Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.889
Filter
1.
Rev Med Virol ; 34(4): e2570, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38964866

ABSTRACT

The question of whether patients in the immune-tolerant (IT) phase of chronic hepatitis B virus (HBV) infection should undergo antiviral therapy and determine the optimal regimen remains unclear. A comprehensive search of PubMed, Embase, MEDLINE, Cochrane Library, and Wanfang Data from inception to 5 December 2023, was conducted. Studies reporting on key outcomes such as HBV DNA undetectability, HBeAg loss or seroconversion, HBsAg loss or seroconversion, and hepatocellular carcinoma (HCC) incidence in patients in the IT phase of chronic HBV infection were included. In total, 23 studies were incorporated. Approximately 4% of patients in the IT phase achieved spontaneous HBeAg loss over 48 weeks of follow-up. Antiviral therapy demonstrated a favourable impact on HBV DNA negative conversion (Children: risk ratios [RR] = 6.83, 95% CI: 2.90-16.05; Adults: RR = 25.84, 95% CI: 6.47-103.31) and HBsAg loss rates (Children: RR = 9.49, 95% CI: 1.74-51.76; Adults: RR = 7.35, 95% CI: 1.41-38.27) for patients in the IT phase. Subgroup analysis revealed that in adult patients in the IT phase, interferon plus nucleos(t)ide analogues (NA)-treated patients exhibited a higher pooled rate of HBsAg loss or seroconversion than those treated with NA monotherapy (9% vs. 0%). Additionally, the pooled annual HCC incidence for patients in the IT phase was 3.03 cases per 1000 person-years (95% CI: 0.99-5.88). Adult patients in the IT phase had a significantly lower HCC incidence risk than HBeAg-positive indeterminate phase patients (RR = 0.46, 95% CI: 0.32-0.66), with no significant differences observed between IT and immune-active phases. Presently, there is insufficient evidence solely based on reducing the risk of HCC incidence, to recommend treating patients in the IT phase of chronic HBV infection. However, both adult and paediatric patients in the IT phase responded well to antiviral therapy, showing favourable rates of HBsAg loss or seroconversion.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Hepatitis B e Antigens , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/immunology , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/epidemiology , Hepatitis B, Chronic/immunology , Liver Neoplasms/epidemiology , Liver Neoplasms/virology , Liver Neoplasms/immunology , Antiviral Agents/therapeutic use , Hepatitis B e Antigens/blood , Hepatitis B e Antigens/immunology , Hepatitis B virus/immunology , Incidence , Hepatitis B Surface Antigens/blood , Hepatitis B Surface Antigens/immunology , DNA, Viral/blood , Immune Tolerance , Treatment Outcome , Seroconversion
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 763-767, 2024 Jun 06.
Article in Chinese | MEDLINE | ID: mdl-38955722

ABSTRACT

The prevalence of food allergy is increasing worldwide and seriously affects the living quality of patients and their families. Egg allergy is one of the commonest forms of food allergy. The traditional regimen is to delay the introduction of eggs to infant complementary foods, which is not able to reduce the prevalence of egg allergies and causes negative effects on infants' physical and psychological conditions. Oral tolerance therapy is an approach to establish immune tolerance by the active suppression of specific immune responses to antigens in the gastrointestinal tract. The development of oral tolerance through early introduction of eggs to infant complementary has proven effective in randomized controlled trials, which has been incorporated into infant feeding guidelines in many countries. This article focuses on the mechanism, efficacy and safety of oral tolerance induction in the prevention of egg allergy.


Subject(s)
Egg Hypersensitivity , Immune Tolerance , Humans , Egg Hypersensitivity/prevention & control , Infant , Desensitization, Immunologic/methods
3.
Front Immunol ; 15: 1415794, 2024.
Article in English | MEDLINE | ID: mdl-38957469

ABSTRACT

Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.


Subject(s)
Endocytosis , Maternal-Fetal Exchange , Humans , Pregnancy , Endocytosis/immunology , Female , Maternal-Fetal Exchange/immunology , Animals , Biological Transport , Nutrients/metabolism , Immune Tolerance , Placenta/immunology , Placenta/metabolism
4.
Am J Reprod Immunol ; 92(1): e13891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958250

ABSTRACT

PROBLEM: The decidualization process conditions monocytes to the immunosuppressive and tolerogenic dendritic cell (DC)-10 profile, a DC subset with high IL-10 production. Since the implantation process implies an embryo-endometrium-immune crosstalk, here we focused on the ability of embryonic soluble factors to modify decidual DC conditioning accordingly with its quality. METHOD OF STUDY: Human endometrial stromal cell line (HESC) decidualized with medroxyprogesterone and dibutyryl-cAMP (Dec) was stimulated with human embryo-conditioned media (ECM), classified as normal (ND) or impaired developed (ID) for 48 h (n = 18/group). Monocytes isolated from six healthy women were differentiated to DCs with rhGM-CSF+rhIL-4 in the presence/absence of conditioned media (CM) from decidualized cells stimulated with ECM or nontreated. RESULTS: We found that decidualized cells stimulated with ECM sustain a myeloid regulatory cell profile on monocyte-derived culture with increased frequency of CD1a-CD14+ and CD83+CD86low cells. ND-Dec sustained the higher expression of the DC-10 markers, HLA-G and IL-10 whereas ID-Dec diminished IL-10 production (ID-Dec: 135 ± 37.4 vs. Dec: 223.3 ± 49.9 pg/mL, p < 0.05). The treatment with ECM-Dec sustained a higher IL-10 production and prevented the increase of CD83/CD86 after LPS challenge regardless of embryo quality. Notably, TNF-α production increased in ID-Dec cultures (ID-Dec: 475.1 ± 134.7 vs. Dec: 347.5 ± 98 pg/mL, p < 0.05). CONCLUSIONS: Although remaining in a tolerogenic profile compatible with DC-10, DCs can differentially respond to decidual secreted factors based on embryo quality, changing their secretome. These results suggest that in the presence of arrested embryo, DCs could differentially shape the immunological microenvironment, contributing to arrested embryo clearance during the menstrual phase.


Subject(s)
Decidua , Dendritic Cells , Embryo Implantation , Immune Tolerance , Humans , Female , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Embryo Implantation/immunology , Decidua/immunology , Decidua/cytology , Cell Differentiation , Culture Media, Conditioned , Interleukin-10/metabolism , Adult , Stromal Cells/immunology , Stromal Cells/metabolism , Cells, Cultured , Embryo, Mammalian , Endometrium/immunology , Endometrium/cytology , Cell Line , Monocytes/immunology , Pregnancy
5.
Science ; 385(6705): 140-142, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991086
7.
Pediatr Allergy Immunol ; 35(7): e14195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989807

ABSTRACT

BACKGROUND: Complete avoidance of milk is the usual management for IgE-mediated cow's milk protein allergy (CMPA). A baked milk ladder is a method of dietary advancement therapy in IgE-mediated CMPA in Ireland, while in Spain, avoidance of milk awaiting natural tolerance acquisition through an oral food challenge (OFC) is employed. The aim of this study was to evaluate the use of dietary advancement therapy using a milk ladder compared with complete avoidance of milk for managing IgE-mediated CMPA. METHODS: This is a retrospective chart review of 371 pediatric patients from the population who have been treated for IgE-mediated CMPA between 2011 and 2020, with the milk ladder (Ireland) or complete avoidance followed by an OFC (Spain). The main outcome was the introduction of cow's milk. RESULTS: Milk ladder patients were 3.67 times more likely to succeed in comparison with milk avoidance (p < .001). Anaphylaxis during the treatment period occurred in 34 patients in the milk avoidance groups, while three patients in the milk ladder group experienced anaphylaxis due to accidental exposure to milk (p < .001). Failure to complete treatment was associated with a higher skin prick test in the milk avoidance group and a raised specific IgE in the milk ladder group. CONCLUSION: This is the first study that compares outcomes of dietary advancement therapy to complete avoidance for CMPA management, demonstrating that cow's milk can be successfully and safely reintroduced using dietary advancement therapy using a milk ladder.


Subject(s)
Immunoglobulin E , Milk Hypersensitivity , Milk Proteins , Humans , Milk Hypersensitivity/immunology , Milk Hypersensitivity/therapy , Retrospective Studies , Immunoglobulin E/blood , Immunoglobulin E/immunology , Female , Male , Child, Preschool , Animals , Milk Proteins/immunology , Child , Infant , Spain , Milk/immunology , Ireland , Anaphylaxis/prevention & control , Anaphylaxis/immunology , Anaphylaxis/etiology , Skin Tests , Immune Tolerance , Cattle , Allergens/immunology , Allergens/administration & dosage , Treatment Outcome
8.
PLoS Pathog ; 20(7): e1012282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990812

ABSTRACT

Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1ß, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.


Subject(s)
Epithelial Cells , Haemophilus Infections , Haemophilus influenzae , Humans , Haemophilus influenzae/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Epithelial Cells/microbiology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Nasal Mucosa/microbiology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Immune Tolerance , Cells, Cultured , Cytokines/metabolism
9.
Cells ; 13(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38994942

ABSTRACT

Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.


Subject(s)
Arginase , Dendritic Cells , HIV-1 , Arginase/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune Tolerance , Oligonucleotides , RNA, Viral/genetics , RNA, Viral/metabolism
10.
Pediatr Allergy Immunol ; 35(7): e14204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016336

ABSTRACT

BACKGROUND: Allergy to peanuts and tree nuts is a common cause of food allergy in Spain, with lipid transfer proteins (LTP) being the most frequently recognized panallergen. LTP sensitization often leads to multiple food group sensitivities, resulting in overly restrictive diets that hinder patient's quality of life. This study aimed to assess the tolerance of peanuts and tree nuts (hazelnuts and walnuts) in children sensitized to LTP, potentially mitigating the need for such diets. METHODS: This prospective study enrolled individuals diagnosed with allergy to peanuts, hazelnuts, or walnuts. Data were collected from medical records, including demographics and clinical history. Allergological assessment comprised skin prick tests using commercial extracts and the nuts in question, alongside measurements of total and specific IgE to nuts and their primary molecular components. Participants showing positive LTP sensitization without sensitization to seed storage proteins underwent open oral nut challenges. RESULTS: A total of 75 individuals labeled as allergic to peanuts, 44 to hazelnuts, and 51 to walnuts were included. All of them underwent an open oral provocation test with the incriminated nut, showing a high tolerance rate. Peanut was tolerated by 98.6% of patients, 97.72% tolerated hazelnut, and 84.3% tolerated walnut. CONCLUSION: The findings suggest that the majority of patients allergic to peanuts, hazelnuts, or walnuts, due to LTP sensitization and lacking IgE reactivity to seed storage proteins, can tolerate these nuts. This supports the need for personalized nut tolerance assessments to avoid unnecessary dietary restrictions.


Subject(s)
Arachis , Carrier Proteins , Immune Tolerance , Immunoglobulin E , Nut Hypersensitivity , Skin Tests , Humans , Male , Female , Carrier Proteins/immunology , Child , Spain , Prospective Studies , Child, Preschool , Immunoglobulin E/blood , Immunoglobulin E/immunology , Nut Hypersensitivity/immunology , Nut Hypersensitivity/diagnosis , Arachis/immunology , Peanut Hypersensitivity/immunology , Peanut Hypersensitivity/diagnosis , Allergens/immunology , Juglans/immunology , Nuts/immunology , Adolescent , Corylus/immunology , Nut and Peanut Hypersensitivity/immunology , Antigens, Plant/immunology
11.
J Transl Med ; 22(1): 663, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010157

ABSTRACT

The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.


Subject(s)
Immune Tolerance , Mesenchymal Stem Cells , Multiple Sclerosis , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/immunology , Animals , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Mesenchymal Stem Cell Transplantation
12.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 199-205, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836658

ABSTRACT

The present research aimed to conduct a comprehensive critical analysis of existing literature, focusing on the differentiation of myeloid cells from hematopoietic stem cells within the context of immunological tolerance during pregnancy. A comprehensive systematic review was conducted by searching databases including PubMed, Scopus Biomedicine, EBSCOhost, ScienceDirect, Embase, Cochrane Library, and Web of Science. The focus was on the role of myeloid differentiation from hematopoietic stem cells in modulating immune tolerance, particularly during pregnancy and in certain disease states where they act to suppress the immune response. The quality of the evidence gathered was assessed using the GRADE rating system. Our analysis maintains objectivity and independence from the outcomes presented. The current systematic review offers a synthesis of existing research on the transformation of hematopoietic stem cells into fibroblasts across different tissue types. A thorough search of databases such as PubMed, EBSCOhost, Embase, ScienceDirect, Cochrane Library, and Web of Science was performed in conjunction with a specialist in medical information to identify original research on the derivation of fibroblasts following hematopoietic stem cell transplantation. This search yielded a total of 159 studies, of which 10 met the criteria for inclusion in this review. Reflecting on the constraints of this preliminary review, further in-depth and scientific investigations are warranted to comprehensively assess the impact of varied treatments, with a recommendation for clinicians to proceed with increased circumspection. The myeloid differentiation pathway of hematopoietic stem cells is pivotal in modulating the immune environment during pregnancy, supporting the sustenance of a healthy gestational period. Future research in this domain is expected to advance our understanding of the immunological processes occurring at the maternal-fetal boundary.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells , Immune Tolerance , Female , Humans , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/cytology , Pregnancy , Cell Differentiation/immunology , Myeloid Cells/immunology , Myeloid Cells/cytology , Hematopoietic Stem Cell Transplantation , Fibroblasts/immunology , Fibroblasts/cytology
13.
J Immunol ; 212(12): 1859-1866, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38830147

ABSTRACT

Immunometabolism has been demonstrated to control immune tolerance and the pathogenic events leading to autoimmunity. Compelling experimental evidence also suggests that intracellular metabolic programs influence differentiation, phenotype, proliferation, and effector functions of anti-inflammatory CD4+CD25+Foxp3+ regulatory T (Treg) cells. Indeed, alterations in intracellular metabolism associate with quantitative and qualitative impairments of Treg cells in several pathological conditions. In this review, we summarize the most recent advances linking how metabolic pathways control Treg cell homeostasis and their alterations occurring in autoimmunity. Also, we analyze how metabolic manipulations could be employed to restore Treg cell frequency and function with the aim to create novel therapeutic opportunities to halt immune-mediated disorders.


Subject(s)
Autoimmunity , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Autoimmunity/immunology , Animals , Homeostasis/immunology , Immune Tolerance/immunology , Autoimmune Diseases/immunology , Cell Differentiation/immunology , Cell Plasticity/immunology
14.
Front Immunol ; 15: 1415573, 2024.
Article in English | MEDLINE | ID: mdl-38835772

ABSTRACT

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Subject(s)
Dendritic Cells , Macrophages , Phagocytosis , Dendritic Cells/immunology , Humans , Phagocytosis/immunology , Animals , Macrophages/immunology , Apoptosis/immunology , Immune Tolerance , Efferocytosis
15.
Zhonghua Gan Zang Bing Za Zhi ; 32(5): 399-401, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38858188

ABSTRACT

Hepatitis B is mostly a chronic, progressive disease that, if not treated promptly and effectively, can slowly progress to cirrhosis, liver failure, or hepatocellular carcinoma. Therefore, antiviral therapy, i.e., a "complete therapy" strategy, should be started as long as the virus is positive. Immediate antiviral treatment is not recommended for infected patients who are only in the immune-tolerant phase, mainly because of the milder conditions and poor antiviral therapy efficacy, according to antiviral indications in China's Guidelines for the Prevention and Treatment of Chronic Hepatitis B (2022 Version). The relevant issues of why hepatitis B virus infection in the immune-tolerant phase is the last mile of "complete therapy," with an emphasis on the disease's characteristics and antiviral treatment strategies, are discussed here.


Subject(s)
Antiviral Agents , Hepatitis B virus , Hepatitis B, Chronic , Humans , Antiviral Agents/therapeutic use , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Immune Tolerance , Hepatitis B/drug therapy
16.
Breast Cancer Res ; 26(1): 96, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849928

ABSTRACT

BACKGROUND: Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression. METHODS: We used qPCR, immunoblot, and reporter assays to characterize repression of PC in hypoxic primary tumors. Steady state metabolomics were used to identify changes in metabolite pools upon PC depletion. In vivo tumor growth and metastasis assays were used to evaluate the impact of PC manipulation and pharmacologic inhibition of lactate transporters. Immunohistochemistry, flow cytometry, and global gene expression analyzes of tumor tissue were employed to characterize the impact of PC depletion on tumor immunity. RESULTS: PC is essential for metastatic colonization of the lungs. In contrast, depletion of PC in tumor cells promotes primary tumor growth. This effect was only observed in immune competent animals, supporting the hypothesis that repression of PC can suppress anti-tumor immunity. Exploring key differences between the pulmonary and mammary environments, we demonstrate that hypoxia potently downregulated PC. In the absence of PC, tumor cells produce more lactate and undergo less oxidative phosphorylation. Inhibition of lactate metabolism was sufficient to restore T cell populations to PC-depleted mammary tumors. CONCLUSIONS: We present a dimorphic role for PC in primary mammary tumors vs. pulmonary metastases. These findings highlight a key contextual role for PC-directed lactate production as a metabolic nexus connecting hypoxia and antitumor immunity.


Subject(s)
Breast Neoplasms , Pyruvate Carboxylase , Pyruvate Carboxylase/metabolism , Pyruvate Carboxylase/genetics , Animals , Female , Mice , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Cell Line, Tumor , Lactic Acid/metabolism , Gene Expression Regulation, Neoplastic , Cell Hypoxia , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Immune Tolerance
17.
Immunity ; 57(6): 1184-1186, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865962

ABSTRACT

The mechanisms that make and break CD8+ T cell tolerance to self-antigens remain unclear. In this issue of Immunity, Van Der Byl et al. show that tolerant CD8+ T cells rapidly adopt an epigenetically and transcriptionally distinct cell state and exhibit impaired protein translation. Breaking tolerance requires both inflammation and increased antigen exposure to augment MYC expression and restore translation.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Tolerance , CD8-Positive T-Lymphocytes/immunology , Immune Tolerance/immunology , Animals , Humans , Epigenesis, Genetic/immunology , Mice , Protein Biosynthesis/immunology
18.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892046

ABSTRACT

Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Immune Tolerance , Immunity, Innate , Humans , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Animals , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis/immunology , Gastritis/microbiology , Immunologic Memory , Trained Immunity
19.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892275

ABSTRACT

We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-ß1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.


Subject(s)
Dendritic Cells , Immune Tolerance , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Humans , Myelin-Oligodendrocyte Glycoprotein/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/drug therapy , Immune Tolerance/drug effects , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Adult , Female , Mannans/pharmacology , Male , Cell Differentiation/drug effects , Monocytes/immunology , Monocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cells, Cultured , Middle Aged , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism
20.
Biochemistry (Mosc) ; 89(5): 799-816, 2024 May.
Article in English | MEDLINE | ID: mdl-38880643

ABSTRACT

Induced pluripotent stem cells (iPSCs), capable of differentiating into any cell type, are a promising tool for solving the problem of donor organ shortage. In addition, reprogramming technology makes it possible to obtain a personalized, i.e., patient-specific, cell product transplantation of which should not cause problems related to histocompatibility of the transplanted tissues and organs. At the same time, inconsistent information about the main advantage of autologous iPSC-derivatives - lack of immunogenicity - still casts doubt on the possibility of using such cells beyond immunosuppressive therapy protocols. This review is devoted to immunogenic properties of the syngeneic and autologous iPSCs and their derivatives, as well as to the reasons for dysregulation of their immune tolerance.


Subject(s)
Cell Differentiation , Immune Tolerance , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Humans , Animals , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...