Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.631
Filter
1.
Curr Microbiol ; 81(9): 267, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003673

ABSTRACT

In this study, we evaluated the impact of human gut microbiota on the immune pathways in the respiratory tract using a gnotobiotic (Gn) piglet model. We humanized piglets with rural and urban infant fecal microbiota (RIFM and UIFM, respectively) and then infected them with a H1N1 swine influenza virus. We analyzed the microbial diversity and structure of the intestinal and respiratory tracts of the piglets before and after the influenza virus infection and measured the viral load and immune responses. We found that the viral load in the upper respiratory tract of UIFM transplanted piglets was higher than their rural cohorts (RIFM), while virus-specific antibody responses were comparable. The relative cytokine gene expression in the tracheobronchial (respiratory tract) and mesenteric (gastrointestinal) lymph nodes, lungs, blood, and spleen of RIFM and UIFM piglets revealed a trend in reciprocal regulation of proinflammatory, innate, and adaptive immune-associated cytokines as well as the frequency of T-helper/memory cells, cytotoxic T cells, and myeloid immune cell subsets. We also observed different phylum-level shifts of the fecal microbiota in response to influenza virus infection between the two piglet groups, suggesting the potential impact of the gut microbiota on the immune responses to influenza virus infection and lung microbiota. In conclusion, Gn piglets humanized with diverse infant fecal microbiota had differential immune regulation, with UIFM favoring the activation of proinflammatory immune mediators following an influenza virus infection compared to their rural RIFM cohorts. Furthermore, Gn piglets can be a useful model in investigating the impact of diverse human microbiota of the gastrointestinal tract, probably also the respiratory tract, on respiratory health and testing specific probiotic- or prebiotic-based therapeutics.


Subject(s)
Cytokines , Disease Models, Animal , Feces , Gastrointestinal Microbiome , Germ-Free Life , Immunity, Mucosal , Influenza A Virus, H1N1 Subtype , Animals , Swine , Feces/microbiology , Feces/virology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Cytokines/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Viral Load , Infant , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology
2.
PLoS One ; 19(7): e0301664, 2024.
Article in English | MEDLINE | ID: mdl-38985719

ABSTRACT

Influenza viruses constitute a major threat to human health globally. The viral surface glycoprotein hemagglutinin (HA) is the immunodominant antigen, contains the site for binding to the cellular receptor (RBS), and it is the major target of neutralizing antibody responses post-infection. We developed llama-derived single chain antibody fragments (VHHs) specific for type A influenza virus. Four VHHs were identified and further characterized. VHH D81 bound residues in the proximity of the C-terminal region of HA1 of H1 and H5 subtypes, and showed weak neutralizing activity, whereas VHH B33 bound residues in the proximity of the N-terminal region of the HA's stem domain (HA2) of H1, H5, and H9 subtypes, and showed no neutralizing activity. Of most relevance, VHHs E13 and G41 recognized highly conserved conformational epitopes on the H1 HA's globular domain (HA1) and showed high virus neutralizing activity (ranging between 0.94 to 0.01µM), when tested against several human H1N1 isolates. Additionally, E13 displayed abrogated virus replication of a panel of H1N1 strains spanning over 80 years of antigenic drift and isolated from human, avian, and swine origin. Interestingly, E13 conferred protection in vivo at a dose as low as 0.05 mg/kg. Mice treated with E13 intranasally resulted in undetectable virus challenge loads in the lungs at day 4 post-challenge. The transfer of sterilizing pan-H1 immunity, by a dose in the range of micrograms given intranasally, is of major significance for a monomeric VHH and supports the further development of E13 as an immunotherapeutic agent for the mitigation of influenza infections.


Subject(s)
Antibodies, Neutralizing , Camelids, New World , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Single-Domain Antibodies , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Single-Domain Antibodies/immunology , Antibodies, Neutralizing/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Camelids, New World/immunology , Antibodies, Viral/immunology , Female , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Epitopes/immunology , Dogs , Mice, Inbred BALB C
3.
Medicine (Baltimore) ; 103(27): e38809, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968522

ABSTRACT

In kidney transplant recipients (KTRs), viral infection can lead to antibody and/or T-cell mediated rejection, resulting in kidney transplant dysfunction. Therefore, it is critical to prevent infections. However, KTRs exhibit suboptimal responses to SARS-CoV-2 and/or influenza vaccines, partly due to immunosuppressant therapy. Inter- and intra-individual differences in the biological responses to vaccines may also affect patients' antibody production ability. This study included KTRs who received an messenger RNA SARS-CoV-2 vaccine (3 doses), and an inactivated quadrivalent influenza vaccine (1 or 2 doses). We measured the patients' total antibody titers against SARS-CoV-2 spike antigen, and hemagglutination inhibition (HI) titers against influenza A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. Five patients were eligible for this study. Of these 5 KTRs, two produced anti-SARS-CoV-2 spike antibody titers to a seroprotective level, and also produced HI titers against A/H1N1 to a seroprotective level. Another 2 KTRs did not produce seroprotective anti-SARS-CoV-2 antibody titers, but produced seroprotective HI titers against A/H1N1. The remaining KTR produced a seroprotective anti-SARS-CoV-2 antibody titer, but did not produce a seroprotective HI titer against A/H1N1. The 2 KTRs who did not produce seroprotective anti-SARS-CoV-2 antibody titers following vaccination, later developed COVID-19, and this infection increased their titers over the seroprotective level. This study demonstrated that inter- and intra-individual differences in biological responses to vaccines should be considered in pediatric KTRs, in addition to immunosuppressant effects. Personalized regimens, such as augmented or booster doses of vaccines, could potentially improve the vaccination efficacy against SARS-CoV-2 and influenza.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Influenza Vaccines , Influenza, Human , Kidney Transplantation , SARS-CoV-2 , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Male , Female , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Child , Adolescent , Transplant Recipients , Influenza A Virus, H1N1 Subtype/immunology , Vaccination/methods
4.
Hum Vaccin Immunother ; 20(1): 2370087, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38982712

ABSTRACT

The immune response to inactivated influenza vaccines (IIV) is influenced by multiple factors, including hemagglutinin content and egg-based manufacturing. Only two US-licensed vaccines are manufactured without egg passage: cell culture-based inactivated vaccine (ccIIV) and recombinant vaccine (RIV). We conducted a randomized open-label trial in central Wisconsin during the 2018-19 and 2019-20 seasons to compare immunogenicity of sequential vaccination. Participants 18-64 years old were randomized 1:1:1 to receive RIV, ccIIV or IIV in strata defined by number of influenza vaccine doses in the prior 3 years. They were revaccinated with the same product in year two. Paired serum samples were tested by hemagglutination inhibition against egg-adapted and cell-grown vaccine viruses. Serologic endpoints included geometric mean titer (GMT), mean fold rise, and percent seroconversion. There were 373 participants randomized and vaccinated in 2018-19; 332 were revaccinated in 2019-20. In 2018-19, RIV and ccIIV were not more immunogenic than IIV against A/H1N1. The post-vaccination GMT against the cell-grown 3C.2a A/H3N2 vaccine virus was higher for RIV vs IIV (p = .001) and RIV vs ccIIV (p = .001). The antibody response to influenza B viruses was similar across study arms. In 2019-20, GMT against the cell-grown 3C.3a A/H3N2 vaccine virus was higher for RIV vs IIV (p = .03) and for RIV vs ccIIV (p = .001). RIV revaccination generated significantly greater backboosting to the antigenically distinct 3C.2a A/H3N2 virus (2018-19 vaccine strain) compared to ccIIV or IIV. This study adds to the evidence that RIV elicits a superior immunologic response against A/H3N2 viruses compared to other licensed influenza vaccine products.


Subject(s)
Antibodies, Viral , Hemagglutination Inhibition Tests , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Vaccines, Synthetic , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Adult , Antibodies, Viral/blood , Young Adult , Influenza, Human/prevention & control , Influenza, Human/immunology , Female , Male , Middle Aged , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Adolescent , Influenza A Virus, H1N1 Subtype/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Influenza A Virus, H3N2 Subtype/immunology , Wisconsin , Vaccination/methods , Influenza B virus/immunology , Immunogenicity, Vaccine , Cell Culture Techniques , United States , Antibody Formation/immunology , Immunization, Secondary/methods , Eggs
5.
Front Immunol ; 15: 1361323, 2024.
Article in English | MEDLINE | ID: mdl-38835763

ABSTRACT

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Subject(s)
Antibodies, Viral , Ferritins , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Ferritins/immunology , Influenza Vaccines/immunology , Swine , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Female , Nanovaccines
6.
Influenza Other Respir Viruses ; 18(6): e13342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923314

ABSTRACT

BACKGROUND: The 2022-23 US influenza season peaked early in fall 2022. METHODS: Late-season influenza vaccine effectiveness (VE) against outpatient, laboratory-confirmed influenza was calculated among participants of the US Influenza VE Network using a test-negative design. RESULTS: Of 2561 participants enrolled from December 12, 2022 to April 30, 2023, 91 laboratory-confirmed influenza cases primarily had A(H1N1)pdm09 (6B.1A.5a.2a.1) or A(H3N2) (3C.2a1b.2a.2b). Overall, VE was 30% (95% confidence interval -9%, 54%); low late-season activity precluded estimation for most subgroups. CONCLUSIONS: 2022-23 late-season outpatient influenza VE was not statistically significant. Genomic characterization may improve the identification of influenza viruses that circulate postinfluenza peak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Outpatients , Seasons , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/virology , Adult , Male , Female , United States/epidemiology , Middle Aged , Young Adult , Adolescent , Aged , Child , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Child, Preschool , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Outpatients/statistics & numerical data , Infant , Vaccination/statistics & numerical data , Aged, 80 and over
7.
Biomacromolecules ; 25(7): 4281-4291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38843459

ABSTRACT

Messenger ribonucleic acid (mRNA) vaccines, serving as a rapid and easily scalable emergency preventive measure, have played a pivotal role in preventing infectious diseases. The effectiveness of mRNA vaccines heavily relies on the delivery carrier, but the current market options are predominantly lipid nanoparticles. Their intricate preparation process and high transportation costs pose challenges for widespread use in remote areas. In this study, we harnessed FDA-approved polymer PLGA and lipid components widely employed in clinical experiments to craft a ready-to-use mRNA vaccine delivery system known as lipid-polymer hybrid nanoparticles (LPP). Following formulation optimization, the PDCD nanoparticles emerged as the most effective, showcasing exceptional mRNA delivery capabilities both in vitro and in vivo. Loading PDCD nanoparticles with mRNA encoding the H1N1 influenza virus HA antigen-fused M2e peptide enabled the successful induction of M2e-specific antibodies and T cell immune responses in immunized mice. After three rounds of vaccine immunization, the mice demonstrated weight recovery to normal levels and maintained a survival rate exceeding 80% following an encounter with the H1N1 influenza virus. The innovative mRNA delivery system that we designed demonstrates outstanding effectiveness in preventing infectious diseases, with the potential to play an even more significant role in future clinical applications.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Animals , Mice , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Nanoparticles/chemistry , mRNA Vaccines , Mice, Inbred BALB C , Female , Orthomyxoviridae Infections/prevention & control , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/administration & dosage , Humans , Influenza, Human/prevention & control , United States , Lipids/chemistry
8.
Sci Rep ; 14(1): 13800, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877101

ABSTRACT

Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.


Subject(s)
Adjuvants, Immunologic , Administration, Intranasal , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals , Mice , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Mice, Inbred BALB C , Intercellular Signaling Peptides and Proteins/immunology , Adjuvants, Vaccine/administration & dosage
9.
Int Immunopharmacol ; 136: 112214, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823176

ABSTRACT

In the face of global health threats, there is a growing demand for vaccines that can be manufactured on a large scale within compressed timeline. This study responds to this imperative by delving into the evaluation of FluGuard, a novel recombinant influenza vaccine developed by Nivad Pharmed Salamat Company in Iran. Positioned as a phase 3 extension, the research aimed to evaluate the safety and immunogenicity of FluGuard in volunteers aged 18 and above. The study was conducted as a single-center, open-label clinical trial. All eligible volunteers received FluGuard (2021-2022 Formula) on day 0. Safety assessments occurred at days 1, 4, 7, 14, 28 and 42 post-vaccination. Immunogenicity was measured through seroconversion, seroprotection, and geometric mean titer fold increase in subgroups of 250 volunteers. Among the 4,260 volunteers were screened and assessed for eligibility, 1000 were enrolled. At day 28 post-vaccination, seroconversion rates for A/H1N1, A/H3N2, B/Yamagata, B/Victoria were 53.4 % [95 %CI: 46.7-60], 57.7 % [95 %CI: 51.1-64.3], 54.3 % [95 %CI: 47.7-60.9], and 36.2 % [95 %CI: 29.8-42.6], respectively in volunteers 18 years and above. The most common solicited adverse events were pain at the injection site, malaise, and headache. No suspected unexpected adverse events and adverse events of special interest occurred during the study period. Our findings suggested that FluGuard® exhibits a desirable safety profile and provides sufficient immunogenicity against influenza virus types A and B. However, extended studies are warranted to assess the long-term protective efficacy. Trial Registration: The study protocol was accepted by Iranian registry of clinical trial; https://www.irct.ir; IRCT20201104049265N2.


Subject(s)
Antibodies, Viral , Influenza Vaccines , Influenza, Human , Vaccines, Synthetic , Humans , Influenza Vaccines/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/administration & dosage , Adult , Male , Female , Middle Aged , Influenza, Human/prevention & control , Influenza, Human/immunology , Antibodies, Viral/blood , Young Adult , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/adverse effects , Baculoviridae/genetics , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Influenza B virus/genetics , Vaccination , Iran
10.
Nat Commun ; 15(1): 5025, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871701

ABSTRACT

Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H1N2 Subtype , Influenza, Human , Orthomyxoviridae Infections , Pandemics , Animals , Ferrets/virology , Humans , Swine , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/blood , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/virology , Swine Diseases/epidemiology , Swine Diseases/immunology , Swine Diseases/transmission , Swine Diseases/blood , Female , Virus Shedding , Male , Adult , Virus Replication
11.
PLoS One ; 19(6): e0303450, 2024.
Article in English | MEDLINE | ID: mdl-38843267

ABSTRACT

BACKGROUND: The MIMIX platform is a novel microneedle array patch (MAP) characterized by slowly dissolving microneedle tips that deploy into the dermis following patch application. We describe safety, reactogenicity, tolerability and immunogenicity for MIMIX MAP vaccination against influenza. METHODOLOGY: The trial was a Phase 1, exploratory, first-in-human, parallel randomized, rater, participant, study analyst-blinded, placebo-controlled study in Canada. Forty-five healthy participants (18 to 39 years of age, inclusive) were randomized in a 1:1:1 ratio to receive either 15 µg or 7.5 µg of an H1N1 influenza vaccine, or placebo delivered via MIMIX MAP to the volar forearm. A statistician used a computer program to create a randomization scheme with a block size of 3. Post-treatment follow-up was approximately 180 days. Primary safety outcomes included the incidence of study product related serious adverse events and unsolicited events within 180 days, solicited application site and systemic reactogenicity through 7 days after administration and solicited application site erythema and/or pigmentation 14, 28, 56 and 180 days after administration. Immunogenicity outcomes included antibody titers and percentage of seroconversion (SCR) and seroprotection (SPR) rates determined by the hemagglutination inhibition (HAI) assay. Exploratory outcomes included virus microneutralization (MN) titers, durability and breadth of the immune response. The trial was registered with ClinicalTrials.gov, number NCT06125717. FINDINGS: Between July 7, 2022 and March 13, 2023 45 participants were randomized to a treatment group. One participant was lost to follow up in the 15 µg group and 1 participant withdrew from the 7.5 µg dose group. Safety analyses included n = 15 per group, immunogenicity analyses included n = 14 for the 15 µg and 7.5 µg treatment groups and n = 15 for the placebo group. No SAEs were reported in any of the treatment groups. All treatment groups reported solicited local events within 7 days after vaccination, with mild (Grade 1) erythema being the most frequent symptom reported. Other local symptoms reported included mostly mild (Grade 1) induration/swelling, itching, pigmentation, skin flaking, and tenderness. Within 7 days after vaccination, 2 participants (4.4%) reported moderate (Grade 2) erythema, 1 participant (2.2%) reported moderate (Grade 2) induration/swelling, and 1 participant (2.2%) reported moderate (Grade 2) itching. There was an overall reduction in erythema and pigmentation reported on Days 15, 29, 57, and 180 among all treatment groups. Systemic symptoms reported within 7 days after vaccination, included mild (Grade 1) fatigue reported among all treatment groups, and mild (Grade 1) headache reported by 1 participant in the 7.5 µg treatment group. No study drug related severe symptoms were reported in the study. Group mean fold rises in HAI titers ranged between 8.7 and 12-fold, SCRs were >76% and SPRs were >92% for both VX-103 dose groups thereby fulfilling serological criteria established by the EMA and FDA for seasonal influenza vaccines. Longitudinal assessments demonstrate persistence of the immune response through at least Day 180. CONCLUSIONS: The MIMIX MAP platform is safe, well tolerated and elicits robust antibody responses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Adult , Influenza Vaccines/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/administration & dosage , Male , Female , Influenza A Virus, H1N1 Subtype/immunology , Young Adult , Adolescent , Influenza, Human/prevention & control , Influenza, Human/immunology , Needles , Healthy Volunteers , Vaccination/methods , Antibodies, Viral/blood , Antibodies, Viral/immunology , Double-Blind Method , Immunogenicity, Vaccine
12.
Biomed Pharmacother ; 176: 116781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805966

ABSTRACT

Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Influenza A Virus, H1N1 Subtype/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Female , Mice, Inbred BALB C , Camelids, New World/immunology , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antibodies, Viral/immunology , Virus Replication/drug effects
13.
ACS Appl Mater Interfaces ; 16(19): 25169-25180, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695741

ABSTRACT

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications. Here, we present screen-printed graphene electrodes that are processed with thermal annealing to achieve high surface area and electrical conductivity for sensitive biodetection via electrochemical impedance spectroscopy. As a proof-of-concept, this biosensing platform is utilized for electrochemical detection of SARS-CoV-2. To ensure reliable specificity in the presence of multiple variants, biolayer interferometry (BLI) is used as a label-free and dynamic screening method to identify optimal antibodies for concurrent affinity to the Spike S1 proteins of Delta, Omicron, and Wild Type SARS-CoV-2 variants while maintaining low affinity to competing pathogens such as Influenza H1N1. The BLI-identified antibodies are robustly bound to the graphene electrode surface via oxygen moieties that are introduced during the thermal annealing process. The resulting electrochemical immunosensors achieve superior metrics including rapid detection (55 s readout following 15 min of incubation), low limits of detection (approaching 500 ag/mL for the Omicron variant), and high selectivity toward multiple variants. Importantly, the sensors perform well on clinical saliva samples detecting as few as 103 copies/mL of SARS-CoV-2 Omicron, following CDC protocols. The combination of the screen-printed graphene sensing platform and effective antibody selection using BLI can be generalized to a wide range of point-of-care immunosensors.


Subject(s)
Biosensing Techniques , Graphite , Interferometry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Graphite/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/methods , Humans , Interferometry/instrumentation , Spike Glycoprotein, Coronavirus/immunology , COVID-19/diagnosis , COVID-19/virology , Electrodes , Electrochemical Techniques/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/immunology
14.
Nat Commun ; 15(1): 4035, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740742

ABSTRACT

Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.


Subject(s)
Hydrogels , Influenza A Virus, H1N1 Subtype , SARS-CoV-2 , Wireless Technology , Immunoassay/methods , Immunoassay/instrumentation , Humans , Hydrogels/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Wireless Technology/instrumentation , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Aerosols , COVID-19/diagnosis , COVID-19/virology , COVID-19/immunology , Antigens, Viral/immunology , Antigens, Viral/analysis , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/isolation & purification , Limit of Detection
15.
Front Immunol ; 15: 1381508, 2024.
Article in English | MEDLINE | ID: mdl-38690272

ABSTRACT

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Subject(s)
Immunity, Humoral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Female , Humans , Mice , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Humoral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , mRNA Vaccines/administration & dosage , mRNA Vaccines/chemistry , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Seasons , Time Factors , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
16.
Virology ; 596: 110125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805804

ABSTRACT

Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Antibodies, Viral/immunology , mRNA Vaccines/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Female , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Cross Protection/immunology , Viral Load , Lung/virology , Lung/immunology , Humans , Viroporin Proteins
17.
Virus Res ; 345: 199402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772446

ABSTRACT

H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Humans , Chick Embryo , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control
18.
Front Immunol ; 15: 1342497, 2024.
Article in English | MEDLINE | ID: mdl-38694499

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a phenotypically heterogenous group of cells that potently suppress the immune response. A growing body of evidence supports the important role of MDSCs in a variety of lung diseases, such as asthma. However, the role of MDSCs in asthma exacerbation has so far not been investigated. Here, we studied the role of MDSCs in a murine model of influenza virus-induced asthma exacerbation. BALB/c mice were exposed to house dust mite (HDM) three times a week for a total of five weeks to induce a chronic asthmatic phenotype, which was exacerbated by additional exposure to the A/Hamburg/5/2009 hemagglutinin 1 neuraminidase 1 (H1N1) influenza virus. Induction of lung inflammatory features, production of T helper (Th) 1- and Th2- associated inflammatory cytokines in the lavage fluid and an increased airway hyper-responsiveness were observed, establishing the asthma exacerbation model. The number and activity of pulmonary M-MDSCs increased in exacerbated asthmatic mice compared to non-exacerbated asthmatic mice. Furthermore, depletion of MDSCs aggravated airway hyper-responsiveness in exacerbated asthmatic mice. These findings further denote the role of MDSCs in asthma and provide some of the first evidence supporting a potential important role of MDSCs in asthma exacerbation.


Subject(s)
Asthma , Cytokines , Disease Models, Animal , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Myeloid-Derived Suppressor Cells , Orthomyxoviridae Infections , Animals , Asthma/immunology , Myeloid-Derived Suppressor Cells/immunology , Mice , Orthomyxoviridae Infections/immunology , Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Female , Pyroglyphidae/immunology , Disease Progression , Lung/immunology , Lung/pathology , Lung/virology , Th2 Cells/immunology
19.
J Med Virol ; 96(5): e29657, 2024 May.
Article in English | MEDLINE | ID: mdl-38727035

ABSTRACT

The H1N1pdm09 virus has been a persistent threat to public health since the 2009 pandemic. Particularly, since the relaxation of COVID-19 pandemic mitigation measures, the influenza virus and SARS-CoV-2 have been concurrently prevalent worldwide. To determine the antigenic evolution pattern of H1N1pdm09 and develop preventive countermeasures, we collected influenza sequence data and immunological data to establish a new antigenic evolution analysis framework. A machine learning model (XGBoost, accuracy = 0.86, area under the receiver operating characteristic curve = 0.89) was constructed using epitopes, physicochemical properties, receptor binding sites, and glycosylation sites as features to predict the antigenic similarity relationships between influenza strains. An antigenic correlation network was constructed, and the Markov clustering algorithm was used to identify antigenic clusters. Subsequently, the antigenic evolution pattern of H1N1pdm09 was analyzed at the global and regional scales across three continents. We found that H1N1pdm09 evolved into around five antigenic clusters between 2009 and 2023 and that their antigenic evolution trajectories were characterized by cocirculation of multiple clusters, low-level persistence of former dominant clusters, and local heterogeneity of cluster circulations. Furthermore, compared with the seasonal H1N1 virus, the potential cluster-transition determining sites of H1N1pdm09 were restricted to epitopes Sa and Sb. This study demonstrated the effectiveness of machine learning methods for characterizing antigenic evolution of viruses, developed a specific model to rapidly identify H1N1pdm09 antigenic variants, and elucidated their evolutionary patterns. Our findings may provide valuable support for the implementation of effective surveillance strategies and targeted prevention efforts to mitigate the impact of H1N1pdm09.


Subject(s)
Antigens, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Machine Learning , Evolution, Molecular , Epitopes/genetics , Epitopes/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19/immunology , Pandemics/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
20.
Influenza Other Respir Viruses ; 18(5): e13295, 2024 May.
Article in English | MEDLINE | ID: mdl-38744684

ABSTRACT

BACKGROUND: The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2-13 (and 14-15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. METHODS: End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. METHODS: Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: -6% to 54%). VE for those aged 18-64, who largely received cell-based vaccines, was 47% (95% CI: 37%-56%). Overall VE for 2-17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%-76%). CONCLUSION: The paper provides evidence of moderate influenza VE in 2022/23.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines , Influenza, Human , Primary Health Care , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Middle Aged , Adolescent , Adult , Primary Health Care/statistics & numerical data , United Kingdom/epidemiology , Aged , Young Adult , Child , Female , Male , Child, Preschool , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Seasons , Vaccination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...