Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.255
Filter
1.
Biomaterials ; 313: 122757, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39178558

ABSTRACT

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Subject(s)
Capsules , Extracellular Matrix , Immunomodulation , Mesenchymal Stem Cells , Pulmonary Fibrosis , Animals , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/pathology , Mesenchymal Stem Cell Transplantation/methods , Mice, Inbred C57BL , Hydrogels/chemistry , Mice , Male
2.
Biomaterials ; 312: 122750, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39126779

ABSTRACT

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.


Subject(s)
Nanoparticles , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Toll-Like Receptor 7/agonists , Female , Nanoparticles/chemistry , Mice , Toll-Like Receptor 8/agonists , Immunomodulation/drug effects , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Mice, Inbred BALB C , Micelles , Humans
3.
Med Oncol ; 41(11): 255, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352425

ABSTRACT

Cervical cancer remained among the most prevalent cancers in women. Erythropoietin-producing hepatocellular A2 (EPHA2) is overexpressed in many cancers, including cervical cancer, and the mechanism by which it regulates cervical cancer progression is not yet fully understood. Exosomes are extracellular vesicles that carry information in the form of biomolecules, deliver it to the recipient cell, and play a vital role in cellular communication. 17ß-Estradiol is the natural female steroid hormone with the greatest estrogenic activity, and it induces cell death in cancer. In this study, we investigated the function of EPHA2 in cervical cancer migration and immunomodulation and the presence of EPHA2 in the cervical cancer serum-derived exosome. A knockdown of EPHA2 (KD-EPHA2) in cervical cancer reduces cancer cell migration by regulating the CD113/Ezrin pathway. Furthermore, EPHA2 exhibited significant involvement in immunomodulation by orchestrating IL-6-mediated signalling cascades, including the AKT-mTOR and JAK-STAT pathways. Immune infiltration analysis revealed a correlation between EPHA2 expression in cervical cancer and the infiltration of various immune cell populations. KD-EPHA2 enhances the 17ß-Estradiol inhibitory effect on cell proliferation and migration during cancer progression. In summary, our study revealed that EPHA2 is overexpressed in cervical cancer and plays a vital role in cancer cell migration and immunomodulation, and 17ß-Estradiol, along with KD-EPHA2, enhances the inhibitory effect on cancer cell migration and proliferation.


Subject(s)
Cell Movement , Disease Progression , Estradiol , Immunomodulation , Receptor, EphA2 , Uterine Cervical Neoplasms , Humans , Female , Receptor, EphA2/metabolism , Estradiol/pharmacology , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/immunology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Exosomes/metabolism , Signal Transduction/drug effects
4.
Parasit Vectors ; 17(1): 393, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285481

ABSTRACT

BACKGROUND: Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS: Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS: Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS: The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.


Subject(s)
Anisakis , Extracellular Vesicles , Organoids , Humans , Organoids/parasitology , Organoids/immunology , Anisakis/immunology , Anisakis/genetics , Animals , Extracellular Vesicles/immunology , Anisakiasis/parasitology , Anisakiasis/immunology , Cytokines/metabolism , Cytokines/genetics , Intestines/parasitology , Intestines/immunology , Carcinogenesis , Immunomodulation
5.
Curr Microbiol ; 81(10): 346, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240286

ABSTRACT

The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.


Subject(s)
Immunomodulation , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/immunology , Staphylococcal Infections/therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Immunotherapy/methods , Phage Therapy/methods , Animals , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Immunologic Factors
6.
Front Immunol ; 15: 1419527, 2024.
Article in English | MEDLINE | ID: mdl-39286244

ABSTRACT

Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.


Subject(s)
Immunity, Mucosal , Immunomodulation , Humans , Animals , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Lymphoid Tissue/immunology , Vaccines/immunology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Administration, Intranasal
7.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273524

ABSTRACT

Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.


Subject(s)
5'-Nucleotidase , Adenosine , Apyrase , Dental Pulp , Mesenchymal Stem Cells , Periodontal Ligament , T-Lymphocytes , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Humans , Adenosine/metabolism , Dental Pulp/cytology , Dental Pulp/immunology , Dental Pulp/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , 5'-Nucleotidase/metabolism , Apyrase/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Adenosine Triphosphate/metabolism , Cells, Cultured , Gingiva/cytology , Gingiva/metabolism , Gingiva/immunology , Antigens, CD/metabolism , Immunomodulation , Cell Differentiation , Cell Proliferation , Dipeptidyl Peptidase 4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , GPI-Linked Proteins
8.
Immunol Rev ; 326(1): 203-218, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39285525

ABSTRACT

The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Symbiosis , Humans , Animals , Gastrointestinal Microbiome/immunology , Food Hypersensitivity/immunology , Symbiosis/immunology , Homeostasis , Allergens/immunology , Food , Immunomodulation , Host Microbial Interactions/immunology , Probiotics/therapeutic use
9.
Nutrients ; 16(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339785

ABSTRACT

Numerous studies have established associations between vitamin D and diabetes. The vitamin D receptor is widely distributed throughout the human body, including in pancreatic beta cells (ß-cells), hepatocytes, and immune cells. Therefore, vitamin D's effect on the risk, progression, or complications of diabetes may be mediated through various mechanisms. These include the regulation of insulin secretion or sensitivity and modulation of ß-cell function and its immunomodulatory and anti-inflammatory effects. This review extensively explores the relationship between vitamin D status and diabetes, as well as the preventive or therapeutic effects of vitamin D supplementation on diabetes from human studies. Additionally, it examines in detail the impact of vitamin D on immune and inflammatory responses in the diabetic milieux and ß-cell function to better understand the underlying mechanisms through which vitamin D influences diabetes.


Subject(s)
Insulin-Secreting Cells , Vitamin D , Humans , Vitamin D/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Dietary Supplements , Vitamin D Deficiency/complications , Vitamin D Deficiency/immunology , Receptors, Calcitriol/metabolism , Diabetes Mellitus , Insulin Secretion/drug effects , Diabetes Mellitus, Type 2 , Immunomodulation , Animals
10.
Immunol Cell Biol ; 102(9): 775-786, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39269337

ABSTRACT

Eosinophils have traditionally been viewed as pathological effector cells primarily involved in antiparasitic and allergic immune reactions; however, it is becoming increasingly apparent that eosinophils are multifaceted leukocytes that contribute to a variety of roles in both health and disease. Recent research shows that eosinophils play important immunoregulatory roles across various tissue sites including the gastrointestinal tract, adipose tissue, lung, liver, heart, muscles, thymus and bone marrow. With recent advances in our knowledge and appreciation of eosinophil immunoregulatory functions at these tissue sites, as well as emerging research demonstrating the existence of distinct subsets of eosinophils, a review of this topic is timely. Although some questions remain regarding eosinophil function and heterogeneity, this review summarizes the contemporary understanding of the immunoregulatory roles of eosinophils across various tissues and discusses the latest research on eosinophil heterogeneity and subsets.


Subject(s)
Eosinophils , Humans , Eosinophils/immunology , Animals , Immunomodulation , Organ Specificity/immunology
11.
J Extracell Vesicles ; 13(10): e12513, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39330919

ABSTRACT

Renowned for their role in haemostasis and thrombosis, platelets are also increasingly recognized for their contribution in innate immunity, immunothrombosis and inflammatory diseases. Platelets express a wide range of receptors, which allows them to reach a variety of activation endpoints and grants them immunomodulatory functions. Activated platelets release extracellular vesicles (PEVs), whose formation and molecular cargo has been shown to depend on receptor-mediated activation and environmental cues. This study compared the immunomodulatory profiles of PEVs generated via activation of platelets by different receptors, glycoprotein VI, C-type lectin-like receptor 2 and combining all thrombin-collagen receptors. Functional assays in vivo in zebrafish and in vitro in human macrophages highlighted distinct homing and secretory responses triggered by the PEVs. In contrast, omics analyses of protein and miRNA cargo combined with physicochemical particle characterization found only subtle differences between the activated PEV types, which were insufficient to predict their different immunomodulatory functions. In contrast, constitutively released PEVs, formed in the absence of an exogenous activator, displayed a distinct immunomodulatory profile from the receptor-induced PEVs. Our findings underscore that PEVs are tunable through receptor-mediated activation. To truly comprehend their role(s) in mediating platelet functions among immune cells, conducting functional assays is imperative.


Subject(s)
Blood Platelets , Extracellular Vesicles , Platelet Activation , Zebrafish , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Blood Platelets/metabolism , Blood Platelets/immunology , Animals , Humans , Macrophages/metabolism , Macrophages/immunology , Immunomodulation , Platelet Membrane Glycoproteins/metabolism , MicroRNAs/metabolism
12.
Parasitol Res ; 123(10): 336, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347812

ABSTRACT

Echinococcosis is a zoonotic disease, which seriously endangers human health. The immune game between parasite and host is not fully understood. Exosomes are thought to be one of the ways of information communication between parasite and host. In this study, we attempted to explore the communication between Echinococcus granulosus and its host through the medium of exosomes. We collected plasma from E. granulosus patients (CE-EXO) and healthy donors (HD-EXO) and extracted exosomes from the plasma. The expression profile of miRNA in plasma was determined by second generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to annotate the function of target genes of differential miRNAs. Meanwhile, we co-cultured plasma exosomes from healthy donors and plasma exosomes from E. granulosus patients with Jurkat T cells with or without phytohaemagglutinin (PHA) stimulation. The expression of CD69 on Jurkat T cells was detected by flow cytometry. The results showed that the miRNA of exosomes between healthy donors and E. granulosus patients was significantly different. GO and KEGG were used to annotate the function of target genes of differential miRNAs. The results indicate that many important pathways are involved in inflammation, metabolism, and immune response after parasite infection, such as p53 signaling pathway, PI3K-Akt signaling pathway, and glycolysis/gluconeogenesis. Flow cytometry showed that CE-EXO reduced the expression of CD69 + on Jurkat T cells. Our present results suggest that these differentially expressed miRNAs may be important regulators of parasite-host interactions. Meanwhile, functional prediction of its target genes provides valuable information for understanding the mechanism of host-parasite interactions. These results provide clues for future studies on E. granulosus escape from host immune attack, which could help control E. granulosus infection.


Subject(s)
Echinococcosis , Echinococcus granulosus , MicroRNAs , Humans , Echinococcosis/immunology , Echinococcosis/blood , Echinococcosis/parasitology , Echinococcosis/genetics , MicroRNAs/blood , MicroRNAs/genetics , Pilot Projects , Echinococcus granulosus/genetics , Echinococcus granulosus/immunology , Animals , Exosomes/genetics , Exosomes/immunology , Exosomes/metabolism , Immunomodulation , Jurkat Cells , Gene Expression Profiling , Host-Parasite Interactions/immunology
13.
Cell Commun Signal ; 22(1): 451, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327552

ABSTRACT

BACKGROUND: Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY: Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION: Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.


Subject(s)
Biomarkers , Dengue , Immunomodulation , Humans , Dengue/immunology , Dengue/diagnosis , Dengue/virology , Animals , Dengue Virus/immunology , Severity of Illness Index , Cytokines/metabolism , Cytokines/immunology , Immunity, Innate
14.
Circulation ; 150(13): 1050-1058, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39325497

ABSTRACT

Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.


Subject(s)
Myocardial Ischemia , Humans , Myocardial Ischemia/therapy , Myocardial Ischemia/immunology , Animals , Immunomodulation , Endothelial Cells/immunology , Immunotherapy/methods
15.
Front Immunol ; 15: 1413179, 2024.
Article in English | MEDLINE | ID: mdl-39247182

ABSTRACT

Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.


Subject(s)
Inflammation , Peptides , Humans , Inflammation/drug therapy , Inflammation/immunology , Peptides/therapeutic use , Peptides/pharmacology , Animals , Signal Transduction/drug effects , Oxidative Stress/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , NF-kappa B/metabolism , Inflammation Mediators/metabolism , Immunomodulation/drug effects
16.
Stem Cell Res Ther ; 15(1): 320, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334441

ABSTRACT

Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.


Subject(s)
Immunomodulation , Liver Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Animals , Reperfusion Injury/therapy , Reperfusion Injury/immunology , Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , Liver Regeneration
17.
Biomater Adv ; 165: 214010, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39222592

ABSTRACT

The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.


Subject(s)
Bone Regeneration , Hydrogels , Immunomodulation , Macrophages , Mesenchymal Stem Cells , Osteogenesis , Bone Regeneration/drug effects , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Hydrogels/chemistry , Osteogenesis/drug effects , Mesenchymal Stem Cells/immunology , Animals , Cellular Senescence/drug effects , Humans , Cell Differentiation , Neovascularization, Physiologic/drug effects , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Biocompatible Materials/pharmacology , Surface Properties , Collagen/metabolism
18.
Front Immunol ; 15: 1447536, 2024.
Article in English | MEDLINE | ID: mdl-39224602

ABSTRACT

Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.


Subject(s)
Dental Pulp , Extracellular Vesicles , Immunomodulation , Inflammation , NF-kappa B , Dental Pulp/cytology , Dental Pulp/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Humans , Animals , Inflammation/immunology , Inflammation/metabolism , NF-kappa B/metabolism , Macrophages/immunology , Macrophages/metabolism , MicroRNAs/genetics , Lipopolysaccharides/pharmacology , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Cells, Cultured , Signal Transduction , Stem Cells/immunology , Stem Cells/metabolism , Male
19.
Carbohydr Polym ; 346: 122586, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245482

ABSTRACT

Lentinan (LNT), a natural polysaccharide, has been reported to exhibit immunomodulatory effects in the intestine after oral administration. Herein, we aimed to investigate the lymphatic transport of LNT in Peyer's patches (PPs) by traceable fluorescent labeling and to explore whether/how LNT contacts related immune cells. Near-infrared imaging confirmed the absorption of LNT in the small intestinal segment and its accumulation within PPs after oral administration. Subsequently, tissue imaging confirmed that M cells are the main cells responsible for transporting LNT to PPs, and an M cell model was established to explore the involvement of Dectin-1 in the absorption process. Systematic in vitro and in vivo studies revealed that the Dectin-1 further mediates the uptake of LNT by mononuclear phagocytes in PPs. Moreover, LNT can promote the proliferation and differentiation of mononuclear phagocytes, thereby activating immune responses. In summary, this study elucidates the pharmacokinetic mechanisms by which LNT exerts oral immunomodulatory effects, providing a theoretical basis for the development and application of other polysaccharides.


Subject(s)
Lectins, C-Type , Lentinan , Peyer's Patches , Peyer's Patches/immunology , Peyer's Patches/drug effects , Peyer's Patches/metabolism , Animals , Lentinan/pharmacology , Lentinan/chemistry , Lectins, C-Type/metabolism , Mice , Administration, Oral , Phagocytes/drug effects , Phagocytes/metabolism , Phagocytes/immunology , Immunomodulation/drug effects , Male , Mice, Inbred BALB C , M Cells
20.
Front Immunol ; 15: 1432307, 2024.
Article in English | MEDLINE | ID: mdl-39281680

ABSTRACT

Background: Limited availability and side effects of opioids have led to an increased use of non-opioid analgesia in animal disease models. However, by affecting the immune-inflammatory reactions, analgesia may disrupt the resolution of the host inflammation and modulate the survival in septic animals. This study used a clinically relevant sepsis mouse model of peritoneal contamination and infection (PCI) to investigate the antinociceptive and anti-inflammatory properties of two non-opioid analgesics. Methods: Adult C57BL/6J mice were intraperitoneally injected with a human feces suspension and received either no analgesics (Non-A), Meloxicam, or Metamizole orally. The mice were monitored for pain and illness. Mortality was assessed at 7 days post-PCI. A separate group of mice was sacrificed 24 hours after infection. Blood, peritoneal lavage fluid (PLF), liver, and spleen were harvested for pathogen load quantification via qPCR, macrophage phenotyping, neutrophil infiltration/activation, and systemic/tissue cytokine release by flow cytometry. Results: Meloxicam but not Metamizole reduced the mortality of septic mice by 31% on day 7 compared to the Non-A group. Both analgesics effectively alleviated pain but did not affect illness severity, body weight, and temperature. Meloxicam quadrupled the bacterial burden in the blood and PLF. In high IL-6 responders, Meloxicam treatment was associated with reduced circulating IL-10 and IL-1ß compared to the Non-A septic group. In low IL-6 responders, Meloxicam increased circulating MCP-1 levels and decreased PGE2 levels compared to Non-A septic mice. Notably, Meloxicam reduced spleen neutrophil infiltration by 20% compared to two other sepsis groups. Conclusion: Metamizole and Meloxicam effectively relieved pain and increased the animals' basal activity in the PCI sepsis model. Meloxicam prolonged survival yet triggered maladaptive responses due to its immunosuppressive features that decreased tissue bacterial clearance during sepsis. In contrast, Metamizole constitutes a safe and effective non-opioid alternative for analgesic control in the non-surgical PCI sepsis model.


Subject(s)
Dipyrone , Disease Models, Animal , Meloxicam , Mice, Inbred C57BL , Sepsis , Animals , Meloxicam/therapeutic use , Sepsis/drug therapy , Sepsis/immunology , Sepsis/mortality , Dipyrone/therapeutic use , Dipyrone/pharmacology , Mice , Analgesics/therapeutic use , Analgesics/pharmacology , Immunomodulation/drug effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Male , Cytokines/metabolism , Cytokines/blood , Peritonitis/drug therapy , Peritonitis/immunology , Peritonitis/microbiology , Peritonitis/mortality , Humans
SELECTION OF CITATIONS
SEARCH DETAIL