Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.726
Filter
1.
Methods Mol Biol ; 2823: 173-191, 2024.
Article in English | MEDLINE | ID: mdl-39052221

ABSTRACT

Immunoprecipitation is one of the most effective methods for enrichment of lysine-acetylated peptides for comprehensive acetylome analysis using mass spectrometry. Manual acetyl peptide enrichment method using non-conjugated antibodies and agarose beads has been developed and applied in various studies. However, it is time-consuming and can introduce contaminants and variability that leads to potential sample loss and decreased sensitivity and robustness of the analysis. Here we describe a fast, automated enrichment protocol that enables reproducible and comprehensive acetylome analysis using a magnetic bead-based immunoprecipitation reagent.


Subject(s)
Immunoprecipitation , Workflow , Immunoprecipitation/methods , Acetylation , Humans , Proteomics/methods , Lysine/metabolism , Peptides/chemistry , Mass Spectrometry/methods , Protein Processing, Post-Translational , Proteome/analysis
2.
Methods Mol Biol ; 2837: 59-66, 2024.
Article in English | MEDLINE | ID: mdl-39044075

ABSTRACT

Of all the chemical modifications of RNAs, the N6-methyladenosine (m6A) modification is the most prevalent and well-characterized RNA modification that is functionally implicated in a wide range of biological processes. The m6A modification occurs in hepatitis B virus (HBV) RNAs and this modification regulates the HBV life cycle in several ways. Thus, understanding the mechanisms underlying m6A modification of HBV RNAs is crucial in understanding HBV infectious process and associated pathogenesis. Here, we describe the currently utilized method in the detection and characterization of m6A-methylated RNAs during viral infection.


Subject(s)
Adenosine , Hepatitis B virus , Immunoprecipitation , RNA, Viral , Adenosine/analogs & derivatives , Adenosine/metabolism , Hepatitis B virus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Methylation , Immunoprecipitation/methods , Hepatitis B/virology
3.
Methods Mol Biol ; 2824: 319-334, 2024.
Article in English | MEDLINE | ID: mdl-39039420

ABSTRACT

The nucleocapsid protein (N) in Rift Valley fever virus is an RNA-binding protein that functions in viral transcription, replication, and packaging. In this chapter, the method for studying protein-RNA interactions in context of viral infection using individual nucleotide resolution, cross-linking, immunoprecipitation, and sequencing (iCLIP-seq) is explained. The method is useful for identifying the interactions between both host and viral RNAs with N and can identify RNA motifs that interact with the protein of interest.


Subject(s)
Immunoprecipitation , Nucleocapsid Proteins , RNA, Viral , Rift Valley fever virus , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Binding Sites , Rift Valley fever virus/genetics , Rift Valley fever virus/metabolism , Immunoprecipitation/methods , Protein Binding , Humans , RNA-Binding Proteins/metabolism , High-Throughput Nucleotide Sequencing/methods
4.
Methods Mol Biol ; 2824: 281-318, 2024.
Article in English | MEDLINE | ID: mdl-39039419

ABSTRACT

Rift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication. Based on a number of electron microscopy and structural studies, the viral RNAs of negative-strand RNA viruses, including phleboviruses, are commonly considered to be entirely and uniformly covered by N protein. However, high resolution data supporting this notion was missing to date.Here, we describe a method how to globally map all N-RNA interactions of RVFV by using iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation). The protocol is based on covalent cross-linking of direct protein-RNA interactions by UV irradiation. Following sample lysis, a selective isolation of N in complex with its RNA targets is achieved by immunoprecipitation. Then, N-RNA complexes are separated by SDS-PAGE, and after membrane transfer, RNA is isolated and subjected to library preparation and high-throughput sequencing. We explain how the standard iCLIP protocol can be adapted to RVFV N-RNA interaction studies. The protocol describes mapping of all N interactions with the vRNAs and cRNAs derived either from RVFV particles or from infected cells.


Subject(s)
Genome, Viral , Nucleoproteins , RNA, Viral , Rift Valley fever virus , Rift Valley fever virus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Nucleoproteins/metabolism , Nucleoproteins/genetics , Nucleotide Mapping/methods , Immunoprecipitation/methods , Humans , Rift Valley Fever/virology , Rift Valley Fever/metabolism , Animals
5.
Cell Genom ; 4(7): 100603, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38955188

ABSTRACT

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.


Subject(s)
RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Immunoprecipitation/methods , Binding Sites , Software , Computational Biology/methods , RNA/metabolism , RNA/genetics , Protein Binding
6.
J Proteome Res ; 23(8): 3726-3730, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39013105

ABSTRACT

Intact-mass spectrometry has huge potential for clinical application, as it enables both quantitative and qualitative analysis of intact proteins and possibly unlocks additional pathophysiological information via, e.g., detection of specific post-translational modifications (PTMs). Such valuable and clinically useful selectivity is typically lost during conventional bottom-up mass spectrometry. We demonstrate an innovative immunoprecipitation protein enrichment assay coupled to ultrahigh performance liquid chromatography quadrupole time-of-flight high resolution mass spectrometry (UPLC-QToF-HRMS) for the fast and simple identification of the protein tumor marker Neuron Specific Enolase Gamma (NSEγ) at low endogenous concentrations in human serum. Additionally, using the combination of immunoaffinity purification with intact mass spectrometry, the presence of NSEγ in an acetylated form in human serum was detected. This highlights the unique potential of immunoaffinity intact mass spectrometry in clinical diagnostics.


Subject(s)
Biomarkers, Tumor , Mass Spectrometry , Phosphopyruvate Hydratase , Phosphopyruvate Hydratase/blood , Phosphopyruvate Hydratase/isolation & purification , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Acetylation , Mass Spectrometry/methods , Protein Processing, Post-Translational , Immunoprecipitation/methods , Chromatography, High Pressure Liquid/methods
7.
J Proteome Res ; 23(8): 3393-3403, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38967832

ABSTRACT

Lysosomes constitute the main degradative compartment of most mammalian cells and are involved in various cellular functions. Most of them are catalyzed by lysosomal proteins, which typically are low abundant, complicating their analysis by mass spectrometry-based proteomics. To increase analytical performance and to enable profiling of lysosomal content, lysosomes are often enriched. Two approaches have gained popularity in recent years, namely, superparamagnetic iron oxide nanoparticles (SPIONs) and immunoprecipitation from cells overexpressing a 3xHA-tagged version of TMEM192 (TMEM-IP). The effect of these approaches on the lysosomal proteome has not been investigated to date. We addressed this topic through a combination of both techniques and proteomic analysis of lysosome-enriched fractions. For SPIONs treatment, we identified altered cellular iron homeostasis and moderate changes of the lysosomal proteome. For overexpression of TMEM192, we observed more pronounced effects in lysosomal protein expression, especially for lysosomal membrane proteins and those involved in protein trafficking. Furthermore, we established a combined strategy based on the sequential enrichment of lysosomes with SPIONs and TMEM-IP. This enabled increased purity of lysosome-enriched fractions and, through TMEM-IP-based lysosome enrichment from SPIONs flow-through and eluate fractions, additional insights into the properties of individual approaches. All data are available via ProteomeXchange with PXD048696.


Subject(s)
Lysosomes , Proteomics , Lysosomes/metabolism , Proteomics/methods , Humans , Immunoprecipitation , Magnetic Iron Oxide Nanoparticles/chemistry , Iron/metabolism , Proteome/analysis , Proteome/metabolism , Membrane Proteins/metabolism , HEK293 Cells , Proteins
8.
Invest Ophthalmol Vis Sci ; 65(6): 29, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38888282

ABSTRACT

Purpose: Ubiquitination serves as a fundamental post-translational modification in numerous cellular events. Yet, its role in regulating corneal epithelial wound healing (CEWH) remains elusive. This study endeavored to determine the function and mechanism of ubiquitination in CEWH. Methods: Western blot and immunoprecipitation were used to discern ubiquitination alterations during CEWH in mice. Interventions, including neuronally expressed developmentally downregulated 4 (Nedd4) siRNA and proteasome/lysosome inhibitor, assessed their impact on CEWH. In vitro analyses, such as the scratch wound assay, MTS assay, and EdU staining, were conducted to gauge cell migration and proliferation in human corneal epithelial cells (HCECs). Moreover, transfection of miR-30/200 coupled with a luciferase activity assay ascertained their regulatory mechanism on Nedd4. Results: Global ubiquitination levels were markedly increased during the mouse CEWH. Importantly, the application of either proteasomal or lysosomal inhibitors notably impeded the healing process both in vivo and in vitro. Furthermore, Nedd4 was identified as an essential E3 ligase for CEWH. Nedd4 expression was significantly upregulated during CEWH. In vivo studies revealed that downregulation of Nedd4 substantially delayed CEWH, whereas further investigations underscored its role in regulating cell proliferation and migration, through the Stat3 pathway by targeting phosphatase and tensin homolog (PTEN). Notably, our findings pinpointed miR-30/200 family members as direct regulators of Nedd4. Conclusions: Ubiquitination holds pivotal significance in orchestrating CEWH. The critical E3 ligase Nedd4, under the regulatory purview of miR-30 and miR-200, facilitates CEWH through PTEN-mediated Stat3 signaling. This revelation sheds light on a prospective therapeutic target within the realm of CEWH.


Subject(s)
Cell Movement , Cell Proliferation , Epithelium, Corneal , Nedd4 Ubiquitin Protein Ligases , PTEN Phosphohydrolase , Ubiquitin-Protein Ligases , Ubiquitination , Wound Healing , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Mice , Cell Movement/physiology , Cell Proliferation/physiology , Wound Healing/physiology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Epithelium, Corneal/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Mice, Inbred C57BL , Endosomal Sorting Complexes Required for Transport/metabolism , Blotting, Western , STAT3 Transcription Factor/metabolism , Cells, Cultured , Disease Models, Animal , MicroRNAs/genetics , Immunoprecipitation , Male , Gene Expression Regulation/physiology
9.
Biochem Biophys Res Commun ; 727: 150323, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38945065

ABSTRACT

Immunoprecipitation (IP) and co-immunoprecipitation (co-IP) are well-established methodologies to analyze protein expression and intermolecular interaction. Composition of extraction and washing buffer for preparing protein is important to accomplish experimental purpose. Various kinds of detergents are included in buffer to adjust extraction efficiency and washing effect. Among them, Triton X-100 (Tx-100), Nonidet P-40 (NP40), deoxycholic acid (DOC) and SDS are generally used according to experimental purpose and characteristic features of protein of interest. In some cases, general detergents disrupt intermolecular interaction and make it impossible to analyze molecular relation of protein of interest with its binding partners. In this study, we propose saponin, a natural detergent, is useful for co-immunoprecipitation when analyzing fragile intermolecular interactions, in which dystrophin and dystroglycan are used as a representative interaction. One of the most notable findings in this report is that intermolecular association between dystrophin and dystroglycan is maintained in saponin buffer whereas general detergents, such as Tx-100, NP40 and DOC, dissociate its binding. Furthermore, supplementation of trehalose, which has been shown to act as a molecular chaperone, facilitates efficient detection of dystrophin-dystroglycan macromolecular complex in co-IP assay. Importantly, the extraction buffer comprising 3 % saponin, 0.5 M trehalose and 0.05 % Tx-100 (we named it STX buffer) is applicable to co-IP for another molecular interaction, N-cadherin and ß-catenin, indicating that this methodology can be used for versatile proteins of interest. Thus, STX buffer emerges as an alternative extraction method useful for analyzing fragile intermolecular associations and provides opportunity to identify complex interactomes, which may facilitate proteome-research and functional analysis of proteins of interest.


Subject(s)
Saponins , Trehalose , Saponins/chemistry , Trehalose/chemistry , Immunoprecipitation/methods , Animals , Detergents/chemistry , Protein Binding , Humans , Octoxynol/chemistry
10.
Arch Oral Biol ; 165: 106031, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38905870

ABSTRACT

OBJECTIVE: The aim of this study was to explore the effect and mechanism of programmed cell death ligand 1 (PD-L1) in promoting the proliferation and osteo/odontogenic-differentiation of human dental pulp stem cells (hDPSCs) by mediating CCCTC-binding factor (CTCF) expression. DESIGN: The interaction between PD-L1 and CTCF was verified through co-immunoprecipitation. hDPSCs transfected with PD-L1 overexpression and CTCF knockdown vectors were treated with lipopolysaccharide or an osteogenic-inducing medium. Inflammatory cytokines and osteo/odontogenic-differentiation related genes were measured. Osteo/odontogenic-differentiation of hDPSCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining. RESULTS: Overexpression of PD-L1 inhibited LPS-induced pro-inflammatory cytokine upregulation, cell proliferation, ALP activity, and calcium deposition in hDPSCs and elevated the expression of osteo/odontogenic-differentiation related genes; however, such expression patterns could be reversed by CTCF knockdown. Co-immunoprecipitation results confirmed the binding of PD-L1 to CTCF, indicating that PD-L1 overexpression in hDPSCs increases CTCF expression, thus inhibiting the inflammatory response and increasing osteo/odontogenic-differentiation of hDPSCs. CONCLUSION: PD-L1 overexpression in hDPSCs enhances the proliferation and osteo/odontogenic-differentiation of hDPSCs and inhibit the inflammatory response by upregulating CTCF expression.


Subject(s)
B7-H1 Antigen , CCCTC-Binding Factor , Cell Differentiation , Cell Proliferation , Dental Pulp , Lipopolysaccharides , Osteogenesis , Stem Cells , Humans , Alkaline Phosphatase/metabolism , B7-H1 Antigen/metabolism , Blotting, Western , CCCTC-Binding Factor/metabolism , Cells, Cultured , Cytokines/metabolism , Dental Pulp/cytology , Dental Pulp/metabolism , Immunoprecipitation , Lipopolysaccharides/pharmacology , Odontogenesis/drug effects , Osteogenesis/drug effects , Real-Time Polymerase Chain Reaction , Stem Cells/metabolism , Up-Regulation
11.
Clin Biochem ; 130: 110781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917879

ABSTRACT

OBJECTIVES: Immunoturbidimetric assays are sensitive techniques in clinical biology that may be subjected to matrix effects, hook effects or aspecific reactions. Among these, large quantities of immunoglobulins can distort the intensity of the detected signal. This study illustrates the deleterious effect of analytical interference on clinical patient management, and assesses the practical relevance of a recently proposed algorithm for interference investigation. METHODS: Determination of C-Reactive Protein (CRP) concentration by liquid immunoprecipitation on latex particles coated with mouse anti-CRP monoclonal antibodies, rabbit anti-CRP polyclonal antibodies, by solid phase immunochemistry or by enzymatic assay. RESULTS: During the follow-up of a 75-year-old patient suffering from multiple chronic diseases in the Internal Medicine Department of Toulouse University Hospital, a severe infection was suspected facing a CRP plasma value over 700 mg/L while he was in remission of an indolent marginal zone lymphoma. Because of the absence of clinical signs of infection, an interference in the liquid immunoprecipitation CRP assay was suspected. The hypothesis of an interference due to anti-mouse autoantibodies was ruled out because of normal results for other immunoassays using different types of antibodies. Moreover, no interference was observed using solid phase immunochemistry assay. Protein electrophoresis and immunofixation documented a relapse of lymphoma along with the presence of abnormal monoclonal immunoglobulins interfering with CRP measurement. CONCLUSION: The interpretation of common clinical biochemistry parameters such as CRP can be difficult owing to analytical interferences. Reviewing all the pharmaco-clinico-biological data and collaboration with clinicians is of critical importance for optimal patient management.


Subject(s)
C-Reactive Protein , Aged , Humans , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Male , Immunoprecipitation/methods , Animals , Mice
12.
STAR Protoc ; 5(2): 103121, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38850538

ABSTRACT

Lysosomes are critical for the sustenance of glioblastoma stem-like cells (GSCs) properties. We present a protocol to enrich and purify lysosomes from patient-derived GSCs in culture. We describe the steps required to stably express a tagged lysosomal protein in GSCs, mechanically lyse cells, magnetically immunopurify lysosomes, and qualitatively assess these organelles. We then detail the procedure for retrieving intact and purified lysosomes from GSCs. We also specify cell culture conditions, storage procedures, and sample preparation for immunoblotting. For complete details on the use and execution of this protocol, please refer to Maghe et al.1.


Subject(s)
Glioblastoma , Immunoprecipitation , Lysosomes , Neoplastic Stem Cells , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Lysosomes/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Immunoprecipitation/methods , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
13.
Methods Mol Biol ; 2832: 47-55, 2024.
Article in English | MEDLINE | ID: mdl-38869786

ABSTRACT

Recent advancements in detection and mapping methods have enabled researchers to uncover the biological importance of RNA chemical modifications, which play a vital role in post-transcriptional gene regulation. Although numerous types of RNA modifications have been identified in higher eukaryotes, only a few have been extensively studied for their biological functions. Of these, N6-methyladenosine (m6A) is the most prevalent and important mRNA modification that influences various aspects of RNA metabolism, including mRNA stability, degradation, splicing, alternative polyadenylation, export, and localization, as well as translation. Thus, they have implications for a variety of biological processes, including growth, development, and stress responses. The m6A deposition or removal on transcripts is dynamic and is altered in response to internal and external cues. Because this mark can alter gene expression under stress conditions, it is essential to identify the transcripts that can acquire or lose this epitranscriptomic mark upon exposure to stress conditions. Here we describe a step-by-step protocol for identifying stress-responsive transcriptome-wide m6A changes using RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq).


Subject(s)
Adenosine , Gene Expression Regulation, Plant , RNA, Plant , Stress, Physiological , Transcriptome , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Stress, Physiological/genetics , RNA, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Arabidopsis/genetics , Arabidopsis/metabolism , Sequence Analysis, RNA/methods , Immunoprecipitation/methods , Plants/genetics , Plants/metabolism , RNA Processing, Post-Transcriptional
14.
Methods Mol Biol ; 2832: 57-66, 2024.
Article in English | MEDLINE | ID: mdl-38869787

ABSTRACT

Stress granules (SGs) are conserved cytoplasmic biomolecular condensates mainly formed by proteins and RNA molecules assembled by liquid-liquid phase separation. Isolation of SGs components has been a major challenge in the field due to the dynamic and transient nature of stress granule shells. Here, we describe the methodology for the isolation and visualization of SGs proteins from Arabidopsis thaliana plants using a scaffold component as the target. The protocol consists of the first immunoprecipitation of GFP-tagged scaffold protein, followed by an on-beads enzymatic digestion and previous mass spectrometry identification. Finally, the localization of selected SGs candidates is visualized in Nicotiana benthamiana mesophyll protoplasts.


Subject(s)
Arabidopsis , Cytoplasmic Granules , Stress, Physiological , Arabidopsis/metabolism , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/chemistry , Arabidopsis Proteins/metabolism , Protoplasts/metabolism , Nicotiana/metabolism , Immunoprecipitation/methods , Mass Spectrometry/methods
15.
Nucleic Acids Res ; 52(10): e48, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38726866

ABSTRACT

Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.


Subject(s)
RNA-Binding Proteins , RNA , Humans , Binding Sites , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Immunoprecipitation , Levivirus/genetics , Levivirus/metabolism , Mutation , Nucleic Acid Conformation , Protein Binding , RNA/metabolism , RNA/chemistry , RNA/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/chemistry , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Telomerase/metabolism , Telomerase/genetics , Models, Statistical
16.
Sci Data ; 11(1): 551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811611

ABSTRACT

Proteins are often referred to as the workhorses of cells, and their interactions are necessary to facilitate specific cellular functions. Despite the recognition that protein-protein interactions, and thus protein functions, are determined by proteoform states, such as mutations and post-translational modifications (PTMs), methods for determining the differential abundance of proteoforms across conditions are very limited. Classically, immunoprecipitation coupled with mass spectrometry (IP-MS) has been used to understand how the interactome (preys) of a given protein (bait) changes between conditions to elicit specific cellular functions. Reversing this concept, we present here a new workflow for IP-MS data analysis that focuses on identifying the differential peptidoforms of the bait protein between conditions. This method can provide detailed information about specific bait proteoforms, potentially revealing pathogenic protein states that can be exploited for the development of targeted therapies.


Subject(s)
Immunoprecipitation , Mass Spectrometry , Data Analysis , Protein Processing, Post-Translational , Proteomics/methods
17.
STAR Protoc ; 5(2): 103080, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38776227

ABSTRACT

Co-immunoprecipitation (coIP) is an experimental technique to study protein-protein interactions (PPIs). However, single-step coIP can only be used to identify the interaction between two proteins and does not solve the interaction testing of ternary complexes. Here, we present a protocol to test for the formation of ternary protein complexes in vivo or in vitro using a two-step coIP approach. We describe steps for cell culture and transfection, elution of target proteins, and two-step coIP including western blot analyses. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Subject(s)
Immunoprecipitation , Immunoprecipitation/methods , Humans , Protein Interaction Mapping/methods , Proteins/metabolism , Blotting, Western/methods , Transfection , Animals , Protein Binding , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , HEK293 Cells
18.
Methods Mol Biol ; 2807: 195-208, 2024.
Article in English | MEDLINE | ID: mdl-38743230

ABSTRACT

N6-methyladenosine (m6A) modification of RNA is an important area in studying viral replication, cellular responses, and host immunity. HIV-1 RNA contains multiple m6A modifications that regulate viral replication and gene expression. HIV-1 infection of CD4+ T-cells or HIV-1 envelope protein treatment upregulates m6A levels of cellular RNA. Changes in the m6A modification of cellular transcripts in response to HIV-1 infection provide new insights into the mechanisms of posttranscriptional gene regulation in the host cell. To better investigate the functions of m6A modification in HIV-1 infection and innate immune responses, it is helpful to standardize basic protocols. Here, we describe a method for the selective enrichment of m6A-modified RNA from HIV-1-infected primary CD4+ T-cells based on immunoprecipitation. The enriched RNA with m6A modifications can be used in a variety of downstream applications to determine the methylation status of viral or cellular RNA at resolution from transcript level down to single nucleotide.


Subject(s)
Adenosine , CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , RNA, Viral , HIV-1/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/virology , Methylation , Virus Replication , Immunoprecipitation/methods
19.
Exp Parasitol ; 262: 108776, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750807

ABSTRACT

Timely and accurate diagnosis of Schistosoma infection is important to adopt effective strategies for schistosomiasis control. Previously, we demonstrated that Schistosoma japonicum can secret extracellular vesicles and their cargos may serve as a novel type of biomarkers for diagnosing schistosomiasis. Here, we developed a Gaussia luciferase immunoprecipitation assay combined with S. japonicum extracellular vesicle (SjEV) protein to evaluate its potential for diagnosing schistosomiasis. A saposin-like protein (SjSLP) identified from SjEVs was fused to the Gaussia luciferase as the diagnostic antigen. The developed method showed good capability for detecting S. japonicum infection in mice and human patients. We also observed that the method could detect Schistosoma infection in mice as early as 7 days of post-infection, which showed better sensitivity than that of indirect ELISA method. Overall, the developed method showed a good potential for detecting Schistosoma infection particularly for early stage, which may provide an alternative strategy for identify Schistosoma infection for disease control.


Subject(s)
Immunoprecipitation , Luciferases , Schistosoma japonicum , Schistosomiasis japonica , Animals , Schistosomiasis japonica/diagnosis , Schistosomiasis japonica/parasitology , Schistosoma japonicum/enzymology , Schistosoma japonicum/immunology , Mice , Humans , Immunoprecipitation/methods , Luciferases/genetics , Female , Sensitivity and Specificity , Mice, Inbred BALB C , Enzyme-Linked Immunosorbent Assay/methods , Extracellular Vesicles , Antigens, Helminth/analysis , Antigens, Helminth/immunology , Male
20.
J Microbiol Biotechnol ; 34(6): 1222-1228, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38783697

ABSTRACT

Protein-specific antibodies are essential for various aspects of protein research, including detection, purification, and characterization. When specific antibodies are unavailable, protein tagging is a useful alternative. Small epitope tags, typically less than 10 amino acids, are widely used in protein research due to the simple modification through PCR and reduced impact on the target protein's function compared to larger tags. The 2B8 epitope tag (RDPLPFFPP), reported by us in a previous study, has high specificity and sensitivity to the corresponding antibody. However, when attached to the C-terminus of the target protein in immunoprecipitation experiments, we observed a decrease in detection signal with reduced immunity and low protein recovery. This phenomenon was not unique to 2B8 and was also observed with the commercially available Myc tag. Our study revealed that C-terminal tagging of small epitope tags requires the addition of more than one extra amino acid to enhance (restore) antibody immunities. Moreover, among the amino acids we tested, serine was the best for the 2B8 tag. Our findings demonstrated that the interaction between a small epitope and a corresponding paratope of an antibody requires an extra amino acid at the C-terminus of the epitope. This result is important for researchers planning studies on target proteins using small epitope tags.


Subject(s)
Amino Acids , Epitopes , Epitopes/immunology , Animals , Antibodies/immunology , Antibodies/metabolism , Mice , Immunoprecipitation , Antibody Formation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL