Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.895
Filter
1.
PLoS Comput Biol ; 20(9): e1011806, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259757

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help to predict cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created in silico datasets by simulating various protocols applied to a population of models with known conductance variations, and then fitted parameters to those datasets. We found that calibrating to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation also held when the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.


Subject(s)
Cell Differentiation , Computer Simulation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/physiology , Myocytes, Cardiac/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Cell Differentiation/physiology , Computational Biology/methods , Algorithms , Ion Channels/metabolism , Models, Cardiovascular
2.
J Neurosci Methods ; 410: 110225, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053772

ABSTRACT

BACKGROUND: The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS: Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS: We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION: Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Neural Stem Cells , Neurons , Humans , Neurons/physiology , Neurons/cytology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Cells, Cultured , Cell Culture Techniques/methods , Electrophysiological Phenomena/physiology
3.
J Physiol ; 602(16): 3871-3892, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032073

ABSTRACT

A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Cell Differentiation/physiology , Cellular Reprogramming/physiology
4.
J Neurophysiol ; 132(3): 653-665, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38988287

ABSTRACT

Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, ß tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Neurons , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Humans , Neurons/physiology , Neurons/cytology , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Neurogenesis/physiology , Protein Isoforms/metabolism , Culture Media
5.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39009447

ABSTRACT

Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.


Subject(s)
Astrocytes , Coculture Techniques , Induced Pluripotent Stem Cells , Motor Neurons , Induced Pluripotent Stem Cells/physiology , Animals , Motor Neurons/physiology , Mice , Astrocytes/physiology , Humans , Cell Differentiation/physiology , Cells, Cultured , Neurogenesis/physiology
6.
Exp Neurol ; 379: 114848, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38857749

ABSTRACT

The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.


Subject(s)
Brain , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/transplantation , Induced Pluripotent Stem Cells/physiology , Animals , Brain/cytology , Mice , Cell Differentiation/physiology , Chimera , Disease Models, Animal , Brain Diseases/therapy
7.
BMB Rep ; 57(7): 311-317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38919012

ABSTRACT

Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling. [BMB Reports 2024; 57(7): 311-317].


Subject(s)
Brain , Induced Pluripotent Stem Cells , Organoids , Organoids/physiology , Organoids/cytology , Humans , Brain/physiology , Brain/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/metabolism , Electrophysiological Phenomena , Cell Culture Techniques/methods
8.
J Exp Bot ; 75(14): 4373-4393, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38869461

ABSTRACT

Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Animals , Plant Cells/physiology , Plants/genetics , Plants/metabolism , Gene Editing
9.
Neuroscience ; 552: 76-88, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38909673

ABSTRACT

Mesenchymal stromal cells (MSCs) hold therapeutic potential for neurological disorders, but their impact on neuronal activity remains unclear. We investigated the effects of SB623 cells (Notch-1 intracellular domain-transfected MSCs) and parental MSCs on human induced pluripotent stem cell (iPSC)-derived neurons using multi-electrode arrays. SB623 cells significantly increased neuronal activity and oscillation in a dose-dependent manner, surpassing astrocytes in promoting network bursts. Strikingly, glutamatergic neurons showed a rapid increase in activity and bursts compared to GABAergic neurons, suggesting glutamate release from SB623 cells. We confirmed this by finding high glutamate levels in SB623 cell conditioned medium, which were reduced by glutaminase inhibition. Glutamate release was further implicated by the reduced excitability in co-cultures with astrocytes, known glutamate scavengers. Our findings reveal a novel mechanism for MSCs: promoting neuronal activity and network formation through tonic glutamate release, with potential implications for MSC-based therapies.


Subject(s)
Astrocytes , Coculture Techniques , Glutamic Acid , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Neurons , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Glutamic Acid/metabolism , Humans , Neurons/metabolism , Neurons/physiology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Astrocytes/metabolism , Astrocytes/physiology , Culture Media, Conditioned/pharmacology , Cells, Cultured , Action Potentials/physiology
10.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38724283

ABSTRACT

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.


Subject(s)
Action Potentials , Induced Pluripotent Stem Cells , Neurons , Presynaptic Terminals , Synapses , Humans , Induced Pluripotent Stem Cells/physiology , Action Potentials/physiology , Synapses/physiology , Neurons/physiology , Presynaptic Terminals/physiology , Nerve Tissue Proteins/metabolism , Synaptic Transmission/physiology , Cells, Cultured , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/physiology
11.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584257

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Wnt Signaling Pathway , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Brain/blood supply , Blood-Brain Barrier/metabolism
12.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615721

ABSTRACT

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Subject(s)
Induced Pluripotent Stem Cells , Microelectrodes , Neurons , Humans , Neurons/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/cytology , Action Potentials/physiology , Cells, Cultured , Cerebral Cortex/physiology , Cerebral Cortex/cytology , Astrocytes/physiology , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Bicuculline/pharmacology , Nerve Net/physiology
13.
Sci Rep ; 14(1): 6011, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472288

ABSTRACT

Sensory neurons are afferent neurons in sensory systems that convert stimuli and transmit information to the central nervous system as electrical signals. Primary afferent neurons that are affected by non-noxious and noxious stimuli are present in the dorsal root ganglia (DRG), and the DRG sensory neurons are used as an in vitro model of the nociceptive response. However, DRG derived from mouse or rat give a low yield of neurons, and they are difficult to culture. To help alleviate this problem, we characterized human induced pluripotent stem cell (hiPSC) derived sensory neurons. They can solve the problems of interspecies differences and supply stability. We investigated expressions of sensory neuron related proteins and genes, and drug responses by Multi-Electrode Array (MEA) to analyze the properties and functions of sensory neurons. They expressed nociceptor, mechanoreceptor and proprioceptor related genes and proteins. They constitute a heterogeneous population of their subclasses. We confirmed that they could respond to both noxious and non-noxious stimuli. We showed that histamine inhibitors reduced histamine-induced neuronal excitability. Furthermore, incubation with a ProTx-II and Nav1.7 inhibitor reduced the spontaneous neural activity in hiPSC-derived sensory neurons. Their responsiveness was different from each drug. We have demonstrated that hiPSC-derived sensory neurons combined with MEA are good candidates for drug discovery studies where DRG in vitro modeling is necessary.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Rats , Mice , Animals , Induced Pluripotent Stem Cells/physiology , Histamine/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
14.
Phys Biol ; 21(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452380

ABSTRACT

Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.


Subject(s)
Induced Pluripotent Stem Cells , Myofibrils , Humans , X-Rays , Cell Differentiation/physiology , Myocytes, Cardiac/physiology , Induced Pluripotent Stem Cells/physiology , Tissue Engineering/methods
15.
J Psychiatry Neurosci ; 49(2): E109-E125, 2024.
Article in English | MEDLINE | ID: mdl-38490647

ABSTRACT

The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.


Subject(s)
Bipolar Disorder , Induced Pluripotent Stem Cells , Schizophrenia , Humans , Induced Pluripotent Stem Cells/physiology , Bipolar Disorder/genetics
16.
J Neurosci Methods ; 406: 110114, 2024 06.
Article in English | MEDLINE | ID: mdl-38522633

ABSTRACT

BACKGROUND: Induced pluripotent stem cells (iPSCs) derived neural stem cells (NSCs) provide a potential for autologous neural transplantation therapy following neurological insults. Thus far, in preclinical studies the donor iPSCs-NSCs are mostly of human or mouse origin with concerns centering around graft rejection when applied to rat brain injury models. For better survival and integration of transplanted cells in the injured brain in rat models, use of rat-iPSC-NSCs and in combination with biomaterials is of advantageous. Herein, we report a detailed method in generating rat iPSCs with improved reprogramming efficiency and differentiation into neurons. NEW METHOD: Rat fibroblasts were reprogrammed into iPSCs with polybrene and EF1α-STEMCCA-LoxP lentivirus vector. Pluripotency characterization, differentiation into neuronal linage cells were assessed with RT-qPCR, Western blotting, immunostaining and patch-clamp methods. Cells were cultured in a custom-designed integrin array system as well as in a hydrogel-based 3D condition. RESULTS: We describe a thorough method for the generation of rat-iPSC-NSCs, and identify integrin αvß8 as a substrate for the optimal growth of rat-iPSC-NSCs. Furthermore, with hydrogel as the supporting biomaterial in the 3-D culture, when combined with integrin αvß8 binding peptide, it forms a conducive environment for optimal growth and differentiation of iPSC-NSCs into mature neurons. COMPARISON WITH EXISTING METHODS: Published studies about rat-iPSC-NSCs are rare. This study provides a detailed protocol for the generation of rat iPSC-NSCs and optimal growth conditions for neuronal differentiation. Our method is useable for studies to assess the utility of rat iPSC-NSCs for neural transplantation in rat brain injury models.


Subject(s)
Cell Differentiation , Fibroblasts , Induced Pluripotent Stem Cells , Neurons , Animals , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Fibroblasts/physiology , Fibroblasts/cytology , Neurons/cytology , Neurons/physiology , Cell Differentiation/physiology , Rats , Cells, Cultured , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Cell Culture Techniques/methods , Rats, Sprague-Dawley
17.
Trends Neurosci ; 47(4): 241-242, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521709

ABSTRACT

In a recent study, Rylaarsdam and colleagues revealed that mutant PACS1 gene, which causes a rare neurodevelopmental syndrome, affects the firing ability of human neurons without dysregulating the cellular architecture of brain organoids. These findings suggest aberrant neuronal electrophysiology as a possible interventional target for pediatric diseases impairing brain development.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Neurodevelopmental Disorders , Child , Humans , Induced Pluripotent Stem Cells/physiology , Neurons , Brain , Vesicular Transport Proteins
18.
Ecotoxicol Environ Saf ; 272: 116108, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38364764

ABSTRACT

The importance of evaluating the cardiotoxicity potential of common chemicals as well as new drugs is increasing as a result of the development of animal alternative test methods using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Bisphenol A (BPA), which is used as a main material in plastics, is known as an endocrine-disrupting chemical, and recently reported to cause cardiotoxicity through inhibition of ion channels in CMs even with acute exposure. Accordingly, the need for the development of alternatives to BPA has been highlighted, and structural analogues including bisphenol AF, C, E, F, and S have been developed. However, cardiotoxicity data for analogues of bisphenol are not well known. In this study, in order to evaluate the cardiotoxicity potential of analogues, including BPA, a survival test of hiPSC-CMs and a dual-cardiotoxicity evaluation based on a multi-electrode array were performed. Acute exposure to all bisphenol analogues did not affect survival rate, but spike amplitude, beat period, and field potential duration were decreased in a dose-dependent manner in most of the bisphenols except bisphenol S. In addition, bisphenols, except for bisphenol S, reduced the contractile force of hiPSC-CMs and resulted in beating arrest at high doses. Taken together, it can be suggested that the developed bisphenol analogues could cause cardiotoxicity even with acute exposure, and it is considered that the application of the MEA-based dual-cardiotoxicity evaluation method can be an effective help in the development of safe alternatives.


Subject(s)
Benzhydryl Compounds , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Cardiotoxicity/etiology , Induced Pluripotent Stem Cells/physiology , Phenols/toxicity
19.
Transl Psychiatry ; 14(1): 127, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418498

ABSTRACT

The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.


Subject(s)
Cell Transdifferentiation , Induced Pluripotent Stem Cells , Humans , Reproducibility of Results , Brain , Induced Pluripotent Stem Cells/physiology , Cell Differentiation , Organoids
20.
Sci Rep ; 14(1): 2586, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297132

ABSTRACT

Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Induced Pluripotent Stem Cells/physiology , Long QT Syndrome/genetics , ERG1 Potassium Channel/genetics , Arrhythmias, Cardiac/genetics , Mutation , Myocytes, Cardiac/physiology , Phenotype , Action Potentials/genetics
SELECTION OF CITATIONS
SEARCH DETAIL