Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.502
Filter
1.
Curr Biol ; 34(15): R716-R721, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106825

ABSTRACT

Four types of influenza virus have been identified in nature: influenza A, B, and C viruses are capable of infecting humans, and influenzas A and B cause annual epidemics (seasonal flu) in humans; however, influenza D is currently known to infect only pigs and cattle. The influenza A viruses (IAVs) are of greatest importance to humans, causing widespread significant morbidity and mortality, and have been responsible for at least five pandemics documented since the beginning of the 20th century (Table 1). The H1N1 and H3N2 IAVs continue to circulate in humans as seasonal influenza. In addition to humans, IAVs have a wide range of host animal species in nature, especially wild aquatic birds, the reservoir hosts of IAVs. The IAVs isolated from or adapted to an avian host are named avian influenza viruses (AIVs), and are of great concern owing to their involvement in the genesis of pandemic and outbreak strains. Moreover, the majority of AIVs persist in wild birds and domestic poultry, and novel variants continue to emerge in birds and other hosts, posing non-negligible threats to host ecology and public health.


Subject(s)
Birds , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Birds/virology , Influenza A virus/physiology , Influenza A virus/pathogenicity , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Evolution, Molecular , Biological Evolution
2.
Vet Res ; 55(1): 100, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135123

ABSTRACT

High pathogenicity avian influenza viruses (HPAIVs) have caused major epizootics in recent years, with devastating consequences for poultry and wildlife worldwide. Domestic and wild ducks can be highly susceptible to HPAIVs, and infection leads to efficient viral replication and massive shedding (i.e., high titres for an extended time), contributing to widespread viral dissemination. Importantly, ducks are known to shed high amounts of virus in the earliest phase of infection, but the dynamics and impact of environmental contamination on the epidemiology of HPAIV outbreaks are poorly understood. In this study, we monitored mule ducks experimentally infected with two H5N8 clade 2.3.4.4b goose/Guangdong HPAIVs sampled in France in 2016-2017 and 2020-2021 epizootics. We investigated viral shedding dynamics in the oropharynx, cloaca, conjunctiva, and feathers; bird-to-bird viral transmission; and the role of the environment in viral spread and as a source of samples for early detection and surveillance. Our findings showed that viral shedding started before the onset of clinical signs, i.e., as early as 1 day post-inoculation (dpi) or post-contact exposure, peaked at 4 dpi, and lasted for up to 14 dpi. The detection of viral RNA in aerosols, dust, and water samples mirrored viral shedding dynamics, and viral isolation from these environmental samples was successful throughout the experiment. Our results confirm that mule ducks can shed high HPAIV titres through the four excretion routes tested (oropharyngeal, cloacal, conjunctival, and feather) while being asymptomatic and that environmental sampling could be a non-invasive tool for early viral RNA detection in HPAIV-infected farms.


Subject(s)
Ducks , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Poultry Diseases , Virus Shedding , Animals , Ducks/virology , Influenza in Birds/virology , Influenza A Virus, H5N8 Subtype/physiology , Influenza A Virus, H5N8 Subtype/pathogenicity , Poultry Diseases/virology , France/epidemiology
4.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126117

ABSTRACT

Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Influenza Vaccines/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/virology , Birds/virology , Pandemics/prevention & control
5.
Front Cell Infect Microbiol ; 14: 1433661, 2024.
Article in English | MEDLINE | ID: mdl-38979510

ABSTRACT

In recent years, the avian influenza virus has emerged as a significant threat to both human and public health. This study focuses on a patient infected with the H10N3 subtype of avian influenza virus, admitted to the Third People's Hospital of Kunming City on March 6, 2024. Metagenomic RNA sequencing and polymerase chain reaction (PCR) analysis were conducted on the patient's sputum, confirming the H10N3 infection. The patient presented severe pneumonia symptoms such as fever, expectoration, chest tightness, shortness of breath, and cough. Phylogenetic analysis of the Haemagglutinin (HA) and neuraminidase (NA) genes of the virus showed that the virus was most closely related to a case of human infection with the H10N3 subtype of avian influenza virus found in Zhejiang Province, China. Analysis of amino acid mutation sites identified four mutations potentially hazardous to human health. Consequently, this underscores the importance of continuous and vigilant monitoring of the dynamics surrounding the H10N3 subtype of avian influenza virus, utilizing advanced genomic surveillance techniques.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Neuraminidase , Phylogeny , Humans , China/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Mutation , DNA Mutational Analysis , Animals , Influenza in Birds/virology , Viral Proteins/genetics , Sputum/virology , Birds/virology , Male , RNA, Viral/genetics
7.
Science ; 385(6705): 123, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991057

ABSTRACT

The relentless march of a highly pathogenic avian influenza virus (HPAIV) strain, known as H5N1, to become an unprecedented panzootic continues unchecked. The leap of H5N1 clade 2.3.4.4b from Eurasia and Africa to North America in 2021 and its further spread to South America and the Antarctic have exposed new avian and mammalian populations to the virus and led to outbreaks on an unrivaled scale. The virus has infected wild birds across vast geographic regions and caused wildlife deaths in some of the world's most biodiverse ecosystems. Hundreds of millions of poultry have died or been culled, affecting global food security in some of the world's poorest regions. Numerous mammalian species, including sea lions and fur animals, have been infected. Outbreaks in dairy cows in the United States have been occurring for months, seemingly unchecked in most affected states. Why is there not a greater sense of urgency to control these infections?


Subject(s)
Cattle Diseases , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Cattle , Humans , Birds/virology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Cattle Diseases/virology , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza in Birds/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Poultry/virology , United States/epidemiology
8.
Can J Vet Res ; 88(3): 94-98, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988336

ABSTRACT

Cases of high pathogenicity avian influenza (HPAI) in Canada are upon us again and with reports of infection in US dairy cattle and a dairy farmer in the United States, concern has been raised. Although panic isn't helpful, this heightened level of concern is appropriate, given that reports of human infections with the H5N1 virus often indicate high mortality rates. These can range from 14 to 50%. The current devastating impact of the virus on the poultry industry, as well as its propensity to mutate are also reasons for concern. At the same time, HPAI provides an opportunity for the poultry and livestock industries to align and organize coherently for the management of all zoonotic diseases and other industry issues. To manage HPAI more effectively, it is essential to align all stakeholders under Outbreak Response Best Practices using a formal Quality Management System (QMS). The objective of this article is to describe this approach with examples drawn from management of the Walkerton waterborne disease crisis. We urge the veterinary profession to rise to the challenge of HPAI and use it as a context in which to align more coherently with national stakeholders for the prevention and management of all priority issues within the areas of Agri-food and Public Health.


Les cas de grippe aviaire hautement pathogène (HPAI) sont de nouveau aux portes du Canada et, avec les rapports d'infection chez des bovins laitiers américains et chez un producteur laitier aux États-Unis, des inquiétudes ont été soulevées. Même si la panique n'aide pas, ce niveau d'inquiétude accru est approprié, étant donné que les rapports d'infections humaines par le virus H5N1 indiquent souvent des taux de mortalité élevés. Ceux-ci peuvent aller de 14 à 50 %. L'impact dévastateur actuel du virus sur l'industrie avicole, ainsi que sa propension à muter sont également des motifs d'inquiétude. Dans un même temps, l'HPAI offre aux secteurs de la volaille et de l'élevage l'opportunité de s'associer et de s'organiser de manière cohérente pour la gestion de toutes les maladies zoonotiques et d'autres problèmes industriels. Pour gérer l'HPAI plus efficacement, il est essentiel d'aligner toutes les parties prenantes sur les meilleures pratiques de réponse aux épidémies en utilisant un système de gestion de la qualité (QMS) formel. L'objectif de cet article est de décrire cette approche avec des exemples tirés de la gestion de la crise des maladies d'origine hydrique à Walkerton. Nous exhortons la profession vétérinaire à relever le défi de l'HPAI et à l'utiliser comme un contexte dans lequel s'aligner de manière plus cohérente avec les parties prenantes nationales pour la prévention et la gestion de toutes les questions prioritaires dans les domaines de l'agroalimentaire et de la santé publique.(Traduit par Docteur Serge Messier).


Subject(s)
Disease Outbreaks , Influenza in Birds , Animals , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Canada/epidemiology , Humans , Influenza A Virus, H5N1 Subtype/pathogenicity , Birds
9.
PLoS One ; 19(7): e0307100, 2024.
Article in English | MEDLINE | ID: mdl-39012858

ABSTRACT

The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Chickens/virology , Chickens/immunology , Influenza in Birds/prevention & control , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , North America , Vaccination , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology , Herpesvirus 1, Meleagrid/immunology , Herpesvirus 1, Meleagrid/genetics
10.
J Virol ; 98(7): e0088124, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38958444

ABSTRACT

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.


Subject(s)
Dairy Products , Milk , RNA, Viral , Animals , Cattle , Milk/virology , United States , Dairy Products/virology , RNA, Viral/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Pasteurization , Influenza in Birds/virology , Humans , Real-Time Polymerase Chain Reaction
11.
Emerg Infect Dis ; 30(8): 1-13, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043566

ABSTRACT

Influenza A/H9 viruses circulate worldwide in wild and domestic avian species, continuing to evolve and posing a zoonotic risk. A substantial increase in human infections with A/H9N2 subtype avian influenza viruses (AIVs) and the emergence of novel reassortants carrying A/H9N2-origin internal genes has occurred in recent years. Different names have been used to describe the circulating and emerging A/H9 lineages. To address this issue, an international group of experts from animal and public health laboratories, endorsed by the WOAH/FAO Network of Expertise on Animal Influenza, has created a practical lineage classification and nomenclature system based on the analysis of 10,638 hemagglutinin sequences from A/H9 AIVs sampled worldwide. This system incorporates phylogenetic relationships and epidemiologic characteristics designed to trace emerging and circulating lineages and clades. To aid in lineage and clade assignment, an online tool has been created. This proposed classification enables rapid comprehension of the global spread and evolution of A/H9 AIVs.


Subject(s)
Influenza in Birds , Influenza, Human , Phylogeny , Terminology as Topic , Animals , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics
12.
Emerg Microbes Infect ; 13(1): 2380421, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39008278

ABSTRACT

In March 2024, the emergence of highly pathogenic avian influenza (HPAI) A (H5N1) infections in dairy cattle was detected in the United Sates for the first time. We genetically characterize HPAI viruses from dairy cattle showing an abrupt drop in milk production, as well as from two cats, six wild birds, and one skunk. They share nearly identical genome sequences, forming a new genotype B3.13 within the 2.3.4.4b clade. B3.13 viruses underwent two reassortment events since 2023 and exhibit critical mutations in HA, M1, and NS genes but lack critical mutations in PB2 and PB1 genes, which enhance virulence or adaptation to mammals. The PB2 E627 K mutation in a human case associated with cattle underscores the potential for rapid evolution post infection, highlighting the need for continued surveillance to monitor public health threats.


Subject(s)
Genome, Viral , Influenza A Virus, H5N1 Subtype , Phylogeny , Animals , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Cattle Diseases/virology , Influenza in Birds/virology , Reassortant Viruses/genetics , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Humans , Birds/virology , Genotype , Viral Proteins/genetics , Mutation
13.
Sci Rep ; 14(1): 17051, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39048690

ABSTRACT

High and low pathogenicity avian influenza viruses (HPAIV, LPAIV) are the primary causes of poultry diseases worldwide. HPAIV and LPAIV constitute a major threat to the global poultry industry. Therefore, early detection and well-adapted surveillance strategies are of the utmost importance to control the spread of these viruses. Volatile Organic Compounds (VOCs) released from living organisms have been investigated over the last decades as a diagnostic strategy. Mass spectrometry instruments can analyze VOCs emitted upon viral infection. Selected ion flow tube mass spectrometry (SIFT-MS) enables direct analysis of cell headspace in less than 20 min. As a proof-of-concept study, we investigated the ability of a SIFT-MS coupled sparse Partial Least Square-Discriminant Analysis analytical workflow to discriminate IAV-infected cells. Supernatants of HPAIV, LPAIV, and control cells were collected from 1 to 72 h post-infection and analyzed using our analytical workflow. At each collection point, VOCs' signatures were first identified based on four independent experiments and then used to discriminate the infectious status of external samples. Our results indicate that the identified VOCs signatures successfully discriminate, as early as 1-h post-infection, infected cells from the control cells and differentiated the HPAIV from the LPAIV infection. These results suggest a virus-dependent VOCs signature. Overall, the external samples' status was identified with 96.67% sensitivity, 100% specificity, and 97.78% general accuracy.


Subject(s)
Influenza A virus , Influenza in Birds , Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Animals , Influenza in Birds/virology , Influenza A virus/pathogenicity , Mass Spectrometry/methods , Proof of Concept Study , Humans , Poultry/virology , Dogs , Birds/virology , Madin Darby Canine Kidney Cells
14.
Vet Microbiol ; 296: 110188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018942

ABSTRACT

H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.


Subject(s)
Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Animals , Chickens/virology , Influenza in Birds/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , China , Amino Acid Substitution , Poultry Diseases/virology , Mutation , Antigens, Viral/immunology , Antigens, Viral/genetics , Virus Replication , Phylogeny , Neuraminidase/genetics , Neuraminidase/immunology , Amino Acids/genetics
15.
Viruses ; 16(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39066264

ABSTRACT

The avian influenza virus, particularly the H5N1 strain, poses a significant and ongoing threat to both human and animal health. Recent outbreaks have affected domestic and wild birds on a massive scale, raising concerns about the virus' spread to mammals. This review focuses on the critical role of microRNAs (miRNAs) in modulating pro-inflammatory signaling pathways during the pathogenesis of influenza A virus (IAV), with an emphasis on highly pathogenic avian influenza (HPAI) H5 viral infections. Current research indicates that miRNAs play a significant role in HPAI H5 infections, influencing various aspects of the disease process. This review aims to synthesize recent findings on the impact of different miRNAs on immune function, viral cytopathogenicity, and respiratory viral replication. Understanding these mechanisms is essential for developing new therapeutic strategies to combat avian influenza and mitigate its effects on both human and animal populations.


Subject(s)
Chickens , Influenza A Virus, H5N1 Subtype , Influenza in Birds , MicroRNAs , Virus Replication , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Chickens/virology , Humans , Disease Models, Animal , Influenza, Human/virology , Influenza, Human/immunology , Influenza, Human/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
16.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066308

ABSTRACT

In January 2020, increased mortality was reported in a small broiler breeder flock in County Fermanagh, Northern Ireland. Gross pathological findings included coelomitis, oophoritis, salpingitis, visceral gout, splenomegaly, and renomegaly. Clinical presentation included inappetence, pronounced diarrhoea, and increased egg deformation. These signs, in combination with increased mortality, triggered a notifiable avian disease investigation. High pathogenicity avian influenza virus (HPAIV) was not suspected, as mortality levels and clinical signs were not consistent with HPAIV. Laboratory investigation demonstrated the causative agent to be a low-pathogenicity avian influenza virus (LPAIV), subtype H6N1, resulting in an outbreak that affected 15 premises in Northern Ireland. The H6N1 virus was also associated with infection on 13 premises in the Republic of Ireland and six in Great Britain. The close genetic relationship between the viruses in Ireland and Northern Ireland suggested a direct causal link whereas those in Great Britain were associated with exposure to a common ancestral virus. Overall, this rapidly spreading outbreak required the culling of over 2 million birds across the United Kingdom and the Republic of Ireland to stamp out the incursion. This report demonstrates the importance of investigating LPAIV outbreaks promptly, given their substantial economic impacts.


Subject(s)
Chickens , Disease Outbreaks , Farms , Influenza A virus , Influenza in Birds , Poultry Diseases , Poultry , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Disease Outbreaks/veterinary , United Kingdom/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Ireland/epidemiology , Chickens/virology , Influenza A virus/pathogenicity , Influenza A virus/genetics , Influenza A virus/classification , Poultry/virology , Phylogeny
18.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961067

ABSTRACT

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Subject(s)
Antibodies, Viral , Cross Reactions , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Pandemics , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H3N2 Subtype/immunology , Female , Cross Reactions/immunology , Mice , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Aged , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Birds/virology , Middle Aged , Influenza in Birds/epidemiology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H9N2 Subtype/immunology , Adult , Viral Proteins/immunology , Viral Proteins/genetics
20.
J Food Prot ; 87(8): 100325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964610

ABSTRACT

With the emergence of clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (AIV) infection of dairy cattle and its subsequent detection in raw milk, coupled with recent AIV infections affecting dairy farm workers, experiments were conducted to affirm the safety of cooked ground beef related to AIV because such meat is often derived from cull dairy cows. Specifically, retail ground beef (percent lean:fat = ca. 80:20) was inoculated with a low pathogenic AIV (LPAIV) isolate to an initial level of 5.6 log10 50% egg infectious doses (EID50)  per 300 g patty. The inoculated meat was pressed into patties (ca. 2.54 cm thick, ca. 300 g each) and then held at 4 °C for up to 60 min. In each of the two trials, two patties for each of the following three treatments were cooked on a commercial open-flame gas grill to internal instantaneous temperatures of 48.9 °C (120°F), 62.8 °C (145°F), or 71.1 °C (160°F), but without any dwell time. Cooking inoculated ground beef patties to 48.9 °C (ave. cooking time of ca. 15 min) resulted in a mean reduction of ≥2.5 ± 0.9 log10 EID50 per 300 g of ground beef as assessed via quantification of virus in embryonating chicken eggs (ECEs). Likewise, cooking patties on a gas grill to 62.8 °C (ave. cooking time of ca. 21 min) or to the USDA FSIS recommended minimum internal temperature for ground beef of 71.1 °C (ave. cooking time of ca. 24 min) resulted in a reduction to nondetectable levels from initial levels of ≥5.6 log10 EID50 per 300 g. These data establish that levels of infectious AIV are substantially reduced within inoculated ground beef patties (20% fat) using recommended cooking procedures.


Subject(s)
Cooking , Animals , Cattle , Humans , Influenza in Birds , Red Meat , Influenza A Virus, H5N1 Subtype , Meat , Birds
SELECTION OF CITATIONS
SEARCH DETAIL