Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.132
Filter
1.
J Agric Food Chem ; 72(25): 14375-14385, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860923

ABSTRACT

Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-µPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-µPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-µPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.


Subject(s)
Chlorpyrifos , Food Contamination , Metal-Organic Frameworks , Paper , Chlorpyrifos/analysis , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Colorimetry/methods , Colorimetry/instrumentation , Limit of Detection , Pesticide Residues/analysis , Pesticide Residues/chemistry , Insecticides/analysis , Insecticides/chemistry , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices
2.
Anal Methods ; 16(26): 4301-4309, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38887921

ABSTRACT

This study presents a novel colorimetric aptasensor, which seamlessly integrates gold nanoparticles (AuNPs) with the amplification potential of the hybridization chain reaction (HCR) for enhanced detection of acetamiprid. The aptamer, hybridized with a partially complementary strand that is covalently linked to AuNPs, serves as the recognition element for acetamiprid. The free end sequence of the aptamer, distal from the AuNP surface, functions as the initiating strand for the HCR, triggering the amplification process. In the absence of acetamiprid, the HCR efficiently occurs, conferring robust salt tolerance to the AuNPs and maintaining their characteristic red coloration. However, in the presence of acetamiprid, the aptamer preferentially binds to its target, disrupting the double-stranded structure and leading to the dissociation of the aptamer from the AuNPs. This dissociation results in a decrease in the HCR product, subsequently diminishing the salt tolerance of AuNPs and triggering a colorimetric transition from red to gray. This integration enhances sensitivity to 3.14 nM. Additionally, carbon quantum dots (CQDs) transduce colorimetric signals to fluorescent ones, further boosting the sensitivity to 0.24 nM. The aptasensor exhibits excellent selectivity and robustness. Real-world testing on tomato, peach, and lettuce shows recoveries of 98.50% to 100.36% with low standard deviations, validating its utility for pesticide residue analysis and food safety. This study provides a powerful tool for rapid and accurate pesticide detection, crucial for food safety.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Gold , Metal Nanoparticles , Neonicotinoids , Nucleic Acid Hybridization , Gold/chemistry , Neonicotinoids/analysis , Neonicotinoids/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Limit of Detection , Quantum Dots/chemistry , Food Contamination/analysis , Insecticides/analysis , Insecticides/chemistry
3.
Sci Total Environ ; 945: 173950, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38879021

ABSTRACT

Neonicotinoids are the top-selling insecticides worldwide. Because of their method of use, mainly to coat seeds, neonicotinoids have been found to widely contaminate the environment. Their high toxicity has been shown to be a major concern in terms of impact on biodiversity, and the use of these insecticides has been associated with population declines of species in different countries. Despite the widespread recognition of the risk of neonicotinoids to biodiversity, their temporal and spatial use remains poorly known in many countries. Yet this information is essential to address the potential impacts of these pesticides on biodiversity and to inform measures to establish protected areas or biodiversity restoration. The present study relied a large publicly available dataset to characterise the temporal and spatial use in France of imidacloprid, the most widely used neonicotinoid worldwide, as well as analysed water contamination surveys between 2005 and 2022 to assess the contamination of the environment. The results show that imidacloprid was the main neonicotinoid used in France over the study period. This use was spatially structured, with higher use in northern and western France, particularly related to cereal and beet crops area. The water contamination survey indicated that imidacloprid has widely contaminated the environment and consequently increased the risk to biodiversity, especially in counties crossed by the Loire, Seine and Vilaine rivers. This risk increased between 2005 and 2018 due to the higher use of imidacloprid and decreased sharply after 2018 due to its ban, although it was reauthorized by derogation for sugar beet in 2021. This study is the first assessment of imidacloprid pressure on biodiversity in France and shows the spatial and temporal correlation between agricultural practices and the freshwater contamination level. These results will help to identify priority areas for mitigation and restoration measures.


Subject(s)
Environmental Monitoring , Insecticides , Neonicotinoids , Nitro Compounds , Neonicotinoids/analysis , France , Nitro Compounds/analysis , Insecticides/analysis , Biodiversity , Water Pollutants, Chemical/analysis , Spatio-Temporal Analysis
4.
Sci Total Environ ; 945: 174075, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897461

ABSTRACT

The agricultural intensification represents a major threat to biodiversity, with negative effects on the ecosystem. In particular, habitat loss and degradation, along with pesticide use have been recognised as primary factors contributing to the actual global decline of pollinators. Here we investigated the quality of agroecosystems in the Emilia-Romagna region (Northern Italy) within the national monitoring project BeeNet. We analysed pesticide residues in 100 samples of beebread collected in 25 BeeNet stations in March and June 2021 and 2022. We evaluated diversity and concentration of these chemicals, their risk (TWC) to honey bees, and their correlation with land use. Overall, in 84 % of the samples we found 63 out of 373 different pesticide residues, >90 % of them belonging to fungicides and insecticides. The TWC exceeded the risk threshold in seven samples (TWCmix), mostly due to only one or two compounds. We also found 15 compounds not approved in the EU as plant protection products (PPPs), raising concerns about illegal use or contamination through beeswax recycling. Samples collected in 2021 and in June presented a significantly higher number of active ingredients and TWC than those collected in 2022 and in March. The TWC calculated on single compounds (TWCcom) exceeded the risk threshold in case of four insecticides, namely carbaryl, fipronil, imidacloprid and thiamethoxam (although each detected in only one sample). Finally, both TWC and number of active ingredients were moderately or highly positively correlated with the percentage of area covered by orchards. Considering that we found on average more than five different molecules per sample, and that we ignored potential synergistic effects, the results of this work highlight the alarming situation regarding pesticide treatments and toxicity risk for bees linked to the current agricultural practices, and the need for implementing sustainable and pollinator-friendly strategies.


Subject(s)
Agrochemicals , Environmental Monitoring , Pesticide Residues , Bees , Agrochemicals/analysis , Animals , Italy , Pesticide Residues/analysis , Agriculture , Insecticides/analysis
5.
Environ Int ; 189: 108811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870579

ABSTRACT

BACKGROUND: China produces and consumes a large amount of neonicotinoids. A non-negligible exposure to neonicotinoids might occur for Chinese pregnant women, but relevant data remain limited. OBJECTIVE: To investigate the exposure to neonicotinoids by urinary biomonitoring in pregnant women from Wenzhou City, East China. METHODS: We selected 432 pregnant women in Wenzhou City in 2022. A total of eight parent neonicotinoids and four metabolites were determined in single spot urine by liquid chromatography coupled to mass spectrometry. Basic characteristics, physical activity, pre-pregnant body mass index, and intake of drinking water and food were investigated by the questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on human safety thresholds derived from different health endpoints. RESULTS: Neonicotinoids and their metabolites in urine had a detection frequency between 0 % and 80.1 %. At least one neonicotinoid or metabolite was detected in 93.5 % of urine samples. Except for clothianidin (51.2 %) and N-desmethyl-acetamiprid (80.1 %), the detection frequencies of other neonicotinoids and metabolites ranged from 0 % to 43.8 %. The summed concentrations of all neonicotinoids and their metabolites ranged from < LOD to 222.83 µg/g creatinine with the median concentration of 2.58 µg/g creatinine. Maternal age, educational level, occupation, household income, screen time, and pre-pregnant body mass index were associated with detection frequencies or concentrations of neonicotinoids and their metabolites. Pregnant women with higher consumption frequencies of wheat, fresh vegetable, shellfish, fresh milk, and powdered milk had higher detection frequencies of neonicotinoids and their metabolites. Both HQ and HI were less than one. CONCLUSIONS: Overall, pregnant women in Wenzhou City showed a notable frequency of exposure to at least one neonicotinoid, although the exposure frequency for each specific neonicotinoid was generally low. Several food items derived from plants and animals were potential exposure sources. A low health risk was found based on current safety thresholds.


Subject(s)
Biological Monitoring , Neonicotinoids , Humans , Female , China , Pregnancy , Neonicotinoids/urine , Neonicotinoids/analysis , Adult , Young Adult , Insecticides/urine , Insecticides/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cities
6.
J Water Health ; 22(6): 1088-1101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935459

ABSTRACT

Despite the negative effects that the use of pesticides (such as herbicides and insecticides) have on human health and water resources, a significant portion of the world's agricultural production depends on them. The purpose of this study was to determine selected residual concentrations of pesticides (diazinon, ethion, malathion, alachlor, methyl-parathion, trifluralin, atrazine, chlorpyrifos, and azinphos-methyl) in samples from Shiraz potable water sources. For this purpose, water treatment plant, groundwater wells, treated surface water, and a mixture of groundwater and treated surface water were taken. In addition, statistical and risk analyses (carcinogenic and non-carcinogenic) were used. According to the results, chlorpyrifos with 84.4% had the highest removal efficiency and methyl-parathion with 10% had the lowest removal rate in the Shiraz water treatment plant process. The highest mean concentration was related to azinphos-methyl (1.5 µg/L) and chlorpyrifos (0.59 µg/L) in the groundwater samples. All measured compounds in water source samples were below standard levels, except for chlorpyrifos and azinphos-methyl, which were reported in groundwater above the limit recommended by the Environmental Protection Agency (EPA). The results showed that while the selected pesticides measured had a low non-carcinogenic risk for both adults and children, malathion and trifluralin posed a high carcinogenic risk for adults.


Subject(s)
Environmental Monitoring , Groundwater , Herbicides , Insecticides , Water Pollutants, Chemical , Water Purification , Water Wells , Water Pollutants, Chemical/analysis , Herbicides/analysis , Risk Assessment , Insecticides/analysis , Groundwater/chemistry , Groundwater/analysis , Drinking Water/analysis , Drinking Water/chemistry , Humans , Iran
7.
Environ Sci Pollut Res Int ; 31(26): 37923-37942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769264

ABSTRACT

Neonicotinoids, as the fastest-growing class of insecticides, currently account for over 25% of the global pesticide market. Their effectiveness in controlling a wide range of pests that pose a threat to croplands, home yards/gardens, and golf course greens cannot be denied. However, the extensive use of neonicotinoids has resulted in significant declines in nontarget organisms such as pollinators, insects, and birds. Furthermore, the potential chronic, sublethal effects of these compounds on human health remain largely unknown. To address these pressing issues, it is crucial to explore and understand the capabilities of electrochemical sensors in detecting neonicotinoid residues. Surprisingly, despite the increasing importance of this topic, no comprehensive review article currently exists in the literature. Therefore, our proposed review aims to bridge this gap by providing a thorough analysis of the use of electrochemical methods for neonicotinoid determination. In this review article, we will delve into various aspects of electrochemical analysis, including the influence of electrode materials, employed techniques, and the different types of electrode mechanisms utilized. By synthesizing and analysing the existing research in this field, our review will offer valuable insights and guidance to researchers, scientists, and policymakers alike.


Subject(s)
Insecticides , Neonicotinoids , Neonicotinoids/analysis , Insecticides/analysis , Electrochemical Techniques , Environmental Monitoring/methods , Animals
8.
Environ Toxicol Chem ; 43(7): 1497-1508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819074

ABSTRACT

After regulation of pesticides, determination of their persistence in the environment is an important indicator of effectiveness of these measures. We quantified concentrations of two types of systemic insecticides, neonicotinoids (imidacloprid, acetamiprid, clothianidin, thiacloprid, and thiamethoxam) and butenolides (flupyradifurone), in off-crop nontarget media of hummingbird cloacal fluid, honey bee (Apis mellifera) nectar and honey, and wildflowers before and after regulation of imidacloprid on highbush blueberries in Canada in April 2021. We found that mean total pesticide load increased in hummingbird cloacal fluid, nectar, and flower samples following imidacloprid regulation. On average, we did not find evidence of a decrease in imidacloprid concentrations after regulation. However, there were some decreases, some increases, and other cases with no changes in imidacloprid levels depending on the specific media, time point of sampling, and site type. At the same time, we found an overall increase in flupyradifurone, acetamiprid, thiamethoxam, and thiacloprid but no change in clothianidin concentrations. In particular, flupyradifurone concentrations observed in biota sampled near agricultural areas increased twofold in honey bee nectar, sevenfold in hummingbird cloacal fluid, and eightfold in flowers after the 2021 imidacloprid regulation. The highest residue detected was flupyradifurone at 665 ng/mL (parts per billion [ppb]) in honey bee nectar. Mean total pesticide loads were highest in honey samples (84 ± 10 ppb), followed by nectar (56 ± 7 ppb), then hummingbird cloacal fluid (1.8 ± 0.5 ppb), and least, flowers (0.51 ± 0.06 ppb). Our results highlight that limited regulation of imidacloprid does not immediately reduce residue concentrations, while other systemic insecticides, possibly replacement compounds, concurrently increase in wildlife. Environ Toxicol Chem 2024;43:1497-1508. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Neonicotinoids/analysis , Animals , Insecticides/analysis , Nitro Compounds/analysis , Pyridines/analysis , Bees , Environmental Monitoring , Birds , Plant Nectar/chemistry , Honey/analysis , Thiamethoxam , Flowers/chemistry , Guanidines , Thiazines , Thiazoles , 4-Butyrolactone/analogs & derivatives
9.
Sci Total Environ ; 939: 173509, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38815835

ABSTRACT

In recent years, neonicotinoid insecticides (NNIs), representing a new era of pest control, have increasingly replaced traditional classes such as organophosphorus compounds, carbamates, and pyrethroids due to their precise targeting and broad-spectrum efficacy. However, the high water solubility of NNIs has led to their pervasion in aquatic ecosystems, raising concerns about potential risks to non-target organisms and human health. Therefore, there is an urgent need for research on remediating NNI contamination in aquatic environments. This study demonstrates that biochar, characterized by its extensive surface area, intricate pore structure, and high degree of aromaticity holds significant promise for removing NNIs from water. The highest reported adsorption capacity of biochar for NNIs stands at 738.0 mg·g-1 with degradation efficiencies reaching up to 100.0 %. This review unveils that the interaction mechanisms between biochar and NNIs primarily involve π-π interactions, electrostatic interactions, pore filling, and hydrogen bonding. Additionally, biochar facilitates various degradation pathways including Fenton reactions, photocatalytic, persulfate oxidations, and biodegradation predominantly through radical (such as SO4-, OH, and O2-) as well as non-radical (such as 1O2 and electrons transfer) processes. This study emphasizes the dynamics of interaction between biochar surfaces and NNIs during adsorption and degradation aiming to elucidate mechanistic pathways involved as well as assess the overall efficacy of biochar in NNI removal. By comparing the identification of degradation products and degradation pathways, the necessity of advanced oxidation process is confirmed. This review highlights the significance of harnessing biochar's potential for mitigating NNI pollution through future application-oriented research and development endeavors, while simultaneously ensuring environmental integrity and promoting sustainable practices.


Subject(s)
Charcoal , Insecticides , Neonicotinoids , Water Pollutants, Chemical , Charcoal/chemistry , Insecticides/analysis , Insecticides/chemistry , Water Pollutants, Chemical/analysis , Adsorption
10.
J Hazard Mater ; 473: 134621, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795494

ABSTRACT

Neonicotinoids (NEOs) are widely used insecticides and have been detected in aquatic environments globally. However, little is known about NEOs contamination in the coastal environments under the terrestrial pressure of multiple planting types simultaneously. This study investigated the occurrence, spatial-seasonal variability, and ecological risks of NEOs along the coast of the Shandong Peninsula during the dry and wet seasons, where located many largest fruit, vegetable, and grain production bases in China. The concentrations of ∑NEOs in seawater were higher in wet seasons (surface: 195.46 ng/L; bottom: 14.56 ng/L) than in dry seasons (surface: 10.07 ng/L; bottom: 8.45 ng/L). During the wet seasons, NEOs peaked in the northern and eastern areas of the Shandong Peninsula, where the inland fruit planting area is located. While dry seasons had higher concentrations in Laizhou Bay, influenced by rivers from vegetable-growing areas. Grain crops, fruit, and cotton planting were major NEOs sources during wet seasons, while wheat and vegetables dominated in dry seasons. Moderate or above ecological risks appeared at 53.8% of the monitoring sites. Generally, NEOs caused high risks in the wet seasons mainly caused by Imidacloprid, and medium risk in the dry seasons caused by Clothianidin, which should be prevented and controlled in advance.


Subject(s)
Agriculture , Environmental Monitoring , Insecticides , Neonicotinoids , Seasons , Seawater , Water Pollutants, Chemical , Insecticides/analysis , Insecticides/toxicity , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Neonicotinoids/analysis , Neonicotinoids/toxicity , China , Risk Assessment
11.
Analyst ; 149(13): 3673-3680, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38819227

ABSTRACT

Benzoylurea (BU) insecticides have been widely used for pest control as third-generation insecticides. Considering that their residues in food may cause adverse effects on human health, the upper limits of BUs remaining in food have been set by the administration. Therefore, it is essential to develop a sensitive and efficient analytical method to determine the residues of BUs in food. Stir bar sorptive extraction (SBSE) is a novel sample preparation technique, and stainless steel wire (SSW) is an ideal substrate for an SBSE device. In this work, a novel SBSE device of SSW jacket-free stir bar with a dumbbell shape was designed and prepared. The conjugated microporous polymer CMP-F6, which possesses a porous structure, high hydrophobicity and rich fluorine-containing functional groups, was immobilized on the surface of SSW by the method of polyacrylonitrile glue adhesion. Compared with previous studies, which used SSW as a substrate, the method of etching partial SSW with hydrochloric acid, on the one hand, made the surface of SSW rough and easy to modify the extraction coating, and on the other hand, converted itself into a dumbbell-shaped structure, which is conducive to improving the extraction efficiency and stability of the SBSE device. The method of SBSE-HPLC-UV was established for determining five BUs. Owing to the hydrophobic interaction and F-F interaction between CMP-F6 and analytes, this method showed good extraction efficiency and had good linearity (R2 ≥ 0.9945) and high sensitivity (LODs in the range of 0.1-0.2 ng mL-1). It was used for the analysis of benzoylurea in an apple juice sample, and the recoveries were 74.3-117.9%.


Subject(s)
Fruit and Vegetable Juices , Polymers , Stainless Steel , Stainless Steel/chemistry , Porosity , Fruit and Vegetable Juices/analysis , Polymers/chemistry , Limit of Detection , Food Contamination/analysis , Urea/chemistry , Urea/analysis , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Adsorption , Pesticide Residues/analysis , Pesticide Residues/isolation & purification
12.
Environ Pollut ; 352: 124122, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723707

ABSTRACT

In viticulture, the use of synthetic chemical formulations introduces insecticide residues into harvested grapes and further into processed grape products, posing a safety concern to consumers. This study investigated the fate of ten insecticide residues and their metabolites from vine to wine. A rapid validated multi-residue approach using QuEChERS extraction and LC-MS/MS configuration was employed for targeted analysis in grape, pomace, and wine. The targeted insecticides showed satisfactory mean recoveries (76.03-111.95%) and precision (RSD = 0.75-7.90%) across the three matrices, with a matrix effect ranging from -16.88 to 35.18%, particularly higher in pomace. Preliminary grape washing effectively removed 15.52-61.31% of insecticide residues based on water solubility and systemic nature. Residue dissipation during fermentation ranged from 73.19% to 87.15% with a half-life spanning from 1 to 5.5 days. The mitigation rate was observed at 12.85-26.81% for wine and 17.76-51.55% for pomace, with the highest transfer rate for buprofezin (51.55%) to pomace and fipronil (25.72%) to wine. Calculated processing factors (PF) for final wine ranged from 0.16 to 0.44, correlating strongly with the octanol-water partition ratio of targeted insecticides. The reported PF, calculated hazard quotient (HQ) (0.003-5.800%), and chronic hazard index (cHI) (2.041-10.387%) indicate reduced residue concentrations in wine and no potential chronic risk to consumers, ensuring a lower dietary risk to wine consumers.


Subject(s)
Insecticides , Pesticide Residues , Vitis , Wine , Insecticides/analysis , Pesticide Residues/analysis , Vitis/chemistry , Risk Assessment/methods , Wine/analysis , Kinetics , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Chromatography, Liquid/methods
13.
Chemosphere ; 359: 142309, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735491

ABSTRACT

Pesticides play vital roles in controlling pests and boosting crop yields. Imidacloprid is widely used all over the world and may form in agricultural products. The presence of pesticide residues in apples raises serious health concerns. Understanding the residual fate of imidacloprid is critical for food safety and human health. In this study, the dissipation behavior, metabolism, household processing and risk assessment of imidacloprid and its metabolites in apple were investigated from filed to products. Field experiment results suggested that the half-lives of imidacloprid at 5 times the recommended dosage was 1.5 times that of the standard dosage. And the final residues of imidacloprid were less than the established maximum residue limits (MRLs). Clarification and simmering had little effect on the reduction the residues of imidacloprid and its metabolites. The calculated processing factors were lower than 1 for imidacloprid and its metabolites, implying that the residual ratios of imidacloprid and its metabolites in each steps of the food processing were reduced. The risk quotients were <1 for all Chinese people, indicating that acceptable risks associated with dietary exposure to imidacloprid in apple. However, the higher risks were observed in young people than adults, and females faced higher risks than males. Given high residue levels in pomace, imidacloprid and its metabolites should be further studied in commercial byproducts.


Subject(s)
Insecticides , Malus , Neonicotinoids , Nitro Compounds , Pesticide Residues , Malus/chemistry , Malus/metabolism , Neonicotinoids/metabolism , Neonicotinoids/analysis , Nitro Compounds/analysis , Nitro Compounds/metabolism , Risk Assessment , Pesticide Residues/analysis , Pesticide Residues/metabolism , Insecticides/analysis , Insecticides/metabolism , Humans , Food Contamination/analysis , Dietary Exposure/analysis , China , Female , Imidazoles/metabolism , Imidazoles/analysis , Imidazoles/chemistry
14.
Chemosphere ; 359: 142371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768784

ABSTRACT

Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 µg/L) > THM (2.74 µg/L) > IMI (0.97 µg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 µg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 µg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.


Subject(s)
Insecticides , Neonicotinoids , Oryza , Soil Pollutants , Insecticides/analysis , Neonicotinoids/analysis , Oryza/chemistry , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Nitro Compounds/analysis , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Humans , Risk Assessment , Thiamethoxam , Guanidines/analysis , Thiazoles
15.
PLoS One ; 19(5): e0298371, 2024.
Article in English | MEDLINE | ID: mdl-38758738

ABSTRACT

Malathion® is a persistent organophosphate pesticide used against biting and chewing insects on vegetables. It is a difficult-to-remove surface contaminant of vegetables and contaminates surface and ground water and soils. Malathion® is only partially water soluble, but use of detergent carriers makes adhering Malathion® residues difficult to subsequently remove. Magnetically treated water (MTW) successfully removed Malathion® from Chinese Kale (Brassica oleracea L.), meeting Maximum Residue Load (MRL) standards. Samples were soaked in MTW for 30 min prior to detection with GC/MS/MS, 98.5±3.02% of Malathion® was removed after washing by MTW. Removal by simple washing was only ≈42±1.2% which was not nearly sufficient to meet MRL criteria.


Subject(s)
Brassica , Malathion , Brassica/chemistry , Water Pollutants, Chemical/analysis , Water/chemistry , Insecticides/analysis , Pesticide Residues/analysis , Water Purification/methods , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry
16.
Sci Total Environ ; 932: 172811, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701918

ABSTRACT

Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.


Subject(s)
Chickens , Eggs , Insecticides , Pyrazoles , Animals , Pyrazoles/analysis , Insecticides/analysis , Eggs/analysis , Risk Assessment , Female , Animal Feed/analysis , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
17.
J Oleo Sci ; 73(5): 761-772, 2024.
Article in English | MEDLINE | ID: mdl-38692898

ABSTRACT

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Subject(s)
Insecticides , Oils, Volatile , Plant Leaves , Tribolium , Animals , Insecticides/isolation & purification , Insecticides/analysis , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Tribolium/drug effects , Sesquiterpenes/isolation & purification , Sesquiterpenes/analysis , Insect Repellents/analysis , Insect Repellents/isolation & purification , Insect Repellents/pharmacology , Temperature
18.
J Agric Food Chem ; 72(21): 11980-11989, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38758169

ABSTRACT

Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.


Subject(s)
Carbon Isotopes , Diazinon , Pesticide Residues , Soil Pollutants , Soil , Diazinon/analysis , Diazinon/chemistry , Carbon Isotopes/analysis , Soil/chemistry , Pesticide Residues/chemistry , Pesticide Residues/analysis , Soil Pollutants/chemistry , Soil Pollutants/analysis , Fungicides, Industrial/chemistry , Fungicides, Industrial/analysis , Insecticides/chemistry , Insecticides/analysis , Bridged Bicyclo Compounds
19.
Talanta ; 275: 126190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703483

ABSTRACT

Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Insecticides , Neonicotinoids , Insecticides/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Neonicotinoids/analysis , Guanidines/analysis , Guanidines/chemistry , Thiamethoxam/analysis , Thiazoles/analysis , Thiazoles/chemistry , Nitro Compounds/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Thiazines
20.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772666

ABSTRACT

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Subject(s)
Aptamers, Nucleotide , Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , Neonicotinoids , Neonicotinoids/analysis , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Luminescent Measurements/methods , Metal-Organic Frameworks/chemistry , Ruthenium/chemistry , Biosensing Techniques/methods , Limit of Detection , Coordination Complexes/chemistry , Insecticides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...