Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
1.
Respir Res ; 25(1): 279, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010097

ABSTRACT

BACKGROUND: We assessed the effect of noninvasive ventilation (NIV) on mortality and length of stay after high flow nasal oxygenation (HFNO) failure among patients with severe hypoxemic COVID-19 pneumonia. METHODS: In this multicenter, retrospective study, we enrolled COVID-19 patients admitted in intensive care unit (ICU) for severe COVID-19 pneumonia with a HFNO failure from December 2020 to January 2022. The primary outcome was to compare the 90-day mortality between patients who required a straight intubation after HFNO failure and patients who received NIV after HFNO failure. Secondary outcomes included ICU and hospital length of stay. A propensity score analysis was performed to control for confounding factors between groups. Exploratory outcomes included a subgroup analysis for 90-day mortality. RESULTS: We included 461 patients with HFNO failure in the analysis, 233 patients in the straight intubation group and 228 in the NIV group. The 90-day mortality did not significantly differ between groups, 58/228 (25.4%) int the NIV group compared with 59/233 (25.3%) in the straight intubation group, with an adjusted hazard ratio (HR) after propensity score weighting of 0.82 [95%CI, 0.50-1.35] (p = 0.434). ICU length of stay was significantly shorter in the NIV group compared to the straight intubation group, 10.0 days [IQR, 7.0-19.8] versus 18.0 days [IQR,11.0-31.0] with a propensity score weighted HR of 1.77 [95%CI, 1.29-2.43] (p < 0.001). A subgroup analysis showed a significant increase in mortality rate for intubated patients in the NIV group with 56/122 (45.9%), compared to 59/233 (25.3%) for patients in the straight intubation group (p < 0.001). CONCLUSIONS: In severely hypoxemic COVID-19 patients, no significant differences were observed on 90-day mortality between patients receiving straight intubation and those receiving NIV after HFNO failure. NIV strategy was associated with a significant reduction in ICU length of stay, despite an increase in mortality in the subgroup of patients finally intubated.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Propensity Score , Humans , COVID-19/mortality , COVID-19/therapy , COVID-19/complications , Male , Female , Retrospective Studies , Noninvasive Ventilation/methods , Aged , Middle Aged , France/epidemiology , Oxygen Inhalation Therapy/methods , Treatment Outcome , Hypoxia/mortality , Hypoxia/therapy , Hypoxia/diagnosis , Length of Stay/statistics & numerical data , Hospital Mortality/trends , Intensive Care Units/statistics & numerical data , Cohort Studies , Severity of Illness Index , Aged, 80 and over
2.
Intensive Care Med ; 50(7): 1021-1034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842731

ABSTRACT

PURPOSE: Severe acute respiratory distress syndrome (ARDS) with PaO2/FiO2 < 80 mmHg is a life-threatening condition. The optimal management strategy is unclear. The aim of this meta-analysis was to compare the effects of low tidal volumes (Vt), moderate Vt, prone ventilation, and venovenous extracorporeal membrane oxygenation (VV-ECMO) on mortality in severe ARDS. METHODS: We performed a frequentist network meta-analysis of randomised controlled trials (RCTs) with participants who had severe ARDS and met eligibility criteria for VV-ECMO or had PaO2/FiO2 < 80 mmHg. We applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) methodology to discern the relative effect of interventions on mortality and the certainty of the evidence. RESULTS: Ten RCTs including 812 participants with severe ARDS were eligible. VV-ECMO reduces mortality compared to low Vt (risk ratio [RR] 0.77, 95% confidence interval [CI] 0.59-0.99, moderate certainty) and compared to moderate Vt (RR 0.75, 95% CI 0.57-0.98, low certainty). Prone ventilation reduces mortality compared to moderate Vt (RR 0.78, 95% CI 0.66-0.93, high certainty) and compared to low Vt (RR 0.81, 95% CI 0.63-1.02, moderate certainty). We found no difference in the network comparison of VV-ECMO compared to prone ventilation (RR 0.95, 95% CI 0.72-1.26), but inferences were based solely on indirect comparisons with very low certainty due to very wide confidence intervals. CONCLUSIONS: In adults with ARDS and severe hypoxia, both VV-ECMO (low to moderate certainty evidence) and prone ventilation (moderate to high certainty evidence) improve mortality relative to low and moderate Vt strategies. The impact of VV-ECMO versus prone ventilation remains uncertain.


Subject(s)
Extracorporeal Membrane Oxygenation , Network Meta-Analysis , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/mortality , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Prone Position/physiology , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Supine Position , Tidal Volume/physiology , Randomized Controlled Trials as Topic , Hypoxia/therapy , Hypoxia/mortality
3.
Crit Care Explor ; 6(5): e1092, 2024 May.
Article in English | MEDLINE | ID: mdl-38725442

ABSTRACT

IMPORTANCE: Patients presenting to the emergency department (ED) with hypoxemia often have mixed or uncertain causes of respiratory failure. The optimal treatment for such patients is unclear. Both high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) are used. OBJECTIVES: We sought to compare the effectiveness of initial treatment with HFNC versus NIV for acute hypoxemic respiratory failure. DESIGN SETTING AND PARTICIPANTS: We conducted a retrospective cohort study of patients with acute hypoxemic respiratory failure treated with HFNC or NIV within 24 hours of arrival to the University of Michigan adult ED from January 2018 to December 2022. We matched patients 1:1 using a propensity score for odds of receiving NIV. MAIN OUTCOMES AND MEASURES: The primary outcome was major adverse pulmonary events (28-d mortality, ventilator-free days, noninvasive respiratory support hours) calculated using a win ratio. RESULTS: A total of 1154 patients were included. Seven hundred twenty-six (62.9%) received HFNC and 428 (37.1%) received NIV. We propensity score matched 668 of 1154 (57.9%) patients. Patients on NIV versus HFNC had lower 28-day mortality (16.5% vs. 23.4%, p = 0.033) and required noninvasive treatment for fewer hours (median 7.5 vs. 13.5, p < 0.001), but had no difference in ventilator-free days (median [interquartile range]: 28 [26, 28] vs. 28 [10.5, 28], p = 0.199). Win ratio for composite major adverse pulmonary events favored NIV (1.38; 95% CI, 1.15-1.65; p < 0.001). CONCLUSIONS AND RELEVANCE: In this observational study of patients with acute hypoxemic respiratory failure, initial treatment with NIV compared with HFNC was associated with lower mortality and fewer composite major pulmonary adverse events calculated using a win ratio. These findings underscore the need for randomized controlled trials to further understand the impact of noninvasive respiratory support strategies.


Subject(s)
Cannula , Hypoxia , Noninvasive Ventilation , Propensity Score , Respiratory Insufficiency , Humans , Noninvasive Ventilation/methods , Noninvasive Ventilation/instrumentation , Noninvasive Ventilation/adverse effects , Retrospective Studies , Male , Female , Middle Aged , Hypoxia/therapy , Hypoxia/mortality , Aged , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Oxygen Inhalation Therapy/methods , Oxygen Inhalation Therapy/instrumentation , Cohort Studies , Acute Disease , Emergency Service, Hospital/statistics & numerical data , Treatment Outcome
4.
Crit Care ; 28(1): 157, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730306

ABSTRACT

PURPOSE: Invasive ventilation is a fundamental treatment in intensive care but its precise timing is difficult to determine. This study aims at assessing the effect of initiating invasive ventilation versus waiting, in patients with hypoxemic respiratory failure without immediate reason for intubation on one-year mortality. METHODS: Emulation of a target trial to estimate the benefit of immediately initiating invasive ventilation in hypoxemic respiratory failure, versus waiting, among patients within the first 48-h of hypoxemia. The eligible population included non-intubated patients with SpO2/FiO2 ≤ 200 and SpO2 ≤ 97%. The target trial was emulated using a single-center database (MIMIC-IV) which contains granular information about clinical status. The hourly probability to receive mechanical ventilation was continuously estimated. The hazard ratios for the primary outcome, one-year mortality, and the secondary outcome, 30-day mortality, were estimated using weighted Cox models with stabilized inverse probability weights used to adjust for measured confounding. RESULTS: 2996 Patients fulfilled the inclusion criteria of whom 792 were intubated within 48 h. Among the non-invasive support devices, the use of oxygen through facemask was the most common (75%). Compared to patients with the same probability of intubation but who were not intubated, intubation decreased the hazard of dying for the first year after ICU admission HR 0.81 (95% CI 0.68-0.96, p = 0.018). Intubation was associated with a 30-day mortality HR of 0.80 (95% CI 0.64-0.99, p = 0.046). CONCLUSION: The initiation of mechanical ventilation in patients with acute hypoxemic respiratory failure reduced the hazard of dying in this emulation of a target trial.


Subject(s)
Respiration, Artificial , Respiratory Insufficiency , Humans , Male , Female , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Middle Aged , Aged , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Hypoxia/therapy , Hypoxia/mortality , Proportional Hazards Models , Time Factors , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data
5.
Ann Am Thorac Soc ; 21(6): 895-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38507645

ABSTRACT

Rationale: Adult and pediatric studies provide conflicting data regarding whether post-cardiac arrest hypoxemia, hyperoxemia, hypercapnia, and/or hypocapnia are associated with worse outcomes. Objectives: We sought to determine whether postarrest hypoxemia or postarrest hyperoxemia is associated with lower rates of survival to hospital discharge, compared with postarrest normoxemia, and whether postarrest hypocapnia or hypercapnia is associated with lower rates of survival, compared with postarrest normocapnia. Methods: An embedded prospective observational study during a multicenter interventional cardiopulmonary resuscitation trial was conducted from 2016 to 2021. Patients ⩽18 years old and with a corrected gestational age of ≥37 weeks who received chest compressions for cardiac arrest in one of the 18 intensive care units were included. Exposures during the first 24 hours postarrest were hypoxemia, hyperoxemia, or normoxemia-defined as lowest arterial oxygen tension/pressure (PaO2) <60 mm Hg, highest PaO2 ⩾200 mm Hg, or every PaO2 60-199 mm Hg, respectively-and hypocapnia, hypercapnia, or normocapnia, defined as lowest arterial carbon dioxide tension/pressure (PaCO2) <30 mm Hg, highest PaCO2 ⩾50 mm Hg, or every PaCO2 30-49 mm Hg, respectively. Associations of oxygenation and carbon dioxide group with survival to hospital discharge were assessed using Poisson regression with robust error estimates. Results: The hypoxemia group was less likely to survive to hospital discharge, compared with the normoxemia group (adjusted relative risk [aRR] = 0.71; 95% confidence interval [CI] = 0.58-0.87), whereas survival in the hyperoxemia group did not differ from that in the normoxemia group (aRR = 1.0; 95% CI = 0.87-1.15). The hypercapnia group was less likely to survive to hospital discharge, compared with the normocapnia group (aRR = 0.74; 95% CI = 0.64-0.84), whereas survival in the hypocapnia group did not differ from that in the normocapnia group (aRR = 0.91; 95% CI = 0.74-1.12). Conclusions: Postarrest hypoxemia and hypercapnia were each associated with lower rates of survival to hospital discharge.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Hypercapnia , Hypoxia , Humans , Heart Arrest/therapy , Heart Arrest/mortality , Male , Female , Prospective Studies , Hypoxia/mortality , Child , Hypercapnia/mortality , Hypercapnia/therapy , Child, Preschool , Cardiopulmonary Resuscitation/methods , Infant , Hypocapnia , Hyperoxia/mortality , Adolescent , Oxygen/blood , Survival Rate , Infant, Newborn , Respiration, Artificial
6.
Pediatr Crit Care Med ; 25(7): 591-598, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38511990

ABSTRACT

OBJECTIVES: Extracorporeal life support can lead to rapid reversal of hypoxemia but the benefits and harms of different oxygenation targets in severely ill patients are unclear. Our primary objective was to investigate the association between the Pa o2 after extracorporeal membrane oxygenation (ECMO) initiation and mortality in neonates treated for respiratory failure. DESIGN: Retrospective analysis of the Extracorporeal Life Support Organization (ELSO) Registry data, 2015-2020. PATIENTS: Newborns supported by ECMO for respiratory indication were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Pa o2 24 hours after ECMO initiation (H24 Pa o2 ) was reported. The primary outcome was 28-day mortality. We identified 3533 newborns (median age 1 d [interquartile range (IQR), 1-3]; median weight 3.2 kg [IQR, 2.8-3.6]) from 198 ELSO centers, who were placed on ECMO. By 28 days of life, 731 (20.7%) had died. The median H24 Pa o2 was 85 mm Hg (IQR, 60-142). We found that both hypoxia (Pa o2 < 60 mm Hg) and moderate hyperoxia (Pa o2 201-300 mm Hg) were associated with greater adjusted odds ratio (aOR [95% CI]) of 28-day mortality, respectively: aOR 1.44 (95% CI, 1.08-1.93), p = 0.016, and aOR 1.49 (95% CI, 1.01-2.19), p value equals to 0.045. CONCLUSIONS: Early hypoxia or moderate hyperoxia after ECMO initiation are each associated with greater odds of 28-day mortality among neonates requiring ECMO for respiratory failure.


Subject(s)
Extracorporeal Membrane Oxygenation , Registries , Humans , Extracorporeal Membrane Oxygenation/mortality , Extracorporeal Membrane Oxygenation/methods , Infant, Newborn , Retrospective Studies , Male , Female , Respiratory Insufficiency/therapy , Respiratory Insufficiency/mortality , Oxygen , Hypoxia/mortality , Hypoxia/therapy
7.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37039791

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
8.
JAMA ; 328(11): 1063-1072, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36125473

ABSTRACT

Importance: Helmet noninvasive ventilation has been used in patients with COVID-19 with the premise that helmet interface is more effective than mask interface in delivering prolonged treatments with high positive airway pressure, but data about its effectiveness are limited. Objective: To evaluate whether helmet noninvasive ventilation compared with usual respiratory support reduces mortality in patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. Design, Setting, and Participants: This was a multicenter, pragmatic, randomized clinical trial that was conducted in 8 sites in Saudi Arabia and Kuwait between February 8, 2021, and November 16, 2021. Adult patients with acute hypoxemic respiratory failure (n = 320) due to suspected or confirmed COVID-19 were included. The final follow-up date for the primary outcome was December 14, 2021. Interventions: Patients were randomized to receive helmet noninvasive ventilation (n = 159) or usual respiratory support (n = 161), which included mask noninvasive ventilation, high-flow nasal oxygen, and standard oxygen. Main Outcomes and Measures: The primary outcome was 28-day all-cause mortality. There were 12 prespecified secondary outcomes, including endotracheal intubation, barotrauma, skin pressure injury, and serious adverse events. Results: Among 322 patients who were randomized, 320 were included in the primary analysis, all of whom completed the trial. Median age was 58 years, and 187 were men (58.4%). Within 28 days, 43 of 159 patients (27.0%) died in the helmet noninvasive ventilation group compared with 42 of 161 (26.1%) in the usual respiratory support group (risk difference, 1.0% [95% CI, -8.7% to 10.6%]; relative risk, 1.04 [95% CI, 0.72-1.49]; P = .85). Within 28 days, 75 of 159 patients (47.2%) required endotracheal intubation in the helmet noninvasive ventilation group compared with 81 of 161 (50.3%) in the usual respiratory support group (risk difference, -3.1% [95% CI, -14.1% to 7.8%]; relative risk, 0.94 [95% CI, 0.75-1.17]). There were no significant differences between the 2 groups in any of the prespecified secondary end points. Barotrauma occurred in 30 of 159 patients (18.9%) in the helmet noninvasive ventilation group and 25 of 161 (15.5%) in the usual respiratory support group. Skin pressure injury occurred in 5 of 159 patients (3.1%) in the helmet noninvasive ventilation group and 10 of 161 (6.2%) in the usual respiratory support group. There were 2 serious adverse events in the helmet noninvasive ventilation group and 1 in the usual respiratory support group. Conclusions and Relevance: Results of this study suggest that helmet noninvasive ventilation did not significantly reduce 28-day mortality compared with usual respiratory support among patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. However, interpretation of the findings is limited by imprecision in the effect estimate, which does not exclude potentially clinically important benefit or harm. Trial Registration: ClinicalTrials.gov Identifier: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiratory Insufficiency , Acute Disease , Barotrauma/etiology , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/mortality , Hypoxia/therapy , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen/administration & dosage , Oxygen/adverse effects , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
10.
Nat Commun ; 13(1): 116, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013227

ABSTRACT

Glioblastoma is an aggressive form of brain cancer with well-established patterns of intra-tumoral heterogeneity implicated in treatment resistance and progression. While regional and single cell transcriptomic variations of glioblastoma have been recently resolved, downstream phenotype-level proteomic programs have yet to be assigned across glioblastoma's hallmark histomorphologic niches. Here, we leverage mass spectrometry to spatially align abundance levels of 4,794 proteins to distinct histologic patterns across 20 patients and propose diverse molecular programs operational within these regional tumor compartments. Using machine learning, we overlay concordant transcriptional information, and define two distinct proteogenomic programs, MYC- and KRAS-axis hereon, that cooperate with hypoxia to produce a tri-dimensional model of intra-tumoral heterogeneity. Moreover, we highlight differential drug sensitivities and relative chemoresistance in glioblastoma cell lines with enhanced KRAS programs. Importantly, these pharmacological differences are less pronounced in transcriptional glioblastoma subgroups suggesting that this model may provide insights for targeting heterogeneity and overcoming therapy resistance.


Subject(s)
Brain Neoplasms/genetics , Genetic Heterogeneity , Glioblastoma/genetics , Hypoxia/genetics , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Antineoplastic Agents/therapeutic use , Brain Neoplasms/diagnosis , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Cell Line, Tumor , Cohort Studies , Disease Progression , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/diagnosis , Glioblastoma/drug therapy , Glioblastoma/mortality , Humans , Hypoxia/diagnosis , Hypoxia/drug therapy , Hypoxia/mortality , Laser Capture Microdissection , Machine Learning , Models, Genetic , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Survival Analysis , Transcriptome
11.
Am J Respir Crit Care Med ; 205(4): 431-439, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34861135

ABSTRACT

Rationale: The "Berlin definition" of acute respiratory distress syndrome (ARDS) does not allow inclusion of patients receiving high-flow nasal oxygen (HFNO). However, several articles have proposed that criteria for defining ARDS should be broadened to allow inclusion of patients receiving HFNO. Objectives: To compare the proportion of patients fulfilling ARDS criteria during HFNO and soon after intubation, and 28-day mortality between patients treated exclusively with HFNO and patients transitioned from HFNO to invasive mechanical ventilation (IMV). Methods: From previously published studies, we analyzed patients with coronavirus disease (COVID-19) who had PaO2/FiO2 of ⩽300 while treated with ⩾40 L/min HFNO, or noninvasive ventilation (NIV) with positive end-expiratory pressure of ⩾5 cm H2O (comparator). In patients transitioned from HFNO/NIV to invasive mechanical ventilation (IMV), we compared ARDS severity during HFNO/NIV and soon after IMV. We compared 28-day mortality in patients treated exclusively with HFNO/NIV versus patients transitioned to IMV. Measurements and Main Results: We analyzed 184 and 131 patients receiving HFNO or NIV, respectively. A total of 112 HFNO and 69 NIV patients transitioned to IMV. Of those, 104 (92.9%) patients on HFNO and 66 (95.7%) on NIV continued to have PaO2/FiO2 ⩽300 under IMV. Twenty-eight-day mortality in patients who remained on HFNO was 4.2% (3/72), whereas in patients transitioned from HFNO to IMV, it was 28.6% (32/112) (P < 0.001). Twenty-eight-day mortality in patients who remained on NIV was 1.6% (1/62), whereas in patients who transitioned from NIV to IMV, it was 44.9% (31/69) (P < 0.001). Overall mortality was 19.0% (35/184) and 24.4% (32/131) for HFNO and NIV, respectively (P = 0.2479). Conclusions: Broadening the ARDS definition to include patients on HFNO with PaO2/FiO2 ⩽300 may identify patients at earlier stages of disease but with lower mortality.


Subject(s)
COVID-19/therapy , Hypoxia/therapy , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome/therapy , Aged , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Hypoxia/diagnosis , Hypoxia/mortality , Hypoxia/virology , Italy/epidemiology , Male , Middle Aged , Oxygen Inhalation Therapy/mortality , Patient Acuity , Respiration, Artificial/methods , Respiration, Artificial/mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Treatment Outcome
12.
Am J Respir Crit Care Med ; 205(1): 108-117, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34648724

ABSTRACT

Rationale: Data from population-based cohorts suggest that symptom subtypes and obstructive sleep apnea (OSA)-specific hypoxic burden (HB) could help to better identify patients with OSA at high cardiovascular (CV) risk. Objectives: We aimed to evaluate whether those new markers are associated with the risk of major adverse CV events (MACE) in clinical setting. Methods: Data from the Pays de la Loire cohort were linked to health administrative data to identify the occurrence of MACE (a composite outcome including all-cause mortality, acute myocardial infarction, stroke, and unplanned coronary revascularization) in patients with newly diagnosed OSA and no overt CV disease. Latent class analysis was used to identify subtypes based on eight clinically relevant variables. HB was defined as the total area under the respiratory event-related desaturation curve. Cox proportional hazards models were used to evaluate the association of symptom subtypes and HB with MACE. Measurements and Main Results: Four symptom subtypes were identified (minimally symptomatic [22.0%], disturbed sleep [17.5%], excessively sleepy [49.8%], and moderately sleepy [10.6%]). After a median follow-up of 78 months (interquartile range, 52-109), 592 (11.05%) of 5,358 patients experienced MACE. In a fully adjusted model, HB and overall nocturnal hypoxemia assessed by sleep time with oxygen saturation <90% were the only predictors of MACE (hazard ratio, 1.21; 95% confidence interval, 1.07-1.38; and hazard ratio, 1.34; 95% confidence interval, 1.16-1.55, respectively). The association appeared stronger toward younger patients and women. Conclusion: In clinical setting, patients with OSA who demonstrate elevated OSA-specific HB are at higher risk of a CV event and all-cause mortality. Symptom subtypes were not associated with MACE after adjustment for confounders.


Subject(s)
Cardiovascular Diseases/etiology , Heart Disease Risk Factors , Hypoxia/physiopathology , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/physiopathology , Adult , Aged , Cardiovascular Diseases/mortality , Cluster Analysis , Databases, Factual , Female , Follow-Up Studies , France/epidemiology , Humans , Hypoxia/complications , Hypoxia/diagnosis , Hypoxia/mortality , Kaplan-Meier Estimate , Male , Middle Aged , Patient Acuity , Proportional Hazards Models , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/mortality
13.
Pak J Pharm Sci ; 34(5): 1679-1683, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34803002

ABSTRACT

Almost all plants contain polyphenols. Literature shows that polyphenols exhibit many biological activities. Little has known about their protective effects against hypoxia-induced lethality. The protective effects of rutin (1) and chlorogenic acid (2) against hypoxia conditions in mice were determined by three different experimental models. Antihypoxic activity was especially pronounced in asphytic hypoxia. Both compounds (1&2) showed statistically significant (p>0.05) activities respect to the control. Compound (1) significantly prolonged the latency for death with respect to control (39.20±8.70 vs. 13.20±2.58min, p<0.001). Compound (1) was the most effective compound in circulatory hypoxia. It significantly prolonged the latency for death with respect to control (14.44±2.82 vs. 9.82±0.79 min, p<0.01). On the other hand, Chlorogenic acid (2) at a dose of 100 mg kg-1 kept mice alive for 12.76±1.30min (p>0.05). None of two phenolic acids had any activity in haemic hypoxia when compared to control.


Subject(s)
Chlorogenic Acid/pharmacology , Hypoxia/drug therapy , Rutin/pharmacology , Animals , Chlorogenic Acid/chemistry , Dose-Response Relationship, Drug , Hypoxia/mortality , Mice , Molecular Structure , Oxygen/blood , Phenytoin/pharmacology , Rutin/chemistry
14.
Biomark Med ; 15(16): 1509-1517, 2021 11.
Article in English | MEDLINE | ID: mdl-34668393

ABSTRACT

Background: The contribution of endothelial injury in the pathogenesis of COVID-19-associated acute respiratory distress syndrome (ARDS) and resulting respiratory failure remains unclear. Plasma endostatin, an endogenous inhibitor of angiogenesis and endothelial dysfunction is upregulated during hypoxia, inflammation and progress of pulmonary disease. Aim: To investigate if plasma endostatin is associated to hypoxia, inflammation and 30-day mortality in patients with severe COVID-19 infection. Method: Samples for blood analysis and plasma endostatin quantification were collected from adult patients with ongoing COVID-19 (n = 109) on admission to intensive care unit (day 1). Demographic characteristics and 30-day mortality data were extracted from medical records. The ability of endostatin to predict mortality was analyzed using receiving operating characteristics and Kaplan-Meier analysis with a cutoff at 46.2 ng/ml was used to analyze the association to survival. Results: Plasma endostatin levels correlated with; PaO2/FiO2 (r = -0.3, p < 0.001), arterial oxygen tension (r = -0.2, p = 0.01), lactate (r = 0.2, p = 0.04), C-reactive protein (r = 0.2, p = 0.04), ferritin (r = 0.2, p = 0.09), D-dimer (r = 0.2, p = 0.08) and IL-6 (r = 0.4, p < 0.001). Nonsurvivors at 30 days had higher plasma endostatin levels than survivors (72 ± 26 vs 56 ± 16 ng/ml, p = 0.01). Receiving operating characteristic curve (area under the curve 0.7) showed that plasma endostatin >46.2 ng/ml predicts mortality with a sensitivity of 92% and specificity of 71%. In patients with plasma endostatin >46.2 ng/ml probability of survival was lower (p = 0.02) in comparison to those with endostatin <46.2 ng/ml. Conclusion: Our results suggest that plasma endostatin is an early biomarker for disease severity in COVID-19.


Subject(s)
COVID-19 , Endostatins/blood , Hypoxia , Respiratory Distress Syndrome , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Disease-Free Survival , Female , Humans , Hypoxia/blood , Hypoxia/mortality , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/mortality , Survival Rate
15.
Respir Med ; 189: 106659, 2021.
Article in English | MEDLINE | ID: mdl-34700206

ABSTRACT

BACKGROUND AND AIM: Whether long-term oxygen therapy (LTOT) improves survival in interstitial lung disease (ILD) is unclear. A recent study reported similar survival in ILD patients with severe hypoxemia on LTOT vs. moderate hypoxemia without LTOT, and proposed that LTOT could be indicated in ILD already at moderate hypoxemia. The aim of this study was to compare survival by severity of hypoxemia in patients with ILD and COPD, respectively, treated with LTOT. METHODS: A population-based, longitudinal study of adults starting LTOT for ILD or COPD 1987-2018. Transplant-free survival was compared between moderate (PaO2 7.4-8.7 kPa) and severe (PaO2<7.4 kPa) hypoxemia using Cox regression, adjusted for age, sex, BMI, smoking status, WHO performance status, year of starting LTOT, diagnosis of heart failure, ischemic heart disease and diabetes mellitus. RESULTS: In total, 17,084 patients were included, with ILD and moderate (n = 470) or severe hypoxemia (n = 2,408), and COPD with moderate (n = 2,087) or severe hypoxemia (n = 12,119). Compared with in COPD, ILD patients on LTOT had lower transplant-free survival after one year (41.9 vs. 67.1%) and two years (20.3 vs. 46.5%). In COPD worse hypoxemia was associated with slightly increased risk of death/lung transplantation, aHR 1.07 (1.00-1.14), a difference not shown in ILD, aHR 0.91 (0.80-1.03). CONCLUSION: Transplant-free survival did not differ in ILD patients between moderate and severe hypoxia despite LTOT.


Subject(s)
Hypoxia/therapy , Lung Diseases, Interstitial/therapy , Oxygen Inhalation Therapy/methods , Pulmonary Disease, Chronic Obstructive/therapy , Aged , Female , Humans , Hypoxia/mortality , Longitudinal Studies , Lung Diseases, Interstitial/mortality , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/mortality , Severity of Illness Index , Survival Analysis
16.
Crit Care ; 25(1): 224, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193220

ABSTRACT

BACKGROUND: Previous studies reporting the causes of death in patients with severe COVID-19 have provided conflicting results. The objective of this study was to describe the causes and timing of death in patients with severe COVID-19 admitted to the intensive care unit (ICU). METHODS: We performed a retrospective study in eight ICUs across seven French hospitals. All consecutive adult patients (aged ≥ 18 years) admitted to the ICU with PCR-confirmed SARS-CoV-2 infection and acute respiratory failure were included in the analysis. The causes and timing of ICU deaths were reported based on medical records. RESULTS: From March 1, 2020, to April 28, 287 patients were admitted to the ICU for SARS-CoV-2 related acute respiratory failure. Among them, 93 patients died in the ICU (32%). COVID-19-related multiple organ dysfunction syndrome (MODS) was the leading cause of death (37%). Secondary infection-related MODS accounted for 26% of ICU deaths, with a majority of ventilator-associated pneumonia. Refractory hypoxemia/pulmonary fibrosis was responsible for death in 19% of the cases. Fatal ischemic events (venous or arterial) occurred in 13% of the cases. The median time from ICU admission to death was 15 days (25th-75th IQR, 7-27 days). COVID-19-related MODS had a median time from ICU admission to death of 14 days (25th-75th IQR: 7-19 days), while only one death had occurred during the first 3 days since ICU admission. CONCLUSIONS: In our multicenter observational study, COVID-19-related MODS and secondary infections were the two leading causes of death, among severe COVID-19 patients admitted to the ICU.


Subject(s)
COVID-19/mortality , Multiple Organ Failure/mortality , Pneumonia, Viral/mortality , Adult , Cause of Death , Female , Hospital Mortality , Humans , Hypoxia/mortality , Hypoxia/virology , Intensive Care Units , Ischemia/mortality , Ischemia/virology , Male , Multiple Organ Failure/virology , Pneumonia, Ventilator-Associated/mortality , Pneumonia, Ventilator-Associated/virology , Pneumonia, Viral/virology , Pulmonary Fibrosis/mortality , Pulmonary Fibrosis/virology , Retrospective Studies , SARS-CoV-2
17.
BMC Pulm Med ; 21(1): 160, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985472

ABSTRACT

BACKGROUND: To investigate the indications for high-flow nasal cannula oxygen (HFNC) therapy in patients with hypoxemia during ventilator weaning and to explore the predictors of reintubation when treatment fails. METHODS: Adult patients with hypoxemia weaning from mechanical ventilation were identified from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The patients were assigned to the treatment group or control group according to whether they were receiving HFNC or non-invasive ventilation (NIV) after extubation. The 28-day mortality and 28-day reintubation rates were compared between the two groups after Propensity score matching (PSM). The predictor for reintubation was formulated according to the risk factors with the XGBoost algorithm. The areas under the receiver operating characteristic curve (AUC) was calculated for reintubation prediction according to values at 4 h after extubation, which was compared with the ratio of SpO2/FiO2 to respiratory rate (ROX index). RESULTS: A total of 524,520 medical records were screened, and 801 patients with moderate or severe hypoxemia when undergoing mechanical ventilation weaning were included (100 < PaO2/FiO2 ≤ 300 mmHg), including 358 patients who received HFNC therapy after extubation in the treatment group. There were 315 patients with severe hypoxemia (100 < PaO2/FiO2 ≤ 200 mmHg) before extubation, and 190 patients remained in the treatment group with median oxygenation index 166[157,180] mmHg after PSM. There were no significant differences in the 28-day reintubation rate or 28-day mortality between the two groups with moderate or severe hypoxemia (all P > 0.05). Then HR/SpO2 was formulated as a predictor for 48-h reintubation according to the important features predicting weaning failure. According to values at 4 h after extubation, the AUC of HR/SpO2 was 0.657, which was larger than that of ROX index (0.583). When the HR/SpO2 reached 1.2 at 4 h after extubation, the specificity for 48-h reintubation prediction was 93%. CONCLUSIONS: The treatment effect of HFNC therapy is not inferior to that of NIV, even on patients with oxygenation index from 160 to 180 mmHg when weaning from ventilator. HR/SpO2 is more early and accurate in predicting HFNC failure than ROX index.


Subject(s)
Hypoxia/therapy , Noninvasive Ventilation , Respiratory Insufficiency/therapy , Aged , Cannula , Critical Care , Databases, Factual , Female , Humans , Hypoxia/mortality , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Oxygen , Oxygen Inhalation Therapy , Respiratory Insufficiency/mortality , Retrospective Studies , Time Factors
18.
Br J Anaesth ; 126(6): 1173-1181, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33812665

ABSTRACT

BACKGROUND: Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences. METHODS: We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes. RESULTS: Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1-6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2<90% for 60 s) was reported in 40%. No associated risk factors could be identified among co-morbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality. CONCLUSIONS: The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event. CLINICAL TRIAL REGISTRATION: NCT02350348.


Subject(s)
Anesthesia/adverse effects , Hypoxia/epidemiology , Intubation, Intratracheal/adverse effects , Laryngoscopy/adverse effects , Age Factors , Anesthesia/mortality , Europe/epidemiology , Female , Humans , Hypoxia/diagnosis , Hypoxia/mortality , Incidence , Infant , Infant, Newborn , Intubation, Intratracheal/mortality , Laryngoscopy/mortality , Male , Medical Audit , Prospective Studies , Risk Assessment , Risk Factors , Severity of Illness Index , Time Factors , Treatment Outcome
19.
Theranostics ; 11(7): 3376-3391, 2021.
Article in English | MEDLINE | ID: mdl-33537093

ABSTRACT

Background: Colorectal cancer (CRC) and the associated metastatic lesions are reported to be hypoxic. Hypoxia is a common feature in the tumor microenvironment and a potent stimulant of CRC. We have identified a regulatory role of Nur77 on Akt activation to enhance ß-catenin signaling essential for CRC progression under hypoxic conditions. Methods: The functional role of Nur77 in hypoxia-induced EMT was examined by scattering assays to monitor the morphologies of CRC cell lines under 1% O2. Sphere formation assays were performed to investigate whether Nur77 induced cancer stem cell-like properties in hypoxic CRC cells. The expression of various epithelial-to-mesenchymal transition (EMT) and stemness markers was analyzed by qPCR and Western blotting. Finally, Nur77 function and signaling in vivo was ascertained in subcutaneous tumor xenograft or liver metastasis model in nude mice using CRC cells stably transfected with appropriate constructs. Results: Herein, we show, for the first time, that Nur77 is a novel regulator of microRNA biogenesis that may underlie its significant tumor-promoting activities in CRC cells under hypoxia. Mechanistically, Nur77 interacted with the tumor suppressor protein p63, leading to the inhibition of p63-dependent transcription of Dicer, an important miRNA processor and subsequent decrease in the biogenesis of let-7i-5p which targeted the 3'UTR of p110α mRNA and regulated its stability. Knockdown of Nur77 or overexpression of let-7i-5p inhibited the tumor metastasis in vivo. Conclusion: Our data uncovered a novel mechanistic link connecting Nur77, Akt, and invasive properties of CRC in the hypoxic microenvironment.


Subject(s)
Adenocarcinoma/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/genetics , DEAD-box RNA Helicases/genetics , Hypoxia/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Proto-Oncogene Proteins c-akt/genetics , Ribonuclease III/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/secondary , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , DEAD-box RNA Helicases/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/metabolism , Hypoxia/mortality , Hypoxia/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/secondary , Mice , Mice, Nude , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribonuclease III/metabolism , Signal Transduction , Survival Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Burden , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
20.
Respir Med ; 179: 106312, 2021 04.
Article in English | MEDLINE | ID: mdl-33636568

ABSTRACT

INTRODUCTION: Efforts to meet increased oxygen demands in COVID-19 patients are a priority in averting mechanical ventilation (MV), associated with high mortality approaching 76.4-97.2%. Novel methods of oxygen delivery could mitigate that risk. Oxygen hoods/helmets may improve: O2-saturation (SaO2), reduce in-hospital mechanical ventilation and mortality rates, and reduce length of hospitalization in hypoxic Covid-19 patients failing on conventional high-flow oxygen delivery systems. METHODS: DesignProspective Controlled Cohort Study. SettingSingle Center. ParticipantsAll patients admitted with a diagnosis of COVID-19 were reviewed and 136/347 patients met inclusion criteria. Study period3/6/2020 to 5/1/2020. 136 participants completed the study with known status for all outcome measures. Intervention or exposureOxygen hoods/helmets as compared to conventional high-flow oxygen delivery systems. MAIN OUTCOME(S) AND MEASURE(S): 1) Pre and post change in oxygen saturation (SaO2). 2) In-hospital Mechanical Ventilation (MV). 3) In-hospital Mortality. 4) Length of hospitalization. RESULTS: 136 patients including 58-intervention and 78-control patients were studied. Age, gender, and other demographics/prognostic indicators were comparable between cohorts. Oxygen hoods averted imminent or immediate intubation/MV in all 58 COVID-19 patients failing on conventional high-flow oxygen delivery systems with a mean improvement in SaO2 of 8.8%, p < 0.001. MV rates were observed to be higher in the control 37/78 (47.4%) as compared to the intervention cohort 23/58 (39.7%), a difference of 7.7%, a 27% risk reduction, not statistically significant, OR 95%CI 0.73 (0.37-1.5). Mortality rates were observed higher in the control 54/78 (69.2%) as compared to the intervention cohort 36/58 (62.1%), a difference of 7.1%, a 27% risk reduction, not statistically significant OR 95%CI 0.73 (0.36-1.5). CONCLUSION: Oxygen hoods demonstrate improvement in SaO2 for patients failing on conventional high-flow oxygen-delivery systems and prevented imminent mechanical ventilation. In-hospital mechanical ventilation and mortality rates were reduced with the use of oxygen hoods but not found to be statistically significant. The oxygen hood is a safe, effective oxygen-delivery system which may reduce intubation/MV and mortality rates. Their use should be considered in treating hypoxic COVID-19 patients. Further research is warranted. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04407260.


Subject(s)
COVID-19/complications , Hypoxia/therapy , Oxygen Consumption/physiology , Oxygen Inhalation Therapy/instrumentation , Respiration, Artificial/instrumentation , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Equipment Failure , Female , Humans , Hypoxia/etiology , Hypoxia/mortality , Male , Middle Aged , Pandemics , Prognosis , Prospective Studies , Survival Rate/trends , Treatment Failure , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...