Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.667
2.
Med Sci Monit ; 30: e945315, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822579

Highly pathogenic avian influenza (HPAI) virus subtypes have been increasingly identified in poultry and wild birds since 2021. Between 2020-2023, 26 countries have reported that the H5N1 virus had infected more than 48 mammalian species. On 1 April 2024, a public health alert was issued in Texas when the first confirmed case of human infection with the H5N1 influenza virus was reported in a dairy worker. Cases of H5N1, clade 2.3.4.4b in dairy cows have been reported in several states in the US but were unexpected, even though H5N1 was previously identified in mammalian species, including cats, dogs, bears, foxes, tigers, coyotes, goats, and seals. On 29 April 2024, almost one month after the first reported cases of H5N1 infection in dairy cows, measures were to be implemented by the US Department of Agriculture (USDA) to prevent the progression of H5N1 viral transmission. This editorial summarizes what is currently known about the epidemiology, transmission, and surveillance of the HPAI virus of the H5N1 subtype in birds, mammals, and dairy cows, and why there are concerns regarding transmission to humans.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Cattle , Influenza A Virus, H5N1 Subtype/pathogenicity , Humans , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Birds/virology , Mammals/virology , Dairying
3.
PLoS One ; 19(6): e0303756, 2024.
Article En | MEDLINE | ID: mdl-38829903

The rapid spread of highly pathogenic avian influenza (HPAI) A (H5N1) viruses in Southeast Asia in 2004 prompted the New Zealand Ministry for Primary Industries to expand its avian influenza surveillance in wild birds. A total of 18,693 birds were sampled between 2004 and 2020, including migratory shorebirds (in 2004-2009), other coastal species (in 2009-2010), and resident waterfowl (in 2004-2020). No avian influenza viruses (AIVs) were isolated from cloacal or oropharyngeal samples from migratory shorebirds or resident coastal species. Two samples from red knots (Calidris canutus) tested positive by influenza A RT-qPCR, but virus could not be isolated and no further characterization could be undertaken. In contrast, 6179 samples from 15,740 mallards (Anas platyrhynchos) tested positive by influenza A RT-qPCR. Of these, 344 were positive for H5 and 51 for H7. All H5 and H7 viruses detected were of low pathogenicity confirmed by a lack of multiple basic amino acids at the hemagglutinin (HA) cleavage site. Twenty H5 viruses (six different neuraminidase [NA] subtypes) and 10 H7 viruses (two different NA subtypes) were propagated and characterized genetically. From H5- or H7-negative samples that tested positive by influenza A RT-qPCR, 326 AIVs were isolated, representing 41 HA/NA combinations. The most frequently isolated subtypes were H4N6, H3N8, H3N2, and H10N3. Multivariable logistic regression analysis of the relations between the location and year of sampling, and presence of AIV in individual waterfowl showed that the AIV risk at a given location varied from year to year. The H5 and H7 isolates both formed monophyletic HA groups. The H5 viruses were most closely related to North American lineages, whereas the H7 viruses formed a sister cluster relationship with wild bird viruses of the Eurasian and Australian lineages. Bayesian analysis indicates that the H5 and H7 viruses have circulated in resident mallards in New Zealand for some time. Correspondingly, we found limited evidence of influenza viruses in the major migratory bird populations visiting New Zealand. Findings suggest a low probability of introduction of HPAI viruses via long-distance bird migration and a unique epidemiology of AIV in New Zealand.


Animals, Wild , Birds , Influenza in Birds , Phylogeny , Animals , New Zealand/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Animals, Wild/virology , Birds/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Genome, Viral , Ducks/virology
4.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Article En | MEDLINE | ID: mdl-38828793

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Animals, Wild , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , United Kingdom/epidemiology , Animals, Wild/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/transmission , Canidae , Influenza in Birds/virology , Influenza in Birds/mortality , Influenza in Birds/transmission
5.
J Gen Virol ; 105(5)2024 May.
Article En | MEDLINE | ID: mdl-38695722

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Iceland/epidemiology , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Genotype , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Genome, Viral , Birds/virology
7.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article En | MEDLINE | ID: mdl-38734891

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.


Birds , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Influenza in Birds , Neuraminidase , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Epitopes/immunology , Epitopes/genetics , Birds/virology , Influenza in Birds/immunology , Influenza in Birds/virology , Antigenic Drift and Shift/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Influenza A virus/immunology , Influenza A virus/genetics
8.
Emerg Infect Dis ; 30(6): 1223-1227, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703023

Highly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.4b were simultaneously introduced into South Korea at the end of 2023. An outbreak at a broiler duck farm consisted of concurrent infection by both viruses. Sharing genetic information and international surveillance of such viruses in wild birds and poultry is critical.


Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Influenza in Birds/virology , Influenza in Birds/epidemiology , Republic of Korea/epidemiology , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Ducks/virology , Influenza A virus/genetics , Influenza A virus/classification , Coinfection/virology , Coinfection/epidemiology , History, 21st Century , Poultry Diseases/virology , Poultry Diseases/epidemiology
9.
Emerg Infect Dis ; 30(6): 1285-1288, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703022

We isolated novel reassortant avian influenza A(H5N6) viruses containing genes from clade 2.3.4.4b H5N1 virus and low pathogenicity avian influenza viruses in carcasses of whooper swans and bean geese in South Korea during December 2023. Neuraminidase gene was from a clade 2.3.4.4b H5N6 virus infecting poultry and humans in China.


Animals, Wild , Birds , Influenza A virus , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Republic of Korea/epidemiology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/classification , Birds/virology , Reassortant Viruses/genetics , History, 21st Century , Humans , Neuraminidase/genetics
10.
Emerg Infect Dis ; 30(6): 1133-1143, 2024 Jun.
Article En | MEDLINE | ID: mdl-38781927

We describe an unusual mortality event caused by a highly pathogenic avian influenza (HPAI) A(H5N1) virus clade 2.3.4.4b involving harbor (Phoca vitulina) and gray (Halichoerus grypus) seals in the St. Lawrence Estuary, Quebec, Canada, in 2022. Fifteen (56%) of the seals submitted for necropsy were considered to be fatally infected by HPAI H5N1 containing fully Eurasian or Eurasian/North American genome constellations. Concurrently, presence of large numbers of bird carcasses infected with HPAI H5N1 at seal haul-out sites most likely contributed to the spillover of infection to the seals. Histologic changes included meningoencephalitis (100%), fibrinosuppurative alveolitis, and multiorgan acute necrotizing inflammation. This report of fatal HPAI H5N1 infection in pinnipeds in Canada raises concerns about the expanding host of this virus, the potential for the establishment of a marine mammal reservoir, and the public health risks associated with spillover to mammals.Nous décrivons un événement de mortalité inhabituelle causé par un virus de l'influenza aviaire hautement pathogène A(H5N1) clade 2.3.4.4b chez des phoques communs (Phoca vitulina) et gris (Halichoerus grypus) dans l'estuaire du Saint-Laurent au Québec, Canada, en 2022. Quinze (56%) des phoques soumis pour nécropsie ont été considérés comme étant fatalement infectés par le virus H5N1 de lignées eurasiennes ou de réassortiment eurasiennes/nord-américaines. Un grand nombre simultané de carcasses d'oiseaux infectés par le H5N1 sur les sites d'échouement a probablement contribué à la contamination de ces phoques. Les changements histologiques associés à cette infection incluaient : méningo-encéphalite (100%), alvéolite fibrinosuppurée et inflammation nécrosante aiguë multi-organique. Cette documentation soulève des préoccupations quant à l'émergence de virus mortels, à la possibilité d'établissement de réservoirs chez les mammifères marins, et aux risques pour la santé publique associés aux propagations du virus chez les mammifères.


Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Quebec/epidemiology , Disease Outbreaks/veterinary , Estuaries , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/history , Seals, Earless/virology , Phylogeny , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Birds/virology
12.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782954

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Antibodies, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Female , Mice , Nanoparticles/chemistry , Male , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , mRNA Vaccines/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Birds/virology , Lipids/chemistry , Liposomes
13.
Virus Genes ; 60(3): 320-324, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722491

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.


Animals, Wild , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Influenza in Birds/virology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Evolution, Molecular , Genome, Viral/genetics , Neuraminidase/genetics , Viral Proteins/genetics
15.
Prev Vet Med ; 227: 106206, 2024 Jun.
Article En | MEDLINE | ID: mdl-38696942

The highly pathogenic Avian Influenza virus (HPAIV) H5N1 has caused a global outbreak affecting both wild and domestic animals, predominantly avian species. To date, cases of the HPAIV H5 Clade 2.3.4.4b in penguins have exclusively been reported in African Penguins. In Chile, the virus was confirmed in pelicans in December 2022 and subsequently spread across the country, affecting several species, including Humboldt penguins. This study aims to provide an overview of the incidents involving stranded and deceased Humboldt penguins and establish a connection between these events and HPAIV H5N1. Historical data about strandings between 2009 and 2023 was collected, and samples from suspected cases in 2023 were obtained to confirm the presence of HPAIV H5N1. Between January and August 2023, 2,788 cases of stranded and deceased penguins were recorded. Out of these, a total of 2,712 penguins deceased, evidencing a significative increase in mortality starting in early 2023 coinciding with the introduction and spreading of HPAIV H5N1 in the country. Thirty-seven events were categorized as mass mortality events, with the number of deceased penguins varying from 11 to 98. Most cases (97 %) were observed in the North of Chile. One hundred and eighty-one specimens were subjected to HPAIV diagnosis, four of which tested positive for HPAIV H5N1. Spatial analysis validates the correlation between mass mortality events and outbreaks of HPAIV in Chile. However, the limited rate of HPAIV H5N1 detection, which can be attributed to the type and quality of the samples, requiring further exploration.


Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Spheniscidae , Animals , Spheniscidae/virology , Chile/epidemiology , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/mortality
17.
Virology ; 595: 110094, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692133

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Chickens , Influenza Vaccines , Influenza in Birds , MicroRNAs , PTEN Phosphohydrolase , Stress, Physiological , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Chickens/virology , Influenza Vaccines/immunology , Influenza in Birds/virology , Influenza in Birds/immunology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Poultry Diseases/virology , Poultry Diseases/immunology , Immune Tolerance , Signal Transduction , Influenza A virus/immunology
18.
Res Vet Sci ; 173: 105279, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704977

Emerging pathogens can threaten human and animal health, necessitating reliable surveillance schemes to enable preparedness. We evaluated the repeatability and reproducibility of a method developed previously during a single year at one study site. Hunter-harvested ducks and geese were sampled for avian influenza virus at three discrete locations in the UK. H5N1 highly pathogenic avian influenza (HPAIV) was detected in four species (mallard [Anas platyrhynchos], Eurasian teal [Anas crecca], Eurasian wigeon [Mareca penelope] and pink-footed goose [Anser brachyrhynchus]) across all three locations and two non-HPAIV H5N1, influenza A positive detections were made from a mallard and Eurasian wigeon at two locations. Virus was detected within 1-to-4 days of sampling at every location. Application of rapid diagnostic methods to samples collected from hunter-harvested waterfowl offers potential as an early warning system for the surveillance and monitoring of emerging and existing strains of avian influenza A viruses in key avian species.


Ducks , Geese , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , United Kingdom/epidemiology , Ducks/virology , Reproducibility of Results , Geese/virology , Influenza A Virus, H5N1 Subtype/isolation & purification
19.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755641

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Chickens , Influenza A virus , Influenza in Birds , Nucleic Acid Amplification Techniques , Recombinases , Reverse Transcription , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Recombinases/metabolism , Sensitivity and Specificity , Poultry Diseases/virology , Poultry Diseases/diagnosis
20.
PLoS One ; 19(5): e0300862, 2024.
Article En | MEDLINE | ID: mdl-38739614

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Charadriiformes , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , Brazil , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Charadriiformes/virology , Genome, Viral , Birds/virology
...