Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
1.
Mol Biol Rep ; 51(1): 795, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001907

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology characterized by a constant incidence rate. Unfortunately, effective pharmacological treatments for this condition are lacking and the identification of novel therapeutic approaches and underlying pathological mechanisms are required. This study investigated the potential of quercetin in alleviating pulmonary fibrosis by promoting autophagy and activation of the SIRT1/AMPK pathway. METHODS: Mouse models of IPF were divided into four treatment groups: control, bleomycin (BLM), quercetin (Q), and quercetin + EX-527 (Q + E) treatment. Pulmonary fibrosis was induced in the mouse models through intratracheal instillation of BLM. Various indexes were identified through histological staining, Western blotting analysis, enzyme-linked immunosorbent assay, immunohistochemistry, and transmission electron microscopy. RESULTS: Quercetin treatment ameliorated the pathology of BLM-induced pulmonary fibrosis of mice by reducing α-smooth muscle actin (α-SMA), collagen I (Col I), and collagen III (Col III) levels, and also improved the level of E-cadherin in lung tissue. Furthermore, Quercetin significantly enhanced LC3II/LC3I levels, decreased P62 expression, and increased the number of autophagosomes in lung tissue. These effects were accompanied by the activation of the SIRT1/AMPK pathway. Treatment with EX-527, an inhibitor for SIRT1, reversed all effects induced by quercetin. CONCLUSION: This study showed that quercetin could alleviate pulmonary fibrosis and improve epithelial-mesenchymal transition by acting on the SIRT1/AMPK signaling pathway, which may be achieved by regulating the level of autophagy.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , Bleomycin , Pulmonary Fibrosis , Quercetin , Signal Transduction , Sirtuin 1 , Animals , Bleomycin/adverse effects , Quercetin/pharmacology , Sirtuin 1/metabolism , Autophagy/drug effects , Signal Transduction/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Disease Models, Animal , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Epithelial-Mesenchymal Transition/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Mice, Inbred C57BL
2.
Sci Rep ; 14(1): 14792, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926490

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a debilitating and fatal lung disease characterized by the excessive formation of scar tissue and decline of lung function. Despite extensive research, only two FDA-approved drugs exist for IPF, with limited efficacy and relevant side effects. Thus, there is an urgent need for new effective therapies, whose discovery strongly relies on IPF animal models. Despite some limitations, the Bleomycin (BLM)-induced lung fibrosis mouse model is widely used for antifibrotic drug discovery and for investigating disease pathogenesis. The initial acute inflammation triggered by BLM instillation and the spontaneous fibrosis resolution that occurs after 3 weeks are the major drawbacks of this system. In the present study, we applied micro-CT technology to a longer-lasting, triple BLM administration fibrosis mouse model to define the best time-window for Nintedanib (NINT) treatment. Two different treatment regimens were examined, with a daily NINT administration from day 7 to 28 (NINT 7-28), and from day 14 to 28 (NINT 14-28). For the first time, we automatically derived both morphological and functional readouts from longitudinal micro-CT. NINT 14-28 showed significant effects on morphological parameters after just 1 week of treatment, while no modulations of these biomarkers were observed during the preceding 7-14-days period, likely due to persistent inflammation. Micro-CT morphological data evaluated on day 28 were confirmed by lung histology and bronchoalveolar lavage fluid (BALF) cells; Once again, the NINT 7-21 regimen did not provide substantial benefits over the NINT 14-28. Interestingly, both NINT treatments failed to improve micro-CT-derived functional parameters. Altogether, our findings support the need for optimized protocols in preclinical studies to expedite the drug discovery process for antifibrotic agents. This study represents a significant advancement in pulmonary fibrosis animal modeling and antifibrotic treatment understanding, with the potential for improved translatability through the concurrent structural-functional analysis offered by longitudinal micro-CT.


Subject(s)
Bleomycin , Disease Models, Animal , X-Ray Microtomography , Animals , Bleomycin/adverse effects , Mice , Indoles/pharmacology , Indoles/therapeutic use , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/diagnostic imaging , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Mice, Inbred C57BL , Time Factors
3.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896611

ABSTRACT

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pneumonia , Animals , Humans , Mice , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Pneumonia/metabolism , Pneumonia/diagnostic imaging , Pneumonia/pathology , Macrophages/metabolism , Macrophages/pathology , Biomarkers , Disease Models, Animal , Positron-Emission Tomography/methods , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Bleomycin , Lung/pathology , Lung/diagnostic imaging , Lung/metabolism , Male , Female , Mice, Inbred C57BL
4.
Eur J Med Chem ; 275: 116608, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38905805

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive fibrotic phenotype. Immunohistochemical studies on HDAC6 overexpression in IPF lung tissues confirmed that IPF is associated with aberrant HDAC6 activity. We herein developed a series of novel HDAC6 inhibitors that can be used as potential pharmacological tools for IPF treatment. The best-performing derivative H10 showed good selectivity for multiple isoforms of the HDAC family. The structural analysis and structure-activity relationship studies of H10 will contribute to optimizing the binding mode of the new molecules. The pharmacological mechanism of H10 to inhibit pulmonary fibrosis was validated, and its ability to inhibit the IPF phenotype was also demonstrated. Moreover, H10 showed satisfactory metabolic stability. The efficacy of H10 was also determined in a mouse model of bleomycin-induced pulmonary fibrosis. The results highlighted in this paper may provide a reference for the identification of new drug molecules for the treatment of IPF.


Subject(s)
Drug Discovery , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Idiopathic Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Humans , Structure-Activity Relationship , Mice , Molecular Structure , Bleomycin , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Male , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis
5.
Am J Pathol ; 194(8): 1478-1493, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849030

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aimed to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. It revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, induced a profibrotic phenotype and activated co-cultured fibroblasts in A549 cells. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-ß/Smad pathway. Overall, these findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-ß/Smad signaling pathway.


Subject(s)
Aging , Idiopathic Pulmonary Fibrosis , Methylmalonic Acid , Animals , Humans , Mice , Methylmalonic Acid/metabolism , Aging/metabolism , Aging/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Fibroblasts/metabolism , Fibroblasts/pathology , Female , Mice, Inbred C57BL , Aged , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Middle Aged , A549 Cells , Bleomycin/adverse effects , Lung/pathology , Lung/metabolism
6.
Int Immunopharmacol ; 135: 112322, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788452

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Mice, Inbred C57BL , Animals , Humans , Mice , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Male , Disease Models, Animal , Disease Progression , Female , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Signal Transduction , Middle Aged , Tight Junctions/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism
7.
J Control Release ; 370: 811-820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754632

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and life-threatening lung disease for which treatment options are limited. Glycyrrhetinic acid (GA) is a triterpenoid with multiple biological effects, such as anti-inflammatory and anti-fibrotic properties. Herein, inhalable milk-derived extracellular vesicles (mEVs) encapsulating GA (mEVs@GA) were screened and evaluated for IPF treatment. The results indicated that the loading efficiency of GA in mEVs@GA was 8.65%. Therapeutic effects of inhalable mEVs@GA were investigated in vitro and in vivo. The mEVs@GA demonstrated superior anti-inflammatory effects on LPS-stimulated MHS cells. Furthermore, repeated noninvasive inhalation delivery of mEVs@GA in bleomycin-induced IPF mice could decrease the levels of transforming growth factors ß1 (TGF-ß1), Smad3 and inflammatory cytokines IL-6, IL-1ß and TNF-α. The mEVs@GA effectively diminished the development of fibrosis and improved pulmonary function in the IPF mice model at a quarter of the dose compared with the pirfenidone oral administration group. Additionally, compared to pirfenidone-loaded mEVs, mEVs@GA demonstrated superior efficacy at the same drug concentration in the pharmacodynamic study. Overall, inhaled mEVs@GA have the potential to serve as an effective therapeutic option in the treatment of IPF.


Subject(s)
Cytokines , Extracellular Vesicles , Glycyrrhetinic Acid , Idiopathic Pulmonary Fibrosis , Mice, Inbred C57BL , Milk , Animals , Glycyrrhetinic Acid/administration & dosage , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Administration, Inhalation , Milk/chemistry , Cytokines/metabolism , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Bleomycin/administration & dosage , Male , Lung/metabolism , Lung/drug effects , Mice , Humans , Cell Line , Drug Carriers/chemistry , Drug Carriers/administration & dosage , Smad3 Protein/metabolism
8.
Chem Biol Interact ; 396: 111029, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38703806

ABSTRACT

Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.


Subject(s)
Ammonia , Arsenites , Carbamoyl-Phosphate Synthase (Ammonia) , Collagen , Mice, Inbred C57BL , Pulmonary Fibrosis , Urea , Animals , Arsenites/toxicity , Ammonia/metabolism , Collagen/metabolism , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Urea/metabolism , Up-Regulation/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Male , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Sodium Compounds
9.
Bioorg Chem ; 149: 107474, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805909

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Idiopathic Pulmonary Fibrosis , Phosphodiesterase 4 Inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase 4 Inhibitors/chemical synthesis , Phosphodiesterase 4 Inhibitors/therapeutic use , Animals , Structure-Activity Relationship , Mice , Molecular Structure , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Bleomycin , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Male , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis
10.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763774

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Subject(s)
Autophagy , Bleomycin , Animals , Humans , Male , Mice , A549 Cells , Autophagy/drug effects , Bleomycin/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
11.
Adv Sci (Weinh) ; 11(28): e2401327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38725147

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.


Subject(s)
Autophagy , Bleomycin , Disease Models, Animal , Nanofibers , Pulmonary Fibrosis , Nanofibers/chemistry , Animals , Autophagy/drug effects , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Mice, Inbred C57BL , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Peptides/pharmacology
12.
Theranostics ; 14(7): 2794-2815, 2024.
Article in English | MEDLINE | ID: mdl-38773984

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Subject(s)
Bleomycin , Cytokines , Idiopathic Pulmonary Fibrosis , Macrophages , Nicotinamide Phosphoribosyltransferase , Animals , Female , Humans , Male , Mice , Acrylamides , Cytokines/metabolism , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Lung/pathology , Lung/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Nicotinamide Phosphoribosyltransferase/metabolism , Piperidines/pharmacology
13.
Biochem Biophys Res Commun ; 716: 150020, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692011

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.


Subject(s)
Fibroblasts , Indoles , Macrophages , Mice, Inbred C57BL , Osteopontin , Proto-Oncogene Proteins c-akt , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Osteopontin/metabolism , Osteopontin/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Signal Transduction/drug effects , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Male , Drug Therapy, Combination , Bleomycin
14.
Respir Res ; 25(1): 195, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704585

ABSTRACT

BACKGROUND: Lipocalin-2 (LCN2) is a secretory glycoprotein upregulated by oxidative stress; moreover, patients with idiopathic pulmonary fibrosis (IPF) have shown increased LCN2 levels in bronchoalveolar lavage fluid (BALF). This study aimed to determine whether circulatory LCN2 could be a systemic biomarker in patients with IPF and to investigate the role of LCN2 in a bleomycin-induced lung injury mouse model. METHODS: We measured serum LCN2 levels in 99 patients with stable IPF, 27 patients with acute exacerbation (AE) of IPF, 51 patients with chronic hypersensitivity pneumonitis, and 67 healthy controls. Further, LCN2 expression in lung tissue was evaluated in a bleomycin-induced lung injury mouse model, and the role of LCN2 was investigated using LCN2-knockout (LCN2 -/-) mice. RESULTS: Serum levels of LCN2 were significantly higher in patients with AE-IPF than in the other groups. The multivariate Cox proportional hazards model showed that elevated serum LCN2 level was an independent predictor of poor survival in patients with AE-IPF. In the bleomycin-induced lung injury mouse model, a higher dose of bleomycin resulted in higher LCN2 levels and shorter survival. Bleomycin-treated LCN2 -/- mice exhibited increased BALF cell and protein levels as well as hydroxyproline content. Moreover, compared with wild-type mice, LCN2-/- mice showed higher levels of circulatory 8-isoprostane as well as lower Nrf-2, GCLC, and NQO1 expression levels in lung tissue following bleomycin administration. CONCLUSIONS: Our findings demonstrate that serum LCN2 might be a potential prognostic marker of AE-IPF. Moreover, LCN2 expression levels may reflect the severity of lung injury, and LCN2 may be a protective factor against bleomycin-induced acute lung injury and oxidative stress.


Subject(s)
Biomarkers , Idiopathic Pulmonary Fibrosis , Lipocalin-2 , Mice, Inbred C57BL , Mice, Knockout , Animals , Lipocalin-2/blood , Lipocalin-2/metabolism , Lipocalin-2/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Male , Humans , Female , Biomarkers/blood , Biomarkers/metabolism , Mice , Aged , Middle Aged , Prognosis , Bleomycin/toxicity , Disease Progression , Disease Models, Animal
15.
J Ethnopharmacol ; 329: 118153, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38604513

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shengxian decoction (SXD) is a classic Chinese medicinal formula that can effectively improve clinical symptoms and quality of life and delay disease progression in idiopathic pulmonary fibrosis (IPF) patients; however, the underlying mechanisms remain unclear. AIM OF THE STUDY: This study aimed to observe PANoptosis in bleomycin-induced IPF and to assess the efficacy and mechanism of action of SXD in the treatment of IPF. MATERIALS AND METHODS: Fifty SD rats were randomly divided into the sham, IPF, IPF + pirfenidone (PFD), IPF + SXD-medium dose (SXD-M), and IPF + SXD-low dose (SXD-L) groups. Lung function analysis and microcomputed tomography imaging of the rats with IPF treated with oral pirfenidone or oral SXD for 28 days were performed. Hematoxylin and eosin (HE) staining and Masson's trichrome staining were used to observe pathological lung damage. Enzyme-linked immunosorbent assays (ELISAs) were used to determine the serum levels of IL-1ß, IL-18, TNF-α, and IFN-γ. Pyroptosis, apoptosis, and necroptosis were assessed using TUNEL, TUNEL/caspase-1, and PI fluorescence staining, respectively. GSDMD, caspase-3, and MLKL were examined by immunohistochemistry. The expression of fibrin-, ZBP1-, pyroptosis-, apoptosis-, and necroptosis-related proteins in the lung tissue was determined by western blotting. RESULTS: SXD normalized lung function in rats with bleomycin-induced IPF and reduced serum inflammatory factor levels and lung tissue fibrosis. The underlying mechanism of action involves the inhibition of pyroptosis pathway proteins, such as NLRP3, caspase-1, cleaved caspase-1, and GSDMD; apoptotic pathway proteins, such as Bax, Bcl-2, cleaved caspase-3, and caspase-3; and necroptosis pathway proteins, such as RIPK1, RIPK3, p-MLKL and MLKL. These pathways are modulated by the PANoptosis initiator ZBP1. Notably, the efficacy of SXD is concentration dependent, with a medium dose exhibiting superior effectiveness compared to a low dose. CONCLUSION: Bleomycin induced PANoptosis in the lung tissue of rats with IPF. Additionally, SXD effectively delayed or reversed the early pathological changes in bleomycin-induced pulmonary fibrosis by inhibiting PANoptosis.


Subject(s)
Bleomycin , Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Lung , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Lung/drug effects , Lung/pathology , Rats , Cytokines/metabolism , Apoptosis/drug effects , Pyridones/pharmacology , Pyroptosis/drug effects , Disease Models, Animal
16.
Bioorg Chem ; 147: 107374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636433

ABSTRACT

The incidence of idiopathic pulmonary fibrosis (IPF) has been steadily increasing each year, posing significant challenges in its treatment. In this study, we conducted the design and synthesis of 23 new inhibitors that specifically target the TGF-ß1/Smad3 pathway. Initially, we employed a cell model of TGF-ß-induced pulmonary fibrosis, using cell survival rate and HYP expression as indicators to identify the potent ingredient 5aa, which demonstrated significant anti-pulmonary fibrosis activity. Subsequently, we induced mice with bleomycin (BLM) to establish an experimental animal model of pulmonary fibrosis, and evaluated the pharmacodynamics of 5aa in vivo against pulmonary fibrosis. The alterations in HYP and collagen levels in BLM-induced pulmonary fibrosis mice were analyzed using ELISA and immunohistochemistry techniques. The results indicated that compound 5aa effectively suppressed the fibrotic response induced by TGF-ß1, inhibited the expression of the fibrotic marker α-SMA, and hindered the EMT process in NIH3T3 cells. Additionally, oral administration of 5aa demonstrated significant therapeutic effects in a mouse model of IPF, comparable to the established drug Nintedanib. Moreover, compound 5aa exhibited higher bioavailability in vivo compared to Nintedanib. These collective outcomes suggest that 5aa holds promise as a potential inhibitor of TGF-ß1/Smad3 signaling for the treatment of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Smad3 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/antagonists & inhibitors , Mice , Signal Transduction/drug effects , Molecular Structure , Humans , Bleomycin , Structure-Activity Relationship , Mice, Inbred C57BL , NIH 3T3 Cells , Dose-Response Relationship, Drug , Male
17.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670401

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Subject(s)
Epithelial-Mesenchymal Transition , Forkhead Box Protein O3 , MAP Kinase Signaling System , Plant Extracts , Pulmonary Fibrosis , Animals , Humans , Male , Mice , A549 Cells , Antifibrotic Agents/pharmacology , Bleomycin , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Forkhead Box Protein O3/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/pathology , Lung/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced
18.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589751

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Subject(s)
Idiopathic Pulmonary Fibrosis , Nanoparticles , Humans , Pandemics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Lung , Drug Delivery Systems , Pyridones/therapeutic use
19.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622264

ABSTRACT

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
20.
Eur J Pharmacol ; 972: 176572, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38614381

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the severe form of interstitial pneumonias. Acute exacerbation (AE) of IPF is characterized by progressive lung fibrosis with the irreversible lung function decline and inflammation, and is often fatal with poor prognosis. However, the physiological and molecular mechanisms in AE of IPF are still not fully understood. In this study, we investigated the mechanism underlying AE of IPF, using bleomycin (BLM) and lipopolysaccharide (LPS) (BLM + LPS)-treated mice. The mice were treated with a single dose of 1.5 mg/kg BLM (on day 0) and/or 0.5 mg/kg LPS (on day 14), and maintained for another 7 days (total 21 days). Administration of BLM + LPS more severely aggravated the respiratory function, fibrosis, and inflammation in the lungs, together with the elevated interleukin-6 level in bronchoalveolar lavage fluid, than the control or BLM alone-treated mice. Moreover, the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay demonstrated that subsequent treatment with LPS elevated cell death in the lungs of BLM-administered mice. Furthermore, the expression levels of mixed lineage kinase domain-like protein (MLKL), a marker of necroptotic cell death, and CD68-positive macrophages were increased, and most of them were co-stained in the lungs of BLM + LPS-treated mice. These results, taken together, indicate that BLM + LPS treatment showed more exacerbated the respiratory function with extensive fibrosis and inflammation than treatment with BLM alone in mice. Fibrosis and inflammation in AE of IPF seen in BLM + LPS-administered mice included an increase in macrophages and their necroptotic cell death.


Subject(s)
Bleomycin , Idiopathic Pulmonary Fibrosis , Lipopolysaccharides , Macrophages , Animals , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Mice , Male , Macrophages/drug effects , Macrophages/pathology , Macrophages/metabolism , Disease Progression , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Necroptosis/drug effects , Interleukin-6/metabolism , Bronchoalveolar Lavage Fluid/cytology
SELECTION OF CITATIONS
SEARCH DETAIL