Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.635
Filter
1.
J Agric Food Chem ; 72(29): 16378-16389, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980661

ABSTRACT

Rice (Oryza sativaL.) is a crucial staple food crop globally, facing significant challenges from various pests that affect crop productivity and quality. Conventional pesticide usage has limitations, necessitating the development of sustainable pest management strategies. This study focuses on the expression, purification, and functional characterization of Oryzacystatin II (OC-II), a protein derived from O. sativaL. Indica rice, with the intent to evaluate its potential as a bioinsecticide against rice pests. The OC-II gene was expressed and purified, and purification confirmed its molecular weight (∼12 kDa) and protein sequence through LC-MS/MS analysis and Western blotting. The IC50 value of OC-II was calculated as 0.06 µM, and the inhibition was identified as a competitive inhibition. The protein exhibited efficient control of both pests at the nymph and adult stages, with lower probing marks observed on treated plants. The inhibition of cathepsin B enzyme activity in insects further confirmed the bioactivity of the OC-II protein. Molecular docking and molecular dynamics simulations provided insights into the interaction between the OC-II protein and cathepsin enzymes reported in BPH and WBPH. Further investigations can focus on optimizing production methods and exploring the specificity and efficacy of the OC-II protein against other crop pests to enhance its practical applications.


Subject(s)
Insecticides , Molecular Docking Simulation , Oryza , Plant Proteins , Oryza/genetics , Oryza/chemistry , Oryza/metabolism , Animals , Insecticides/chemistry , Insecticides/pharmacology , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Pest Control, Biological
2.
Sci Rep ; 14(1): 17016, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043811

ABSTRACT

As the most numerous group of animals on Earth, insects are found in almost every ecosystem. Their useful role in the environment is priceless; however, for humans, their presence may be considered negative or even harmful. For years, people have been trying to control the number of pests by using synthetic insecticides, which eventually causes an increased level of resistance to applied compounds. The effects of synthetic insecticides have encouraged researchers to search for alternatives and thus develop safe compounds with high specificity. Using knowledge about the physiology of insects and the functionality of compounds of insect origin, a new class of bioinsecticides called peptidomimetics, which are appropriately modified insect analogues, was created. One promising compound that might be successfully modified is the thirteen amino acid peptide alloferon (HGVSGHGQHGVHG), which is obtained from the hemolymph of the blue blowfly Calliphora vicinia. Our research aimed to understand the physiological properties of alloferon and the activity of its peptidomimetics, which will provide the possibility of using alloferon or its analogues in the pharmaceutical industry, as a drug or adjuvant, or in agriculture as a bioinsecticide. We used alloferon and its three peptidomimetics, which are conjugates of the native peptide with three unsaturated fatty acids with various chain lengths: caprylic, myristic, and palmitic. We tested their effects on the morphology and activity of the reproductive system and the embryogenesis of the Tenebrio molitor beetle. We found that the tested compounds influenced the growth and maturation of ovaries and the expression level of the vitellogenin gene. The tested compounds also influenced the process of egg laying, embryogenesis, and offspring hatching, showing that alloferon might be a good peptide for the synthesis of effective bioinsecticides or biopharmaceuticals.


Subject(s)
Reproduction , Tenebrio , Animals , Tenebrio/drug effects , Reproduction/drug effects , Female , Insecticides/pharmacology , Insecticides/chemistry , Male , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Hemolymph/metabolism , Hemolymph/drug effects , Peptides/pharmacology , Peptides/chemistry , Larva/drug effects
3.
Open Biol ; 14(7): 240057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043224

ABSTRACT

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Subject(s)
Anopheles , Guanidines , Insecticides , Mosquito Vectors , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Anopheles/metabolism , Anopheles/genetics , Anopheles/drug effects , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/chemistry , Guanidines/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Xenopus laevis , Ligands , Pyridines/pharmacology , Malaria/transmission , Malaria/parasitology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazines/pharmacology , Thiazines/chemistry , Oocytes/metabolism , Oocytes/drug effects , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
4.
J Agric Food Chem ; 72(28): 15552-15560, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950523

ABSTRACT

To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against Mythimna separata were evaluated. Compounds 11-5 exhibited an LC50 value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.


Subject(s)
Insecticides , Molecular Docking Simulation , Moths , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Moths/drug effects , Molecular Structure , Structure-Activity Relationship , Quantitative Structure-Activity Relationship , Lignans/chemistry , Lignans/pharmacology , Sesquiterpenes
5.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951812

ABSTRACT

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Subject(s)
Aphids , Bacillus , Insecticides , Lipopeptides , Animals , Aphids/drug effects , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/isolation & purification , Insecticides/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Multigene Family , Secondary Metabolism , Pest Control, Biological , Whole Genome Sequencing , Genome, Bacterial/genetics
6.
Molecules ; 29(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064892

ABSTRACT

A growing trend in plant protection is replacing chemical preparations with environmentally friendly biological compositions. Chitosan, due to its biocompatibility, biodegradability, and bioactivity, is an effective agent against plant diseases. The purpose of the study was to evaluate chitosan as a potential biopesticide for potato plants. Three variants of chitosan were tested: high (310-375 kDa, >75% deacetylated), medium (190-310 kDa, 75-85% deacetylated), and low (50-190 kDa, 75-85% deacetylated) molecular weight. The chitosan variants were dissolved in lactic and succinic acids and tested for antibacterial and antifungal properties against eight strains of mould and two strains of bacteria responsible for potato diseases. The possible cytotoxicity of chitosan was evaluated against different cell lines: insect Sf-9, human keratinocyte HaCaT, and human colon carcinoma Caco-2. The bioprotective activities of the chitosan were also evaluated in situ on potato tubers. Chitosan inhibited the growth of almost all the selected phytopathogens. The most active was medium molecular chitosan in lactic acid. This formula was characterized by low toxicity towards human cells and high toxicity towards Sf-9 cells. It was also found to have positive effects on the growth of stems and roots, gas exchange, and chlorophyll index in potato plants. Selected chitosan formulation was proposed as a functional biopesticide for potato protection against phytopathogens.


Subject(s)
Chitosan , Solanum tuberosum , Chitosan/pharmacology , Chitosan/chemistry , Solanum tuberosum/drug effects , Solanum tuberosum/microbiology , Humans , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry , Caco-2 Cells , Microbial Sensitivity Tests , Plant Diseases/microbiology , Plant Diseases/prevention & control
7.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064968

ABSTRACT

Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.


Subject(s)
Hemiptera , Insect Repellents , Insecticides , Myrtaceae , Oils, Volatile , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hemiptera/drug effects , Insect Repellents/pharmacology , Insect Repellents/chemistry , Myrtaceae/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Citrus/chemistry , Gas Chromatography-Mass Spectrometry , Plant Oils/chemistry , Plant Oils/pharmacology
8.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063059

ABSTRACT

Plants of the Meliaceae family have long attracted researchers' interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3ß,24,25-trihydroxycycloartane, humilinolides A-E and methyl-2-hydroxy-3ß-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11ß,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11ß-hydroxy-14ß,15ß-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle.


Subject(s)
Insecticides , Meliaceae , Triterpenes , Meliaceae/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Animals , Limonins/pharmacology , Limonins/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
9.
Pestic Biochem Physiol ; 203: 106024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084783

ABSTRACT

Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.


Subject(s)
Biological Availability , Insecticides , Oxazines , Rats, Sprague-Dawley , Toxicokinetics , Animals , Male , Oxazines/pharmacokinetics , Oxazines/toxicity , Oxazines/metabolism , Stereoisomerism , Insecticides/toxicity , Insecticides/pharmacokinetics , Insecticides/chemistry , Rats
10.
Sci Rep ; 14(1): 16325, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009775

ABSTRACT

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/ß), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/ß), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.


Subject(s)
Anopheles , Emulsions , Insecticides , Lantana , Larva , Oils, Volatile , Anopheles/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Lantana/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Larva/drug effects , Kinetics , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/antagonists & inhibitors , Mosquito Vectors/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mosquito Control/methods
11.
Sci Rep ; 14(1): 17384, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075143

ABSTRACT

Bacillus thuringiensis (Bt) is a widely used microbial insecticide, but its effectiveness is limited due to the degradation of Bt spores and crystals under UV radiation from sunlight. The objective of this study was to develop a novel Bt formulation with improved UV protection by utilizing sulfur quantum dots (SQDs) as stabilizing agents in a Pickering emulsion. The SQDs were comprehensively characterized using FTIR, XRD, TEM, HRTEM, UV, and fluorescence analyses, which confirmed the formation of well-dispersed, spherical SQDs. The microcapsule formulation with SQDs demonstrated superior UV stability, as it maintained 57.77% spore viability after 96 h of UV exposure, in comparison to 33.74% and 31.25% for the SQDs formulation (non-microcapsules) and unprotected Bt formulations (free spore, as a control), respectively. Furthermore, the microcapsule formulation exhibited higher insecticidal activity, resulting in a larval mortality of 71.22%, as opposed to 42.34% and 38.42% for the other formulations. These findings emphasize the effectiveness of microcapsule formulation with SQDs in safeguarding Bt spores and crystals against UV radiation, thereby enhancing their practical application in pest control. This approach presents a promising strategy for the development of biopesticides that are more resilient and have a longer shelf life.


Subject(s)
Bacillus thuringiensis , Quantum Dots , Spores, Bacterial , Sulfur , Ultraviolet Rays , Quantum Dots/chemistry , Spores, Bacterial/drug effects , Spores, Bacterial/radiation effects , Sulfur/chemistry , Sulfur/pharmacology , Animals , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects
12.
Bioorg Chem ; 150: 107591, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964147

ABSTRACT

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.


Subject(s)
Culex , Insecticides , Larva , Molecular Docking Simulation , Quinolines , Animals , Culex/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Larva/drug effects , Structure-Activity Relationship , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Molecular Structure , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Acetylcholinesterase/metabolism
13.
Biomolecules ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39062494

ABSTRACT

The search for new compounds with biocidal potential was carried out, focusing on the longipinenes 1-7 from the plant species Santolina viscosa Lag. Compounds 1, 2, and 5 showed remarkable molecular diversity when treated in acidic reaction conditions. Protonic, Lewis, and heterogeneous compounds were used in the treatment. Three main models of reaction have been observed: isomerization of the double bond (8-10); rearrangements to longibornane-based skeleton (11-15) and ring-opening to himachalane-based skeleton (16-18). Secolongibornane aldehydes 23 and 24 were obtained after epoxide opening under the same reaction conditions. The elucidation of the structures of the new compounds was carried out using spectroscopic data and was supported by computational theoretical calculations of 13C NMR spectra. Additionally, high-resolution mass spectrometry and single-crystal X-ray diffraction analysis were employed for certain compounds. Natural longipinenes 4-7, methyl esters 1-3 of corresponding natural carboxylic acids and the isomerized and derivatives compounds 8-19 exhibit moderate to high insecticidal activity against R. padi and M. persicae insects. Longipinene 5 shows potent inhibition against the root growth of the plants L. perenne and L. sativa, as well as compound 2 on the leaves of L. perenne. Furthermore, significant ixocidal and nematicidal activity was found for this latter compound.


Subject(s)
Insecticides , Animals , Insecticides/chemistry , Insecticides/pharmacology , Catalysis , Molecular Structure , Norbornanes/chemistry , Norbornanes/pharmacology
14.
Biomolecules ; 14(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39062509

ABSTRACT

Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.


Subject(s)
Bacillus thuringiensis Toxins , Bacillus thuringiensis , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Humans , Endotoxins/chemistry , Endotoxins/genetics , Endotoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Animals , Insecticides/chemistry , Insecticides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Aedes/drug effects , Aedes/genetics , Cell Line, Tumor
15.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891887

ABSTRACT

With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Thiazines , Neonicotinoids/chemistry , Insecticides/chemistry , Nitro Compounds/chemistry , Thiazines/chemistry , Adsorption , Soil/chemistry , Soil Pollutants/chemistry , Pyridines/chemistry , Imidazoles/chemistry
16.
J Agric Food Chem ; 72(25): 14375-14385, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860923

ABSTRACT

Chlorpyrifos (CPF) residues in food pose a serious threat to ecosystems and human health. Herein, we propose a three-dimensional folded paper-based microfluidic analysis device (3D-µPAD) based on multifunctional metal-organic frameworks, which can achieve rapid quantitative detection of CPF by fluorescence-colorimetric dual-mode readout. Upconversion nanomaterials were first coupled with a bimetal organic framework possessing peroxidase activity to create a fluorescence-quenched nanoprobe. After that, the 3D-µPAD was finished by loading the nanoprobe onto the paper-based detection zone and spraying it with a color-developing solution. With CPF present, the fluorescence intensity of the detection zone gradually recovers, the color changes from colorless to blue. This showed a good linear relationship with the concentration of CPF, and the limits of detection were 0.028 (fluorescence) and 0.043 (colorimetric) ng/mL, respectively. Moreover, the 3D-µPAD was well applied in detecting real samples with no significant difference compared with the high-performance liquid chromatography method. We believe it has huge potential for application in the on-site detection of food hazardous substance residues.


Subject(s)
Chlorpyrifos , Food Contamination , Metal-Organic Frameworks , Paper , Chlorpyrifos/analysis , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Colorimetry/methods , Colorimetry/instrumentation , Limit of Detection , Pesticide Residues/analysis , Pesticide Residues/chemistry , Insecticides/analysis , Insecticides/chemistry , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices
17.
J Agric Food Chem ; 72(25): 14364-14374, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867641

ABSTRACT

Cypermethrin (CP) is a neurotoxic insecticide found accumulated in oysters, one of the most commonly consumed seafoods, posing potential health risks to the human body. We designed a gastrointestinal tracing method allowing for accurate quantification of the propulsion of chyme and further established the mouse in vivo digestion model to explore the behavior of CP in the digestion of raw, steamed, and roasted oysters. The results showed that bioaccumulation of CP in oysters may be accompanied by the biotransformation of CP. Thermal processing decreased both the CP content in oysters and its bioaccessibility. The small intestine is the main site for CP digestion and absorption. The cis-isomers of CP might finally accumulate in the body at a higher ratio and further become the predominant configuration for toxic effects. Taken together, the study contributes to the risk assessment of the dietary exposure of CP from aquatic products.


Subject(s)
Crassostrea , Digestion , Gastrointestinal Tract , Insecticides , Pyrethrins , Animals , Pyrethrins/metabolism , Pyrethrins/analysis , Crassostrea/metabolism , Crassostrea/chemistry , Gastrointestinal Tract/metabolism , Mice , Insecticides/metabolism , Insecticides/chemistry , Isomerism , Shellfish/analysis , Food Contamination/analysis , Humans , Male , Food Handling/methods
18.
J Hazard Mater ; 475: 134847, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885583

ABSTRACT

Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.


Subject(s)
Ivermectin , Metal-Organic Frameworks , Spodoptera , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Ivermectin/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/toxicity , Animals , Hydrogen-Ion Concentration , Spodoptera/drug effects , Insecticides/toxicity , Insecticides/chemistry , Drug Compounding , Hyaluronic Acid/chemistry , Hyaluronic Acid/toxicity , Solanum lycopersicum
19.
Mar Drugs ; 22(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921593

ABSTRACT

Four new cyclic pentapeptides, avellanins D-G (1-4), together with four known compounds (5-8), were isolated from a mangrove-derived Aspergillus fumigatus GXIMD 03099 fungus from Acanthus ilicifolius L. Their structures were elucidated by analysis of HRESIMS, NMR, and ESI-MS/MS data. Their absolute configurations were determined by X-ray diffraction analysis and Marfey's method. Compounds 1-8 were screened for insecticidal and antibacterial activities. Compound 2 showed insecticidal activity against newly hatched larvae of Culex quinquefasciatus with an LC50 value of 86.6 µM; compound 4 had weak activity against Vibrio harveyi with an MIC value of 5.85 µM.


Subject(s)
Anti-Bacterial Agents , Aspergillus fumigatus , Insecticides , Microbial Sensitivity Tests , Peptides, Cyclic , Aspergillus fumigatus/drug effects , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Vibrio/drug effects , Culex/drug effects , Larva/drug effects , Molecular Structure
20.
Toxins (Basel) ; 16(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38922129

ABSTRACT

Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.


Subject(s)
Insecticides , Polyamines , Spider Venoms , Wasps , Animals , Polyamines/chemistry , Spider Venoms/chemistry , Spider Venoms/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/toxicity , Humans , Spiders
SELECTION OF CITATIONS
SEARCH DETAIL