Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.712
1.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690734

There is intense interest in identifying compounds that selectively kill senescent cells, termed senolytics, for ameliorating age-related comorbidities. However, screening for senolytic compounds currently relies on primary cells or cell lines where senescence is induced in vitro. Given the complexity of senescent cells across tissues and diseases, this approach may not target the senescent cells that develop under specific conditions in vivo. In this issue of the JCI, Lee et al. describe a pipeline for high-throughput drug screening of senolytic compounds where senescence was induced in vivo and identify the HSP90 inhibitor XL888 as a candidate senolytic to treat idiopathic pulmonary fibrosis.


Cellular Senescence , HSP90 Heat-Shock Proteins , Idiopathic Pulmonary Fibrosis , Senotherapeutics , Humans , Senotherapeutics/pharmacology , Cellular Senescence/drug effects , Animals , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Mice
3.
Medicine (Baltimore) ; 103(19): e38133, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728523

BACKGROUND: Danhong injection, a compound injection of Chinese herbal medicine, has been widely used in idiopathic pulmonary fibrosis (IPF) at present as an adjuvant treatment. However, the clinical efficacy and molecular mechanism of IPF are still unclear. This study will evaluate and explore the clinical efficacy and molecular mechanism of Danhong injection in the treatment of IPF. METHODS: In meta-analysis, the computer was used to search 8 databases (PubMed, EMbase, CENTRAL, MEDLINE, CBM, CNKI, WanFang, and VIP) to collect the RCTs, and RevMan 5.3 and Stata 14.0 were used for statistical analysis. It has been registered on PROSPERO: CRD42020221096. In network pharmacology, the main chemical components and targets of the chemical components of Danhong injection were obtained in TCMSP and Swiss Target Prediction databases. The main targets of IPF were obtained through Gencards, Disgenet, OMIM, TTD, and DRUGBANK databases. The String platform was used to construct PPI networks. Cytoscape 3.8.2 was used to construct the "Danhong components - IPF targets-pathways" network. The molecular docking verification was conducted by Auto Dock. RESULTS: Twelve RCTs were finally included with a total of 896 patients. The meta-analysis showed that Danhong injection could improve the clinical efficiency ([OR] = 0.25, 95% CI [0.15, 0.41]), lung function, arterial blood gas analysis, inflammatory cytokines, and serum cytokines associated with pulmonary fibrosis of IPF patients, respectively (P < .05). The core active components of Danhong injection on IPF were Luteolin, Quercetin, and Kaempferol, and the core targets were PTGS2, AR, ESR1, PPARG, and RELA. Danhong injection mainly improved IPF through PD-L1 expression and PD-1 checkpoint path in cancer, pathways in cancer, PI3K-Akt signaling pathway, etc. CONCLUSION: These results provided scientific basis for the clinical use of Danhong injection for the treatment of IPF, and provided a new direction to explore the potential mechanism of action of Danhong injection.


Drugs, Chinese Herbal , Idiopathic Pulmonary Fibrosis , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Network Pharmacology/methods , Treatment Outcome
4.
Respir Res ; 25(1): 217, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783236

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic interstitial lung disease characterized by progressive dyspnea and decreased lung function, yet its exact etiology remains unclear. It is of great significance to discover new drug targets for IPF. METHODS: We obtained the cis-expression quantitative trait locus (cis-eQTL) of druggable genes from eQTLGen Consortium as exposure and the genome wide association study (GWAS) of IPF from the International IPF Genetics Consortium as outcomes to simulate the effects of drugs on IPF by employing mendelian randomization analysis. Then colocalization analysis was performed to calculate the probability of both cis-eQTL of druggable genes and IPF sharing a causal variant. For further validation, we conducted protein quantitative trait locus (pQTL) analysis to reaffirm our findings. RESULTS: The expression of 45 druggable genes was significantly associated with IPF susceptibility at FDR < 0.05. The expression of 23 and 15 druggable genes was significantly associated with decreased forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLco) in IPF patients, respectively. IPF susceptibility and two significant genes (IL-7 and ABCB2) were likely to share a causal variant. The results of the pQTL analysis demonstrated that high levels of IL-7 in plasma are associated with a reduced risk of IPF (OR = 0.67, 95%CI: 0.47-0.97). CONCLUSION: IL-7 stands out as the most promising potential drug target to mitigate the risk of IPF. Our study not only sheds light on potential drug targets but also provides a direction for future drug development in IPF.


Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Mendelian Randomization Analysis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/diagnosis , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Quantitative Trait Loci , Genetic Predisposition to Disease , Female , Molecular Targeted Therapy/methods , Male
5.
Drug Des Devel Ther ; 18: 1627-1650, 2024.
Article En | MEDLINE | ID: mdl-38774483

With ever-increasing intensive studies of idiopathic pulmonary fibrosis (IPF), significant progresses have been made. Endoplasmic reticulum stress (ERS)/unfolded protein reaction (UPR) is associated with the development and progression of IPF, and targeting ERS/UPR may be beneficial in the treatment of IPF. Natural product is a tremendous source of new drug discovery, and accumulating studies have reported that many natural products show potential therapeutic effects for IPF via modulating one or more branches of the ERS signaling pathway. Therefore, this review focuses on critical roles of ERS in IPF development, and summarizes herbal preparations and bioactive compounds which protect against IPF through regulating ERS.


Biological Products , Endoplasmic Reticulum Stress , Idiopathic Pulmonary Fibrosis , Endoplasmic Reticulum Stress/drug effects , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Biological Products/pharmacology , Biological Products/chemistry , Animals , Unfolded Protein Response/drug effects , Signal Transduction/drug effects
6.
Int J Med Sci ; 21(6): 1079-1090, 2024.
Article En | MEDLINE | ID: mdl-38774751

Idiopathic pulmonary fibrosis (IPF) is a rare, chronic and progressively worsening lung disease that poses a significant threat to patient prognosis, with a mortality rate exceeding that of some common malignancies. Effective methods for early diagnosis and treatment remain for this condition are elusive. In our study, we used the GEO database to access second-generation sequencing data and associated clinical information from IPF patients. By utilizing bioinformatics techniques, we identified crucial disease-related genes and their biological functions, and characterized their expression patterns. Furthermore, we mapped out the immune landscape of IPF, which revealed potential roles for novel kinase 1 and CD8+T cells in disease progression and outcome. These findings can aid the development of new strategies for the clinical diagnosis and treatment of IPF.


CD8-Positive T-Lymphocytes , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , CD8-Positive T-Lymphocytes/immunology , Computational Biology , Disease Progression , Prognosis
7.
Biochem Biophys Res Commun ; 716: 150020, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38692011

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with high mortality rates. It has been shown that pirfenidone (PFD) and nintedanib (Ofev) can slow down the decline in lung function of IPF patients, but their efficacy remains suboptimal. Some studies have suggested that the combination of PFD and Ofev may yield promising results. However, there is a lack of research on the combined application of these two medications in the treatment of IPF. A mouse model of bleomycin-induced (BLM) pulmonary fibrosis was established to investigate the impact of combination therapy on pulmonary fibrosis of mice. The findings demonstrated a significant reduction in lung tissue damage in mice treated with the combination therapy. Subsequent transcriptome analysis identified the differential gene secreted phosphoprotein 1 (SPP1), which was found to be associated with macrophages and fibroblasts based on multiple immunofluorescence staining results. Analysis of a phosphorylated protein microarray indicated that SPP1 plays a regulatory role in macrophages and fibroblasts via the AKT pathway. Consequently, the regulation of macrophages and fibroblasts in pulmonary fibrosis by the combination of PFD and Ofev is mediated by SPP1 through the AKT pathway, potentially offering a novel therapeutic option for IPF patients. Further investigation into the targeting of SPP1 for the treatment of pulmonary fibrosis is warranted.


Fibroblasts , Indoles , Macrophages , Mice, Inbred C57BL , Osteopontin , Proto-Oncogene Proteins c-akt , Pyridones , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Osteopontin/metabolism , Osteopontin/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Signal Transduction/drug effects , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Male , Drug Therapy, Combination , Bleomycin
8.
Sci Prog ; 107(2): 368504241247402, 2024.
Article En | MEDLINE | ID: mdl-38651330

Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.


Idiopathic Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Humans , Animals , Molecular Targeted Therapy/methods , Pyridones/therapeutic use , Indoles/therapeutic use , Indoles/pharmacology , COVID-19 , Disease Models, Animal
9.
Int Immunopharmacol ; 132: 111999, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581994

Idiopathic pulmonary fibrosis (IPF) is a heterogeneous group of lung diseases with different etiologies and characterized by progressive fibrosis. This disease usually causes pulmonary structural remodeling and decreased pulmonary function. The median survival of IPF patients is 2-5 years. Predominantly accumulation of type II innate immune cells accelerates fibrosis progression by secreting multiple pro-fibrotic cytokines. Group 2 innate lymphoid cells (ILC2) and monocytes/macrophages play key roles in innate immunity and aggravate the formation of pro-fibrotic environment. As a potent immunosuppressant, tacrolimus has shown efficacy in alleviating the progression of pulmonary fibrosis. In this study, we found that tacrolimus is capable of suppressing ILC2 activation, monocyte differentiation and the interaction of these two cells. This effect further reduced activation of monocyte-derived macrophages (Mo-M), thus resulting in a decline of myofibroblast activation and collagen deposition. The combination of tacrolimus and nintedanib was more effective than either drug alone. This study will reveal the specific process of tacrolimus alleviating pulmonary fibrosis by regulating type II immunity, and explore the potential feasibility of tacrolimus combined with nintedanib in the treatment of pulmonary fibrosis. This project will provide new ideas for clinical optimization of anti-pulmonary fibrosis drug strategies.


Idiopathic Pulmonary Fibrosis , Immunosuppressive Agents , Mice, Inbred C57BL , Monocytes , Tacrolimus , Tacrolimus/therapeutic use , Tacrolimus/pharmacology , Animals , Monocytes/drug effects , Monocytes/immunology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Mice , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Humans , Lymphocytes/drug effects , Lymphocytes/immunology , Immunity, Innate/drug effects , Indoles/therapeutic use , Indoles/pharmacology , Macrophages/drug effects , Macrophages/immunology , Disease Progression , Lung/pathology , Lung/drug effects , Lung/immunology , Cells, Cultured , Male , Cytokines/metabolism , Myofibroblasts/drug effects , Cell Differentiation/drug effects , Disease Models, Animal
10.
AAPS PharmSciTech ; 25(4): 78, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589751

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.


Idiopathic Pulmonary Fibrosis , Nanoparticles , Humans , Pandemics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Lung , Drug Delivery Systems , Pyridones/therapeutic use
11.
Pneumologie ; 78(4): 236-243, 2024 Apr.
Article En | MEDLINE | ID: mdl-38608658

INTRODUCTION: Pirfenidone was the first anti-fibrotic drug approved in Europe in 2011 for the treatment of mild-to-moderate idiopathic pulmonary fibrosis. OBJECTIVES: To investigate the clinical course of mild-to-moderate idiopathic pulmonary fibrosis in pirfenidone-treated patients in a real-world setting. METHODS: The non-interventional study was conducted at 18 sites in Germany from 6/2014-12/2016. Adult patients with mild-to-moderate idiopathic pulmonary fibrosis were treated with pirfenidone (escalated from 3×1 to 3×3 capsules of 267 mg/day within 3 weeks) for 12 months. The observation period comprised 4 follow-up visits at months 3, 6, 9 and 12. Disease progression was defined as decrease of ≥10% in vital capacity or ≥15% in diffusing capacity of the lung for carbon monoxide (DLCO) and/or ≥50m in 6-minute walking distance vs. baseline, or "lack of response/progression" as reason for therapy discontinuation. RESULTS: A total of 51 patients (80.4% male, mean age 70.6 years) were included in the full analysis set. Disease progression at any visit was reported for 23 (67.6%) of 34 patients with available data. Over the course of the study, lung function parameters, physical resilience, impact of cough severity on quality of life, and the mean Gender, Age and Physiology Index (stage II) remained stable. In total, 29 patients (56.9%) experienced at least one adverse drug reaction (11 patients discontinued due to adverse drug reactions); serious adverse reactions were reported in 12 patients (23.5%). CONCLUSIONS: The results of this study are in line with the established benefit-risk profile of pirfenidone. Therefore, pirfenidone can be considered a valuable treatment option to slow disease progression in mild-to-moderate idiopathic pulmonary fibrosis. NCT02622477.


Drug-Related Side Effects and Adverse Reactions , Idiopathic Pulmonary Fibrosis , Pyridones , Adult , Humans , Male , Aged , Female , Quality of Life , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/drug therapy , Cough , Disease Progression
12.
Sci Rep ; 14(1): 8729, 2024 04 16.
Article En | MEDLINE | ID: mdl-38622264

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Idiopathic Pulmonary Fibrosis , Losartan , Pyridones , Humans , Rats , Animals , Losartan/pharmacology , Losartan/therapeutic use , Bleomycin/toxicity , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Antioxidants/pharmacology , Transforming Growth Factor beta1/pharmacology , Collagen/pharmacology
13.
Medicine (Baltimore) ; 103(16): e37808, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640289

Immune checkpoint inhibitor pneumonitis (ICIP) is thought to be a self-limiting disease; however, an effective treatment option does not currently exist. This study aimed to determine the clinical efficacy of combination therapy with glucocorticoids and pirfenidone for ICIP related to programmed cell death protein-1 (PD-1) inhibitors. We conducted a retrospective analysis of 45 patients with advanced non-small cell lung cancer who developed ICIP following PD-1 inhibitor and albumin-bound paclitaxel or carboplatin treatment at our hospital. The PD-1 inhibitor was discontinued, and glucocorticoids were used alone or in combination with pirfenidone to treat ICIP. The relevant clinical data of these patients were collected and analyzed. Compared with the glucocorticoid alone group, the glucocorticoid-pirfenidone group showed significant improvement in forced vital capacity (FVC), carbon monoxide diffusing capacity [%], peripheral capillary oxygen saturation, and 6-minute walk distance (P < .05). There were benefits with respect to the St. George's Respiratory Questionnaire score and the recurrence rate of ICIP, but there was no significant difference between the 2 groups (P > .05). Adding pirfenidone to glucocorticoid treatment was shown to be safe and may be more beneficial than glucocorticoids alone for improving pulmonary interstitial lesions, reversing ICIP, and preventing its recurrence.


Carcinoma, Non-Small-Cell Lung , Idiopathic Pulmonary Fibrosis , Lung Neoplasms , Pneumonia , Humans , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Idiopathic Pulmonary Fibrosis/drug therapy , Glucocorticoids/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Treatment Outcome , Pyridones/adverse effects , Pneumonia/chemically induced , Pneumonia/drug therapy
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612561

Two anti-fibrotic drugs, pirfenidone (PFD) and nintedanib (NTD), are currently used to treat idiopathic pulmonary fibrosis (IPF). Peripheral blood mononuclear cells (PBMCs) are immunocompetent cells that could orchestrate cell-cell interactions associated with IPF pathogenesis. We employed RNA sequencing to examine the transcriptome signature in the bulk PBMCs of patients with IPF and the effects of anti-fibrotic drugs on these signatures. Differentially expressed genes (DEGs) between "patients with IPF and healthy controls" and "before and after anti-fibrotic treatment" were analyzed. Enrichment analysis suggested that fatty acid elongation interferes with TGF-ß/Smad signaling and the production of oxidative stress since treatment with NTD upregulates the fatty acid elongation enzymes ELOVL6. Treatment with PFD downregulates COL1A1, which produces wound-healing collagens because activated monocyte-derived macrophages participate in the production of collagen, type I, and alpha 1 during tissue damage. Plasminogen activator inhibitor-1 (PAI-1) regulates wound healing by inhibiting plasmin-mediated matrix metalloproteinase activation, and the inhibition of PAI-1 activity attenuates lung fibrosis. DEG analysis suggested that both the PFD and NTD upregulate SERPINE1, which regulates PAI-1 activity. This study embraces a novel approach by using RNA sequencing to examine PBMCs in IPF, potentially revealing systemic biomarkers or pathways that could be targeted for therapy.


Idiopathic Pulmonary Fibrosis , Plasminogen Activator Inhibitor 1 , Humans , Leukocytes, Mononuclear , Transcriptome , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Fatty Acids
15.
Sci Rep ; 14(1): 7805, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565856

Given the pleiotropic effects of statins beyond their lipid-lowering effects, there have been attempts to evaluate the role of statin therapy in IPF, but they have shown inconclusive results. Data from the National Health Insurance Service (NHIS) database of South Korea were used to investigate the effects of statin therapy on IPF. The IPF cohort consisted of a total of 10,568 patients who were newly diagnosed with IPF between 2010 and 2017. These patients were then matched in a 1:3 ratio to 31,704 subjects from a control cohort without IPF, with matching based on age and sex. A case-control study was performed to evaluate the association between statin use and the risk for IPF, and the multivariable analysis revealed that statin use was associated with a lower risk for IPF (adjusted OR 0.847, 95% CI 0.800-0.898). Using the IPF cohort, we also evaluated whether statin use at the time of diagnosis was associated with future clinical outcomes. The statin use at the time of IPF diagnosis was associated with improved overall survival (adjusted HR 0.779, 95% CI 0.709-0.856). Further prospective studies are needed to clarify the role of statin therapy in IPF.


Hydroxymethylglutaryl-CoA Reductase Inhibitors , Idiopathic Pulmonary Fibrosis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Case-Control Studies , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/epidemiology , Republic of Korea/epidemiology
16.
BMC Pulm Med ; 24(1): 160, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566026

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on global health and economies, resulting in millions of infections and deaths. This retrospective cohort study aimed to investigate the effect of antifibrotic agents (nintedanib and pirfenidone) on 1-year mortality in COVID-19 patients with acute respiratory failure. METHODS: Data from 61 healthcare organizations in the TriNetX database were analyzed. Adult patients with COVID-19 and acute respiratory failure were included. Patients with a pre-existing diagnosis of idiopathic pulmonary fibrosis before their COVID-19 diagnosis were excluded. The study population was divided into an antifibrotic group and a control group. Propensity score matching was used to compare outcomes, and hazard ratios (HR) for 1-year mortality were calculated. RESULTS: The antifibrotic group exhibited a significantly lower 1-year mortality rate compared to the control group. The survival probability at the end of the study was 84.42% in the antifibrotic group and 69.87% in the control group. The Log-Rank test yielded a p-value of less than 0.001. The hazard ratio was 0.434 (95% CI: 0.264-0.712), indicating a significant reduction in 1-year mortality in the antifibrotic group. Subgroup analysis demonstrated significantly improved 1-year survival in patients receiving nintedanib treatment and during periods when the Wuhan strain was predominant. DISCUSSION: This study is the first to demonstrate a survival benefit of antifibrotic agents in COVID-19 patients with acute respiratory failure. Further research and clinical trials are needed to confirm the efficacy of these antifibrotic agents in the context of COVID-19 and acute respiratory failure.


COVID-19 , Idiopathic Pulmonary Fibrosis , Respiratory Insufficiency , Adult , Humans , Antifibrotic Agents , Retrospective Studies , COVID-19 Testing , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/diagnosis , Respiratory Insufficiency/drug therapy , Pyridones/therapeutic use , Treatment Outcome
17.
Respir Res ; 25(1): 154, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566093

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Cellular Senescence , Idiopathic Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Epithelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism
18.
Respir Res ; 25(1): 153, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566174

BACKGROUND: Wnt/ß-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS: Using our antibody-based platform of Wnt/ß-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS: A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS: Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/ß-catenin pathway modulation for the treatment of pulmonary fibrosis.


Idiopathic Pulmonary Fibrosis , beta Catenin , Adult , Animals , Humans , beta Catenin/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Wnt Signaling Pathway , Bleomycin/toxicity
19.
Redox Biol ; 72: 103148, 2024 Jun.
Article En | MEDLINE | ID: mdl-38603946

BACKGROUND: Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS: We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS: Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS: Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.


Apoptosis , Bleomycin , Fibroblasts , Reactive Oxygen Species , Selenious Acid , Bleomycin/adverse effects , Animals , Mice , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Selenious Acid/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Cell Proliferation/drug effects
20.
Eur J Pharmacol ; 972: 176547, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38561103

Idiopathic pulmonary fibrosis (IPF) associated to pulmonary hypertension (PH) portends a poor prognosis, characterized by lung parenchyma fibrosis and pulmonary artery remodeling. Serum and parenchyma levels of Interleukin 11 (IL-11) are elevated in IPF-PH patients and contributes to pulmonary artery remodeling and PH. However, the effect of current approved therapies against IPF in pulmonary artery remodeling induced by IL-11 is unknown. The aim of this study is to analyze the effects of nintedanib and pirfenidone on pulmonary artery endothelial and smooth muscle cell remodeling induced by IL-11 in vitro. Our results show that nintedanib (NTD) and pirfenidone (PFD) ameliorates endothelial to mesenchymal transition (EnMT), pulmonary artery smooth muscle cell to myofibroblast-like transformation and pulmonary remodeling in precision lung cut slices. This study provided also evidence of the inhibitory effect of PFD and NTD on IL-11-induced endothelial and muscle cells proliferation and senescence. The inhibitory effect of these drugs on monocyte arrest and angiogenesis was also studied. Finally, we observed that IL-11 induced canonical signal transducer and activator of transcription 3 (STAT3) and non-canonical mitogen-activated protein kinase 1/2 (ERK1/2) phosphorylation, but, PFD and NTD only inhibited ERK1/2 phosphorylation. Therefore, this study provided evidence of the inhibitory effect of NTD and PFD on markers of pulmonary artery remodeling induced by IL-11.


Cell Proliferation , Endothelial Cells , Indoles , Interleukin-11 , Myocytes, Smooth Muscle , Pulmonary Artery , Pyridones , STAT3 Transcription Factor , Pulmonary Artery/drug effects , Pulmonary Artery/cytology , Interleukin-11/metabolism , Indoles/pharmacology , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , STAT3 Transcription Factor/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Pyridones/pharmacology , Cell Proliferation/drug effects , Rats , Humans , Male , Cellular Senescence/drug effects , MAP Kinase Signaling System/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Monocytes/drug effects , Monocytes/metabolism , Vascular Remodeling/drug effects
...