Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.439
1.
Int J Nanomedicine ; 19: 5095-5108, 2024.
Article En | MEDLINE | ID: mdl-38836008

Sperm quality is declining dramatically during the past decades. Male infertility has been a serious health and social problem. The sperm cell driven biohybrid nanorobot opens a new era for automated and precise assisted reproduction. Therefore, it is urgent and necessary to conduct an updated review and perspective from the viewpoints of the researchers and clinicians in the field of reproductive medicine. In the present review, we first update the current classification, design, control and applications of various spermbots. Then, by a comprehensive summary of the functional features of sperm cells, the journey of sperms to the oocyte, and sperm-related dysfunctions, we provide a systematic guidance to further improve the design of spermbots. Focusing on the translation of spermbots into clinical practice, we point out that the main challenges are biocompatibility, effectiveness, and ethical issues. Considering the special requirements of assisted reproduction, we also propose the three laws for the clinical usage of spermbots: good genetics, gentle operation and no contamination. Finally, a three-step roadmap is proposed to achieve the goal of clinical translation. We believe that spermbot-based treatments can be validated and approved for in vitro clinical usage in the near future. However, multi-center and multi-disciplinary collaborations are needed to further promote the translation of spermbots into in vivo clinical applications.


Reproductive Techniques, Assisted , Spermatozoa , Humans , Spermatozoa/physiology , Male , Infertility, Male/therapy , Animals , Female
2.
Hum Fertil (Camb) ; 27(1): 2362980, 2024 Dec.
Article En | MEDLINE | ID: mdl-38842163

Fertility restoration potential of immature testicular tissue (ITT) depends on the number of spermatogonial cells in the retrieved tissue prior to cryopreservation in oncofertility programme. There are limited data on the association between type of malignancy and testicular germ cell population. Hence, this study is aimed to investigate the spermatogonial and Sertoli cell population in ITT retrieved from 14 pre-pubertal boys who opted for fertility preservation. Histopathological and immunochemical analysis of seminiferous tubules from haematological (N = 7) and non-haematological (N = 7) malignant patients revealed 3.43 ± 2.92 and 1.71 ± 1.81 spermatogonia per tubular cross section (S/T), respectively. The Sertoli cell number was comparable between haematological and non-haematological group (18.42 ± 3.78 and 22.03 ± 10.43). Spermatogonial quantity in ITT did not vary significantly between haematological and non-haematological cancers. This observation, though preliminary, would contribute to the limited literature on paediatric male oncofertility.


Fertility Preservation , Neoplasms , Spermatogonia , Humans , Male , Fertility Preservation/methods , Child , Cryopreservation , Testis , Child, Preschool , Hematologic Neoplasms/therapy , Sertoli Cells , Infertility, Male/etiology , Infertility, Male/therapy
3.
Hum Genomics ; 18(1): 57, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835100

BACKGROUND: The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY: The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION: In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.


DNA Methylation , Epigenesis, Genetic , Infertility, Male , Spermatozoa , Humans , Male , Epigenesis, Genetic/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Spermatozoa/metabolism , Spermatozoa/pathology , DNA Methylation/genetics , Animals
4.
Natl Health Stat Report ; (202): 1-19, 2024 04.
Article En | MEDLINE | ID: mdl-38722687

Objectives-Using National Survey of Family Growth data from 2015-2019, this report presents updated national estimates of infertility in U.S. women and men and estimates of impaired fecundity (physical ability to have children) in U.S. women. Detailed demographic breakdowns are also presented, and overall estimates for 2015-2019 are compared with those for 2011-2015. Methods-Data for this report come primarily from the 2015-2019 National Survey of Family Growth, which consisted of 21,441 interviews with men and women ages 15-49, conducted from September 2015 through September 2019. The response rate was 65.9% for women and 62.4% for men. Results-The percentage of women ages 15-44 who had impaired fecundity did not change between 2011-2015 and 2015-2019. The percentage of married women with impaired fecundity also remained stable over this time period. Among all women, 13.4% of women ages 15-49 and 15.4% of women ages 25-49 had impaired fecundity in 2015-2019. The percentage of married women ages 15-44 who were infertile rose from 2011-2015 (6.7%) to 2015-2019 (8.7%). Among married and cohabiting women ages 15-49 in 2015-2019, 7.8% had infertility. Both infertility and impaired fecundity were associated with age for nulliparous (never had a live birth) women after adjusting for other factors. Some form of infertility (either subfertility or nonsurgical sterility) was seen in 11.4% of men ages 15-49 and 12.8% of men ages 25-49 in 2015-2019. . Conclusion-Although these findings are not nationally representative, this report illustrates how linked NHCS-HUD data may provide insight into maternal health outcomes of patients who received housing assistance compared with those who did not.


Infertility , Humans , United States/epidemiology , Adult , Female , Adolescent , Male , Middle Aged , Young Adult , Infertility/epidemiology , Infertility, Female/epidemiology , Infertility, Male/epidemiology , Fertility
5.
Genomics ; 116(3): 110853, 2024 May.
Article En | MEDLINE | ID: mdl-38701988

Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.


Autophagy-Related Protein 8 Family , Autophagy , Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Drosophila melanogaster/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Phosphorylation , Longevity , Neurons/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism
6.
Sci Rep ; 14(1): 12446, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816557

Thoroughbred stallions that carry a double-homozygous genotype A/A-A/A for SNPs rs397316122 and rs69101140 in exon 5 of the FKBP6 gene (chr13; EquCab3.0) are uniquely subfertile due to impaired acrosomal exocytosis (IAE). In this study, the sperm proteome in frozen/thawed semen from subfertile Thoroughbred stallions was studied and compared to that of frozen/thawed sperm from fertile Thoroughbred stallions. A total of 2,220 proteins was identified, of which 140 proteins were found to be differentially abundant in sperm from the subfertile stallions compared to that of fertile stallions (83 less and 57 more abundant). Proteins of differential abundance in sperm from the subfertile stallions were mainly overrepresented in the "metabolism" and the "metabolism of lipids" pathways. One of these proteins, arylsulfatase F (ARSF), was studied by immunofluorescence. A lower proportion of sperm displaying ARSF signal at the acrosome region was observed in sperm from subfertile Thoroughbred stallions. In addition, heterologous zona pellucida binding assays revealed that sperm from subfertile Thoroughbred stallions bound at a lower proportion to zonae pellucidae than sperm from fertile Thoroughbred stallions. In conclusion, a group of differential abundance proteins, including some of acrosome origin, were identified in sperm from subfertile stallions with acrosome dysfunction.


Acrosome Reaction , Proteomics , Spermatozoa , Animals , Male , Horses , Proteomics/methods , Spermatozoa/metabolism , Exocytosis , Acrosome/metabolism , Infertility, Male/metabolism , Infertility, Male/veterinary , Infertility, Male/genetics , Proteome/metabolism , Fertility/genetics , Zona Pellucida/metabolism
7.
BMC Pregnancy Childbirth ; 24(1): 398, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816754

BACKGROUND: The causes of infertility have remained an important challenge. The relationship between VDR gene polymorphisms and infertility has been reported, with controversial findings. OBJECTIVE AND RATIONALE: We aimed to determine this relationship by conducting a systematic review and meta-analysis. SEARCH METHODS: The study was started with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) declaration and the final draft was registered as a protocol in PROSPERO (ID: CRD42023416535). The international electronic databases including PubMed (Medline), Scopus, Web of Sciences, and Cumulative Index to Nursing and Allied Health Literature (CINHAL) were searched until January 30, 2023, by using appropriate keywords. The quality of the final studies was assessed using the NOS Checklist for case-control studies. The odds ratios (ORs) for each of the genetic models were pooled, and a subgroup analysis based on geographical region and types of infertility was carried out by the MetaGenyo online tool. OUTCOMES: Case-control studies including 18 and 2 studies about infertility in women and men, respectively, and 4 miscarriage studies were entered into the meta-analysis. The VDR gene TaqI polymorphism was associated with infertility susceptibility in women in the allele contrast [OR = 1.2065, 95% CI (1.0846-1.3421); P = 0.0005], Recessive model [OR = 1.3836, 95% CI (1.1197-1.7096); P = 0.002], Dominant model [OR = 1.2146, 95% CI (0.0484-1.4072); P = 0.009], Homozygote [OR = 1.4596, 95% CI (1.1627-1.8325); P = 0.001], and TT vs. Tt [OR = 1.2853, 95% CI (1.0249-1.6117); P = 0.029. ApaI and FokI gene polymorphisms were found to be significantly protective SNPs against women and men infertility in the Dominant model [OR = 0.8379, 95% CI (0.7039- 0.9975); P = 0.046] and Recessive model [OR = 0.421, 95% CI (0.1821-0.9767); P = 0.043], respectively. Sub-group meta-analysis showed a protection association of ApaI in dominant [OR = 0.7738, 95% CI = 0.6249-0.9580; P = 0.018] and AA vs. aa [OR = 0.7404, 95 CI% (0.5860-0.9353) P = 0.011725] models in PCOS subgroup, however, a negative association with idiopathic infertility was found in AA vs. Aa [OR = 1.7063, 95% CI (1.1039-2.6375); P = 0.016187] and Aa vs. aa [OR = 0.6069, 95% CI (0.3761-0.9792); P = 0.040754]. TaqI SNP was significantly associated with infertility in the African population and BsmI was associated with the disease mostly in the Asian population. CONCLUSION: This meta-analysis showed that the TaqI polymorphism may be linked to women's infertility susceptibility. However, ApaI and FokI might be the protective SNPs against infertility in Women and men, respectively.


Genetic Predisposition to Disease , Receptors, Calcitriol , Humans , Receptors, Calcitriol/genetics , Female , Male , Polymorphism, Genetic , Infertility, Female/genetics , Case-Control Studies , Infertility/genetics , Infertility, Male/genetics
8.
Front Endocrinol (Lausanne) ; 15: 1349000, 2024.
Article En | MEDLINE | ID: mdl-38689732

Recent advancements in reproductive medicine have guided novel strategies for addressing male infertility, particularly in cases of non-obstructive azoospermia (NOA). Two prominent invasive interventions, namely testicular sperm extraction (TESE) and microdissection TESE (micro-TESE), have emerged as key techniques to retrieve gametes for assisted reproduction technologies (ART). Both heterogeneity and complexity of NOA pose a multifaceted challenge to clinicians, as the invasiveness of these procedures and their unpredictable success underscore the need for more precise guidance. Seminal plasma can be aptly regarded as a liquid biopsy of the male reproductive tract, encompassing secretions from the testes, epididymides, seminal vesicles, bulbourethral glands, and prostate. This fluid harbors a variety of cell-free nucleic acids, microvesicles, proteins, and metabolites intricately linked to gonadal activity. However, despite numerous investigations exploring potential biomarkers from seminal fluid, their widespread inclusion into the clinical practice remains limited. This could be partially due to the complex interplay of diverse clinical and genetic factors inherent to NOA that likely contributes to the absence of definitive biomarkers for residual spermatogenesis. It is conceivable that the integration of clinical data with biomarkers could increase the potential in predicting surgical procedure outcomes and their choice in NOA cases. This comprehensive review addresses the challenge of sperm retrieval in NOA through non-invasive biomarkers. Moreover, we delve into promising perspectives, elucidating innovative approaches grounded in multi-omics methodologies, including genomics, transcriptomics and proteomics. These cutting-edge techniques, combined with the clinical and genetics features of patients, could improve the use of biomarkers in personalized medical approaches, patient counseling, and the decision-making continuum. Finally, Artificial intelligence (AI) holds significant potential in the realm of combining biomarkers and clinical data, also in the context of identifying non-invasive biomarkers for sperm retrieval.


Azoospermia , Biomarkers , Sperm Retrieval , Humans , Male , Azoospermia/metabolism , Azoospermia/diagnosis , Biomarkers/metabolism , Biomarkers/analysis , Infertility, Male/metabolism , Infertility, Male/diagnosis , Infertility, Male/therapy , Semen/metabolism , Spermatogenesis/physiology
9.
Front Endocrinol (Lausanne) ; 15: 1354699, 2024.
Article En | MEDLINE | ID: mdl-38689733

Noonan syndrome (NS) is a genetic disorder characterized by multiple congenital defects caused by mutations in the RAS/mitogen-activated protein kinase pathway. Male fertility has been reported to be impaired in NS, but only a few studies have focused on fertility status in NS patients and underlying mechanisms are still incompletely understood. We describe the case of a 35-year-old man who underwent an andrological evaluation due to erectile dysfunction and severe oligospermia. A syndromic facial appearance and reduced testis size were present on clinical examination. Hormonal evaluation showed normal total testosterone level, high FSH level, and low-normal AMH and inhibin B, compatible with primary Sertoli cell dysfunction. Genetic analysis demonstrated the pathogenetic heterozygous variant c.742G>A, p.(Gly248Arg) of the LZTR1 gene (NM_006767.3). This case report provides increased knowledge on primary gonadal dysfunction in men with NS and enriches the clinical spectrum of NS from a rare variant in the novel gene LZTR1.


Noonan Syndrome , Humans , Male , Noonan Syndrome/genetics , Noonan Syndrome/complications , Adult , Transcription Factors/genetics , Erectile Dysfunction/genetics , Oligospermia/genetics , Infertility, Male/genetics , Mutation
10.
Dev Biol ; 512: 13-25, 2024 Aug.
Article En | MEDLINE | ID: mdl-38703942

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
11.
Sci Rep ; 14(1): 12058, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802468

Testicular adrenal rest tumor (TART) is a prevalent complication associated with congenital adrenal hyperplasia (CAH), culminating in gonadal dysfunction and infertility. Early hormonal intervention is preventive, but excessive glucocorticoid poses risks. Developing reliable methods for early TART diagnosis and monitoring is crucial. The present study aims to formulate a scoring system to identify high-risk infertility through analysis of TART ultrasound features. Grayscale and power Doppler ultrasound were employed in this retrospective study to evaluate testicular lesions in male CAH patients. Lesion assessment encompassed parameters such as range, echogenicity, and blood flow, and these were subsequently correlated with semen parameters. Results of 49 semen analyzes from 35 patients demonstrated a notable inverse correlation between lesion scores and both sperm concentration (rs = - 0.83, P < 0.001) and progressive motility (rs = - 0.56, P < 0.001). The ROC curve areas for evaluating oligospermia and asthenozoospermia were calculated as 0.94 and 0.72, respectively. Establishing a lesion score threshold of 6 revealed a sensitivity of 75.00% and specificity of 93.94% for oligospermia and a sensitivity of 53.85% and specificity of 100.00% for asthenozoospermia. These findings underscore the potential utility of incorporating ultrasound into routine CAH patient management, facilitating timely interventions to preserve male fertility.


Adrenal Hyperplasia, Congenital , Infertility, Male , Ultrasonography , Humans , Male , Adrenal Hyperplasia, Congenital/complications , Adrenal Hyperplasia, Congenital/diagnostic imaging , Adult , Retrospective Studies , Infertility, Male/etiology , Infertility, Male/diagnostic imaging , Ultrasonography/methods , Risk Assessment , Semen Analysis , Testis/diagnostic imaging , Testis/pathology , Young Adult , Adrenal Rest Tumor/diagnostic imaging
12.
Front Endocrinol (Lausanne) ; 15: 1396793, 2024.
Article En | MEDLINE | ID: mdl-38808116

Objective: To examine the impact of tobacco smoking on seminal parameters in men with both primary and secondary infertility. Methods: This cross-sectional study analyzed 1938 infertile men from China who were categorized as nonsmokers (n=1,067) and smokers (n=871), with the latter group further divided into moderate smokers (1-10 cigarettes per day) (n=568) and heavy smokers (>10 cigarettes per day) (n=303). We assessed semen volume, concentration, total sperm count, progressive motility, and normal morphology following World Health Organization (WHO 2010) guidelines. A logistic regression model was used to analyze the relationships between smoking and seminal parameters while also controlling for lifestyle factors. Results: The analysis demonstrated a statistically significant correlation between smoking and adverse seminal parameters in both primary and secondary infertility patients. Specifically, primary infertile men who smoked had a lower semen concentration, with heavy smokers showing a median sperm concentration of 59.2×10^6/ml compared to 68.6×10^6/ml in nonsmokers (P=0.01). The secondary infertile men who smoked exhibited reduced forward sperm motility, with heavy smokers demonstrating a median progressive motility of 44.7%, which was significantly lower than the 48.1% observed in nonsmokers (P=0.04). Conclusion: Smoking is significantly associated with detrimental effects on seminal parameters in infertile men, thus highlighting the need for cessation programs as part of fertility treatment protocols. Encouraging smoking cessation could substantially improve semen quality and fertility outcomes in this population.


Infertility, Male , Semen Analysis , Semen , Sperm Count , Sperm Motility , Humans , Male , Cross-Sectional Studies , Infertility, Male/etiology , Infertility, Male/epidemiology , Adult , China/epidemiology , Smoking/adverse effects
13.
BMC Public Health ; 24(1): 1236, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705989

BACKGROUND: Men experiencing infertility encounter numerous problems at the individual, family, and social levels as well as quality of life (QOL). This study was designed to investigate the QOL of men experiencing infertility through a systematic review. MATERIALS AND METHODS: This systematic review was conducted without any time limitation (Retrieval date: July 1, 2023) in international databases such as Scopus, Web of Science, PubMed, and Google Scholar. The search was performed by two reviewers separately using keywords such as QOL, infertility, and men. Studies were selected based on inclusion and exclusion criteria. The quality of the articles were evaluated based on the Newcastle-Ottawa Scale. In the initial search, 308 studies were reviewed, and after removing duplicates and checking the title and abstract, the full text of 87 studies were evaluated. RESULTS: Finally, 24 studies were included in the final review based on the research objectives. Based on the results, men's QOL scores in different studies varied from 55.15 ± 13.52 to 91.45 ± 13.66%. Of the total reviewed articles, the lowest and highest scores were related to mental health problems and physical dimensions, respectively. CONCLUSION: The reported findings vary across various studies conducted in different countries. Analysis of the factors affecting these differences is necessary, and it is recommended to design a standard tool for assessing the quality of life of infertile men. Given the importance of the QOL in men experiencing infertility, it is crucial to consider it in the health system. Moreover, a plan should be designed, implemented and evaluated according to each country's contex to improve the quality of life of infertile men.


Infertility, Male , Quality of Life , Humans , Male , Infertility, Male/psychology , Adult
14.
Front Endocrinol (Lausanne) ; 15: 1368334, 2024.
Article En | MEDLINE | ID: mdl-38711980

Introduction: Studies have shown that the gut microbiota is associated with male infertility (MI). However, their causal relationship and potential mediators need more evidence to prove. We aimed to investigate the causal relationship between the gut microbiome and MI and the potential mediating role of inflammatory cytokines from a genetic perspective through a Mendelian randomization approach. Methods: This study used data from genome-wide association studies of gut microbes (Mibiogen, n = 18, 340), inflammatory cytokines (NFBC1966, FYPCRS, FINRISK 1997 and 2002, n=13, 365), and male infertility (Finngen, n=120, 706) to perform two-way Mendelian randomization (MR), mediated MR, and multivariate MR(MVMR) analyses. In this study, the inverse variance weighting method was used as the primary analysis method, and other methods were used as supplementary analysis methods. Results: In the present study, two gut microbes and two inflammatory cytokines were found to have a potential causal relationship with MI. Of the two gut microorganisms causally associated with male infertility, Anaerotruncus increased the risk of male infertility (odds ratio = 1.81, 95% confidence interval = 1.18-2.77, P = 0.0062), and Bacteroides decreased the risk of male infertility (odds ratio = 0.57, 95% confidence interval = 0.33-0.96, P = 0.0363). In addition, of the two inflammatory cytokines identified, hepatocyte growth factor(HGF) reduced the risk of male infertility (odds ratio = 0.50, 95% confidence interval = 0.35-0.71, P = 0.0001), Monocyte chemotactic protein 3 (MCP-3) increased the risk of male infertility (odds ratio = 1.28, 95% confidence interval = 1.03-1.61, P = 0.0039). Mediated MR analysis showed that HGF mediated the causal effect of Bacteroides on MI (mediated percentage 38.9%). Multivariate MR analyses suggest that HGF may be one of the pathways through which Bacteroides affects MI, with other unexplored pathways. Conclusion: The present study suggests a causal relationship between specific gut microbiota, inflammatory cytokines, and MI. In addition, HGF may mediate the relationship between Bacteroides and MI.


Cytokines , Gastrointestinal Microbiome , Genome-Wide Association Study , Infertility, Male , Mendelian Randomization Analysis , Male , Humans , Infertility, Male/microbiology , Infertility, Male/genetics , Cytokines/genetics , Cytokines/metabolism , Inflammation/microbiology , Adult , Polymorphism, Single Nucleotide
15.
Front Endocrinol (Lausanne) ; 15: 1354733, 2024.
Article En | MEDLINE | ID: mdl-38721147

Background: In 2020, 38% of adults were affected by obesity, while infertility globally affected 1 in 6 people at some stage of their lives.Body mass index (BMI) provides an easy but occasionally inaccurate estimation of body composition. To achieve a more precise assessment, bioelectric impedance analysis serves as a validated tool that administers electrical energy through surface electrodes. Phase angle as a function of the relationship between tissues resistance and reactance, is a trustworthy predictor of body composition and cell membrane integrity. Objectives: We aim to assess whether there is an association between phase angle and seminal parameters, as well as sperm DNA fragmentation percentage. Design: Semen samples of 520 idiopathic infertile patients were analyzed according to 2021 World Health Organization guidelines and evaluated for sperm DNA fragmentation rate. Each participants underwent bioelectric impedance analysis. Results: Median age was 40 years old, median BMI was 26.3 kg/m2, median phase angle was 6.2°. In the logistic regression analysis adjusted for age and total intracorporeal water, phase angle (continuous) was significantly associated with oligozoospermia (odds ratio [OR]:0.4; p<0.01) and sperm morphology (OR: 0.65; p=0.05) and slightly with sperm DNA fragmentation (OR: 0.98; p=0.07). In subgroup analysis, the logistic regression analysis adjusted for the mentioned parameters showed that a phase angle between 6.2 and 7 (°) (OR: 0.63; p=0.02) and >7 (°) (OR: 0.12; p<0.01) were associated with a reduced risk of oligozoospermia compared to values <6.2 (°). Similarly, a phase angle between 6.2 and 7 (°) (OR: 0.57; p< 0.01 and OR: 0.58; p= 0.01) and PA > 7 (°) (OR: 0.12; p= 0.03 and OR: 0.21; p< 0.01) were associated with a reduced risk of lower sperm concentration and lower total sperm count, respectively, compared to a phase angle < 6.2 (°). Conclusion: Our study suggests a negative association between phase angle and detrimental sperm parameters in male idiopathic infertility.


DNA Fragmentation , Electric Impedance , Infertility, Male , Semen Analysis , Spermatozoa , Humans , Male , Adult , Infertility, Male/pathology , Infertility, Male/diagnosis , Spermatozoa/pathology , Semen Analysis/methods , Body Mass Index , Body Composition , Middle Aged , Sperm Count , Sperm Motility
16.
Front Endocrinol (Lausanne) ; 15: 1377780, 2024.
Article En | MEDLINE | ID: mdl-38745955

Objective: Multiple morphological abnormalities of the sperm flagella (MMAF) is characterized by abnormal flagellar phenotypes, which is a particular kind of asthenoteratozoospermia. Previous studies have reported a comparable intracytoplasmic sperm injection (ICSI) outcome in terms of fertilization rate and clinical pregnancy rate in patients with MMAF compared with those with no MMAF; however, others have conflicting opinions. Assisted reproductive technology (ART) outcomes in individuals with MMAF are still controversial and open to debate. Methods: A total of 38 patients with MMAF treated at an academic reproductive center between January 2014 and July 2022 were evaluated in the current retrospective cohort study and followed up until January 2023. Propensity score matching was used to adjust for the baseline clinical characteristics of the patients and to create a comparable control group. The genetic pathogenesis of MMAF was confirmed by whole exome sequencing. The main outcomes were the embryo developmental potential, the cumulative pregnancy rate (CLPR), and the cumulative live birth rate (CLBR). Results: Pathogenic variants in known genes of DNAH1, DNAH11, CFAP43, FSIP2, and SPEF2 were identified in patients with MMAF. Laboratory outcomes, including the fertilization rate, 2PN cleavage rate, blastocyst formation rate, and available blastocyst rate, followed a trend of decline in the MMAF group (p < 0.05). Moreover, according to the embryo transfer times and complete cycles, the CLPR in the cohort of MMAF was lower compared with the oligoasthenospermia pool (p = 0.033 and p = 0.020, respectively), while no statistical differences were observed in the neonatal outcomes. Conclusion: The current study presented decreased embryo developmental potential and compromised clinical outcomes in the MMAF cohort. These findings may provide clinicians with evidence to support genetic counseling and clinical guidance in specific patients with MMAF.


Embryonic Development , Pregnancy Rate , Sperm Injections, Intracytoplasmic , Sperm Tail , Humans , Male , Female , Pregnancy , Adult , Retrospective Studies , Sperm Tail/pathology , Embryonic Development/physiology , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Spermatozoa/pathology
17.
Cell Mol Biol Lett ; 29(1): 74, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750428

By analyzing a mouse Interspecific Recombinant Congenic Strain (IRCS), we previously identified a quantitative trait locus (QTL), called Mafq1 on mouse chromosome 1, that is associated with male hypofertility and ultrastructural sperm abnormalities. Within this locus, we identified a new candidate gene that could be implicated in a reproductive phenotype: Tex44 (Testis-expressed protein 44). We thus performed a CRISPR/Cas9-mediated complete deletion of this gene in mice in order to study its function. Tex44-KO males were severely hypofertile in vivo and in vitro due to a drastic reduction of sperm motility which itself resulted from important morphological sperm abnormalities. Namely, Tex44-KO sperm showed a disorganized junction between the midpiece and the principal piece of the flagellum, leading to a 180° flagellar bending in this region. In addition, the loss of some axonemal microtubule doublets and outer dense fibers in the flagellum's principal piece has been observed. Our results suggest that, in mice, TEX44 is implicated in the correct set-up of the sperm flagellum during spermiogenesis and its absence leads to flagellar abnormalities and consequently to severe male hypofertility.


Infertility, Male , Mice, Knockout , Sperm Motility , Sperm Tail , Animals , Male , Infertility, Male/genetics , Infertility, Male/pathology , Sperm Motility/genetics , Sperm Tail/pathology , Sperm Tail/metabolism , Mice , Spermatozoa/metabolism , Spermatogenesis/genetics , Flagella/genetics , Flagella/metabolism , Mice, Inbred C57BL , CRISPR-Cas Systems/genetics
18.
Front Endocrinol (Lausanne) ; 15: 1376800, 2024.
Article En | MEDLINE | ID: mdl-38715795

Background: Although studies on the effects of diet on fertility has progressed, some cumulative evidence has piled against popular hypotheses. The aim of our study was to investigate the effects of 31 diets including 23 individual dietary intakes and 8 dietary habits on infertility in men and women. Methods: The datas of diets and infertility were collected from genome-wide association studies (GWAS). Mendelian randomization (MR) methods were used to analyze causal relationships. Multivariate MR (MVMR) adjusted for the effects of other exposures on causality. And MR-Egger, Cochran's Q, radial MR, and MR-PRESSO tests were employed to assess heterogeneity and horizontal pleiotropy. Results: Our study found that coffee intake (OR, 3.6967; 95% CI, 1.0348 - 13.2065; P = 0.0442) and cooked vegetable intakes (OR, 54.7865; 95% CI, 2.9011 - 1030.5500; P = 0.0076) increased the risk of male infertility. For women, beer was a risk factor for infertility (OR, 4.0932; 95% CI, 1.8728 - 8.9461; P = 0.0004); but processed meat was negatively associated with infertility (OR, 0.5148; 95% CI, 0.2730 - 0.9705; P = 0.0401). MVMR demonstrated selenium as a protective factor against female infertility (OR, 7.4474e-12; 95% CI, 5.4780e-22 - 1.0125e-01; P = 0.0314). Conclusion: We found the causal relationships between four diets and infertility. We look forward to more high-quality epidemiologic studies to prove our conclusions.


Diet , Genome-Wide Association Study , Infertility, Female , Infertility, Male , Mendelian Randomization Analysis , Humans , Female , Male , Infertility, Male/genetics , Infertility, Male/epidemiology , Infertility, Male/etiology , Infertility, Female/genetics , Infertility, Female/etiology , Risk Factors , Feeding Behavior , Adult , Coffee/adverse effects
19.
Ceska Gynekol ; 89(2): 139-143, 2024.
Article En | MEDLINE | ID: mdl-38704227

Reactive oxygen species play a significant role in male fertility and infertility. They are essential for physiological processes, but when their concentration becomes excessive, they can be a cause of various sperm pathologies. Seminal leukocytes and pathologically abnormal sperm are the primary sources of oxygen radicals in ejaculate. They negatively affect sperm quality, including DNA fragmentation and sperm motility impairment. Addressing increased concentrations of reactive oxygen species involves various appropriate lifestyle modifications and measures, including the use of antioxidants, treatment of urogenital infections, management of varicocele, weight reduction, and others. In many cases, these interventions can lead to adjustments in the condition and improvement in sperm quality. Such improvements can subsequently lead to enhanced outcomes in assisted reproduction or even an increased likelihood of natural conception. In some instances, the need for donor sperm may be eliminated. However, a key factor is adhering to a sufficiently prolonged treatment, which requires patience on the part of both, the physician and the patient.


Infertility, Male , Reactive Oxygen Species , Humans , Male , Reactive Oxygen Species/metabolism , Infertility, Male/metabolism , Infertility, Male/etiology , Spermatozoa/metabolism , Spermatozoa/physiology , Fertility/physiology
20.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724675

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Infertility, Male , Leydig Cells , Pre-B-Cell Leukemia Transcription Factor 1 , Testis , Testosterone , Animals , Male , Leydig Cells/metabolism , Leydig Cells/pathology , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Mice , Testosterone/metabolism , Testis/metabolism , Testis/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Infertility, Male/metabolism , Cell Differentiation/genetics , Spermatogenesis/genetics , Mice, Inbred C57BL , Mice, Knockout
...