

Melanin-concentrating hormone (MCH) is a neuropeptide originating from prepro-MCH. In male rats, neurons expressing MCH are found in the lateral hypothalamic area and medial zona incerta, as well as, sparsely, in the olfactory tubercle and pontine reticular formation. The wide distribution of MCH fibers suggests the involvement of this neuropeptide in a variety of functions, including arousal, neuroendocrine control and energy homeostasis. In lactating females, MCH is expressed in the preoptic area, indicating sexual dimorphism in MCH gene activation according to the female reproductive state. We hypothesized that MCH is also expressed differentially in the brainstem of female rats. Adult male rats and female rats (in the afternoon of diestrus and proestrus days; ovariectomized; or on lactation days 5, 12 and 19) were perfused between 2 and 4 p.m., and the brainstems were processed for in situ hybridization using a 35S-labeled prepro-MCH riboprobe. As described in males, prepro-MCH was expressed in the pontine reticular formation of females. We also observed consistent prepro-MCH expression in the caudal laterodorsal tegmental nucleus (LDT) of females but no differential expression comparing the various female reproductive states. Using dual-label immunohistochemistry or dual-label in situ hybridization, we found that brainstem MCH neurons coexpress glutamic acid decarboxylase mRNA, the gamma aminobutyric acid (GABA) processing enzyme, but do not colocalize choline acetyl transferase (acetylcholine processing enzyme). Since changes in LDT GABAergic cell activity are associated with rapid eye movement (REM) sleep, our findings suggest that MCH interacts with LDT GABAergic neurons and plays a role in REM sleep regulation.


Subject(s)
Gene Expression/physiology , Hypothalamic Hormones/metabolism , Melanins/metabolism , Pedunculopontine Tegmental Nucleus/metabolism , Pituitary Hormones/metabolism , Sex Characteristics , Animals , Diestrus/metabolism , Female , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hypothalamic Hormones/genetics , In Situ Hybridization/methods , Lactates/metabolism , Male , Melanins/genetics , Ovariectomy/methods , Pituitary Hormones/genetics , Rats , Rats, Sprague-Dawley , Time Factors
7.
Neuroendocrinology ; 83(5-6): 313-24, 2006.
Article in English | MEDLINE | ID: mdl-17016031

ABSTRACT

Neuropeptide glutamic acid-isoleucine (NEI) is a 14-amino acid peptide processed from prepro-melanin-concentrating hormone (ppMCH). In males, the localization of NEI is almost identical to that of MCH, the cell bodies of both being located primarily in the lateral hypothalamic area and zona incerta, projecting fibers throughout the brain. Although MCH has been widely studied, the role that NEI plays in brain circuitry has been poorly investigated. Recently, we showed that intracerebroventricular injection of NEI increases serum luteinizing hormone (LH) levels. In order to identify the anatomical substrate underlying this effect, we used combined immunohistochemistry methods to analyze the forebrains of females on the diestrus and proestrus days, as well as those of ovariectomized females treated with estradiol benzoate, with estradiol benzoate plus progesterone or with sesame oil (control animals). We found that ovariectomized females with no steroid treatment showed an increased number of NEI-immunoreactive neurons in the medial zona incerta. In addition, we observed dense to moderate NEI innervation of areas related to reproduction, including the organum vasculosum of the lamina terminalis, the anteroventral periventricular nucleus (AVPV) and the median eminence. The NEI fibers were in close apposition with the AVPV and gonadotropin-releasing hormone (GnRH) neurons expressing Fos in the afternoon of the proestrus day or following administration of estradiol benzoate plus progesterone. In the median eminence, NEI varicosities and terminal-like structures were in close proximity to blood vessels and GnRH fibers. Our results suggest that NEI might induce LH secretion in one of the following ways: by direct release into the median eminence, by modulation of GnRH neurons located in the preoptic area, by modulation of the GnRH terminals located in the median eminence or by an additive effect involving other neurotransmitters or neurohormones. Release of NEI might also induce LH secretion indirectly by modulating AVPV neurons.


Subject(s)
Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Neural Pathways/physiology , Peptide Fragments/metabolism , Prosencephalon/metabolism , Signal Transduction/physiology , Animals , Estrous Cycle/metabolism , Female , Hypothalamic Hormones/genetics , Hypothalamus/cytology , Immunohistochemistry , Neural Pathways/cytology , Neurons/metabolism , Prosencephalon/cytology , Protein Precursors/genetics , Protein Precursors/metabolism , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Subthalamus/cytology , Subthalamus/metabolism , Tissue Distribution
8.
J Endocrinol ; 186(1): 193-201, 2005 07.
Article in English | MEDLINE | ID: mdl-16002548

ABSTRACT

Transgenic hyperexpression of melanin-concentrating hormone (MCH) produces a phenotype of obesity and glucose intolerance. However, it is not known whether under this specific condition, glucose intolerance develops as a direct consequence of hyperexpressed MCH or is secondary to increased adiposity. Here, rats were treated i.c.v. with MCH or with an antisense oligonucleotide to MCH (MCH-ASO). MCH promoted an increase in blood glucose and a decrease in blood insulin levels during a glucose tolerance test. MCH also caused a decrease in the constant of glucose disappearance during an insulin tolerance test. All these effects of MCH were independent of body weight variation and were accompanied by reduced insulin receptor substrate (IRS)-1 engagement of phosphatidylinositol-3 kinase (PI3-kinase) in white and brown adipose tissues, skeletal muscle and liver and by reduced Akt activation in skeletal muscle. MCH also led to a significant reduction in ERK activation in white adipose tissue. Finally, inhibition of hypothalamic MCH expression promoted a significant increase in ERK activation in brown adipose tissue. We conclude that hypothalamic MCH controls glucose homeostasis through mechanisms that are, at least in part, independent of adiposity.


Subject(s)
Hypothalamic Hormones/genetics , Hypothalamic Hormones/pharmacology , Insulin Resistance , Melanins/genetics , Melanins/pharmacology , Oligonucleotides, Antisense/pharmacology , Pituitary Hormones/genetics , Pituitary Hormones/pharmacology , Adipose Tissue/metabolism , Animals , Blood Glucose/analysis , Gene Expression , Glucose Tolerance Test , Insulin/blood , Insulin Receptor Substrate Proteins , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Rats , Rats, Wistar , Weight Gain
9.
Neuroscience ; 121(3): 771-8, 2003.
Article in English | MEDLINE | ID: mdl-14568035

ABSTRACT

Prolactin-releasing peptide (PrRP) was originally thought to participate in the control of adenohypophyseal prolactin secretion, but its predominant expression in a subset of medullary noradrenergic neurons is more in line with roles in interoceptive and/or somatosensory information processing. To better define functional contexts for this peptide system, immuno- and hybridization histochemical methods were used to monitor the capacity of PrRP neurons to display activational responses to lactation, suckling, acute footshock or hypotensive hemorrhage. PrRP mRNA signal was reduced in the medulla of lactating dams, relative to both male and diestrus female controls, with cell counts revealing 42% and 43% reductions in the number of positively hybridized cells in the nucleus of the solitary tract (NTS) and ventrolateral medulla, respectively. Lactating mothers killed after a 90 min suckling episode (following 4 h pup removal) failed to show induced Fos expression in identified medullary PrRP neurons, despite the fact that responsive neurons were detected in other aspects of the caudal NTS. By contrast, acute exposure to hypotensive (25%) hemorrhage or footshock each activated substantial complements of medullary neurons expressing PrRP mRNA. A substantially greater fraction of the total medullary PrRP population exhibited sensitivity to footshock than hemorrhage (71 versus 39%, respectively). These results suggest that medullary PrRP neurons are negatively regulated by (presumably hormonal) changes in lactation, and are not recruited to activation by suckling stimuli. These populations exhibit differential sensitivity to distinct acute stressors, and may participate in the modulation of adaptive neuroendocrine and autonomic responses to each.


Subject(s)
Hypothalamic Hormones/metabolism , Lactation/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Solitary Nucleus/metabolism , Stress, Physiological/metabolism , Animals , Animals, Newborn , Animals, Suckling/metabolism , Behavior, Animal , Brain Chemistry , Cell Count , Diestrus/metabolism , Electroshock/adverse effects , Female , Hemorrhage/metabolism , Humans , Hypothalamic Hormones/genetics , Immunohistochemistry , In Situ Hybridization , Male , Neuropeptides/genetics , Pregnancy , Prolactin-Releasing Hormone , Proto-Oncogene Proteins c-fos/metabolism , RNA, Complementary/metabolism , Rats , Rats, Sprague-Dawley , Solitary Nucleus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL